Settling of Copper Phases in Lime Modified Iron Silicate Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Settling Furnace and Trial Description
2.2. Slag Sampling during the Trial
2.3. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coursol, P.; Valencia, N.C.; Mackey, P.; Bell, S.; Davis, B. Minimization of Copper Losses in Copper Smelting Slag During Electric Furnace Treatment. JOM 2012, 64, 1305–1313. [Google Scholar] [CrossRef] [Green Version]
- Bellemans, I.; De Wilde, E.; Moelans, N.; Verbeken, K. Metal losses in pyrometallurgical operations—A review. Adv. Colloid Interface Sci. 2018, 255, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Lotfian, S.; Vikström, T.; Lennartsson, A.; Björkman, B.; Ahmed, H.; Samuelsson, C. Plastic-containing materials as alternative reductants for base metal production. Can. Metall. Q. 2019, 58:2, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Isaksson, J.; Vikström, T.; Lennartsson, A.; Samuelsson, C. Influence of Process Parameters on Copper Content in Reduced Iron Silicate Slag in a Settling Furnace. Metals 2021, 11, 992. [Google Scholar] [CrossRef]
- Borell, M. Slag—A resource in the sustainable society. In Securing the Future, Proceedings of the International Conference on Mining and the Environment, Metals and Energy Recovery, Skellefteå, Sweden, 27 June–1 July 2005; SveMin: Skellefteå, Sweden, 2005; pp. 1–9. [Google Scholar]
- Schlesinger, M.E.; King, M.J.; Sole, K.C.; Davenport, W.G. Extractive Metallurgy of Copper, 5th ed.; Elsevier Ltd.: Oxford, UK, 2011; ISBN 978-0-08-096789-9. [Google Scholar]
- Shen, H.; Forssberg, E. An overview of recovery of metals from slags. Waste Manag. 2003, 23, 933–949. [Google Scholar] [CrossRef]
- Utigard, T.A. Density of copper/nickel sulphide smelting and converting slags. Scand. J. Metall. 1994, 23, 37–41. [Google Scholar]
- Mostaghel, S.; Samuelsson, C.; Björkman, B. Influence of alumina on mineralogy and environmental properties of zinc-copper smelting slags. Int. J. Miner. Metall. Mater. 2013, 20, 234–245. [Google Scholar] [CrossRef]
- Mackey, P.J. The Physical Chemistry of Copper Smelting Slags—A Review. Can. Metall. Q. 1982, 21:3, 221–260. [Google Scholar] [CrossRef]
- Starodub, K.; Kuminova, Y.; Dinsdale, A.; Cheverikin, V.; Filichkina, V.; Saynazarov, A.; Khvan, A.; Kondratiev, A. Experimental Investigation and Modeling of Copper Smelting Slags. Metall. Mater. Trans. B 2016, 47B, 2904–2918. [Google Scholar] [CrossRef]
- Stokes, G.G. On the Effects of the Internal Friction of Fluids on the Motion of Pendulums. Trans. Camb. Philos. Soc. 1850, 9, 75–129. [Google Scholar] [CrossRef]
- Kaiura, G.H.; Toguri, J.M.; Marchant, G. Viscosity of Fayalite-Based Slags. Can. Metall. Q. 1977, 16:1, 156–160. [Google Scholar] [CrossRef]
- Ducret, A.C.; Rankin, W.J. Liquidus temperatures and viscosities of FeO-Fe2O3-SiO2-CaO-MgO slags at compositions relevant to nickel matte smelting. Scand. J. Metall. 2002, 31, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Fu, L.; Qi, J.; Xuan, W. Physicochemical Properties of the Molten Iron-Rich Slags Related to the Copper Recovery. Metall. Mater. Trans. B 2019, 50B, 1852–1861. [Google Scholar] [CrossRef]
- Yan, Z.; Reddy, R.G.; Lv, X.; Pang, Z.; Bai, C. Viscosity of Iron Oxide Aluminosilicate Melts. Metall. Mater. Trans. B 2019, 50B, 251–261. [Google Scholar] [CrossRef]
- Selivanov, E.; Gulyaeva, R.; Istomin, S.; Belyaev, V.; Tyushnyakov, S.; Bykov, A. Viscosity and thermal properties of slag in the process of autogenous smelting of copper-zinc concentrates. Miner. Process. Extr. Metall. 2015, 124, 88–95. [Google Scholar] [CrossRef]
- Mostaghel, S.; Matsushita, T.; Samuelsson, C.; Björkman, B.; Seetharaman, S. Influence of alumina on physical properties of an industrial zinc-copper smelting slag: Part 1—Viscosity. Miner. Process. Extr. Metall. 2013, 122, 42–48. [Google Scholar] [CrossRef]
- Park, H.-S.; Park, S.S.; Sohn, I. The Viscous Behavior of FeOt-Al2O3-SiO2 Copper Smelting Slags. Metall. Mater. Trans. B 2011, 42B, 692–699. [Google Scholar] [CrossRef]
- Huang, A.; Huo, Y.; Yang, J.; Gu, H.; Li, G. Computational Modeling and Prediction on Viscosity of Slags by Big Data Mining. Minerals 2020, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Wang, S.; Zhang, Z.; Li, Z.; Jia, R.; Yun, F.; Li, H.; Ma, Y.; Wang, W. The viscosity and conductivity of the molten glass and crystallization behavior of the glass ceramics derived from stainless steel slag. Mater. Chem. Phys. 2020, 251, 123159. [Google Scholar] [CrossRef]
- Chen, M.; Raghunath, S.; Zhao, B. Viscosity measurements of SiO2-”FeO”-MgO system in equilibrium with metallic Fe. Metall. Mater. Trans. B 2014, 45B, 58–65. [Google Scholar] [CrossRef]
- Zhou, S.; Wei, Y.; Shi, Y.; Li, B.; Wang, H. Characterization and Recovery of Copper from Converter Copper Slag via Smelting Separation. Metall. Mater. Trans. B 2018, 49B, 2458–2468. [Google Scholar] [CrossRef]
- Sukhomlinov, D.; Avarmaa, K.; Virtanen, O.; Taskinen, P.; Jokilaakso, A. Slag–Copper Equilibria of Selected Trace Elements in Black Copper Smelting. Part I. Properties of the Slag and Chromium Solubility. Miner. Process. Extr. Metall. Rev. 2020, 41:1, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Tan, P. Modeling and control of copper loss in smelting slag. JOM 2011, 63, 51–57. [Google Scholar] [CrossRef]
- Fagerlund, K.O.; Jalkanen, H. Microscale Simulation of Settler Processes in Copper Matte Smelting. Metall. Mater. Trans. B 2000, 31B, 439–451. [Google Scholar] [CrossRef]
- Elliott, J.F.; Mouniert, M. Surface and Interfacial Tensions in Copper Matte-Slag Systems, 1200 °C. Can. Metall. Q. 1982, 21, 415–428. [Google Scholar] [CrossRef]
- Natsui, S.; Nashimoto, R.; Kumagai, T.; Kikuchi, T.; Suzuki, R.O. An SPH Study of Molten Matte–Slag Dispersion. Metall. Mater. Trans. B 2017, 48B, 1792–1806. [Google Scholar] [CrossRef]
- Kim, H.G.; Sohn, H.Y. Effects of CaO, Al2O3, and MgO Additions on the Copper Solubility, Ferric/Ferrous Ratio, and Minor-Element Behavior of Iron-Silicate Slags. Metall. Mater. Trans. B 1998, 29B, 583–590. [Google Scholar] [CrossRef]
- Holzheid, A.; Lodders, K. Solubility of copper in silicate as function of oxygen and sulfur fugacities, temperature, and silicate composition. Geochim. Cosmochim. Acta 2001, 65, 1933–1951. [Google Scholar] [CrossRef]
- Shishin, D.; Jak, E.; Decterov, S.A. Thermodynamic Assessment of Slag–Matte–Metal Equilibria in the Cu-Fe-O-S-Si System. J. Phase Equilib. Diffus. 2018, 39, 456–475. [Google Scholar] [CrossRef]
- Klaffenbach, E.; Mostaghel, S.; Guo, M.; Blanpain, B. Thermodynamic Analysis of Copper Smelting, Considering the Impact of Minor Elements Behavior on Slag Application Options and Cu Recovery. J. Sustain. Metall. 2021, 7, 664–683. [Google Scholar] [CrossRef]
Batch | (wt %) | (°C) | (min) | |
---|---|---|---|---|
CaO | Fuming Temperature | Settling Temperature | Settling Time | |
C1 | Reference | 1247 | 1247 | 13 |
C2 | 5 | 1247 | 1252 | 19 |
C3 | 10 | 1216 | 1249 | 21 |
C4 | 10 | 1192 | 1223 | 13 |
C5 | 15 | 1212 | 1250 | 14 |
Batch | (wt %) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | FeO | Al2O3 | CaO | MgO | Cr2O3 | ZnO | As | Sb | Cu | St.d Cu | |
C1 | 39 | 49 | 5.2 | 3.3 | 1.4 | 0.25 | 0.74 | 0.06 | 0.10 | 1.2 | 0.16 |
C2 | 36 | 47 | 4.8 | 8.8 | 1.3 | 0.24 | 0.74 | 0.08 | 0.12 | 1.4 | 0.15 |
C3 | 32 | 43 | 4.4 | 16 | 1.9 | 0.30 | 0.53 | 0.21 | 0.31 | 1.6 | 0.18 |
C4 | 33 | 44 | 4.3 | 15 | 1.7 | 0.18 | 0.97 | 0.15 | 0.34 | 1.4 | 0.08 |
C5 | 34 | 37 | 4.0 | 20 | 1.6 | 0.14 | 0.91 | 0.11 | 0.33 | 1.7 | 0.21 |
Batch | (wt %) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | FeO | Al2O3 | CaO | MgO | ZnO | Cr2O3 | As | S | Ni | Sb | Cu | St.d Cu | ||
C1 | out. | 39 | 49 | 5.0 | 3.1 | 1.5 | 0.9 | 0.31 | 0.04 | 0.04 | 0.02 | 0.64 | 0.03 | |
gran. | 39 | 49 | 4.3 | 3.1 | 1.2 | 1.5 | 0.23 | 0.02 | 0.52 | 0.04 | 0.02 | 0.77 | ||
C2 | out. | 38 | 46 | 5.1 | 7.0 | 1.5 | 0.9 | 0.30 | 0.06 | 0.05 | 0.01 | 0.55 | 0.02 | |
gran. | 37 | 47 | 4.4 | 7.2 | 1.2 | 1.4 | 0.23 | 0.01 | 0.41 | 0.03 | 0.01 | 0.61 | ||
C3 | out. | 37 | 41 | 5.8 | 12 | 1.8 | 0.6 | 0.34 | 0.04 | 0.04 | 0.07 | 0.62 | 0.03 | |
gran. | - | - | - | - | - | - | - | - | - | - | - | - | ||
C4 | out. | 36 | 42 | 5.4 | 13 | 1.7 | 1.0 | 0.29 | 0.06 | 0.04 | 0.02 | 0.55 | 0.06 | |
gran. | 34 | 45 | 3.6 | 12 | 1.4 | 1.6 | 0.23 | 0.02 | 0.52 | 0.02 | 0.01 | 0.57 | ||
C5 | out. | 37 | 37 | 6.1 | 17 | 1.6 | 1.0 | 0.27 | 0.06 | 0.03 | 0.02 | 0.55 | 0.03 | |
gran. | 34 | 41 | 3.7 | 16 | 1.3 | 1.6 | 0.21 | 0.01 | 0.41 | 0.01 | 0.01 | 0.57 |
(wt %) | |||||||
---|---|---|---|---|---|---|---|
Batch | Settling | Level 4/5 | Level 3 | Level 2 | Level 1 | Average * | |
C1 | Cu | Start | 0.98 | 0.98 | 1.1 | 1.4 | 1.0 |
End | 0.72 | 0.78 | 0.73 | 0.85 | 0.74 | ||
CaO | 2.8 | ||||||
Cr2O3 ** | 0.98–1.2 | 0.23 | |||||
C2 | Cu | Start | - | 0.75 | 0.71 | 0.89 | 0.73 |
End | 0.79 | 0.65 | 0.58 | 0.79 | 0.67 | ||
CaO | 6.3 | ||||||
Cr2O3 ** | 1.4–1.0 | 0.21 | |||||
C3 | Cu | Start | 0.77 | 0.73 | 0.74 | 0.87 | 0.75 |
End | 0.56 | 0.61 | 0.66 | 1.8 | 0.61 | ||
CaO | 11 | ||||||
Cr2O3 ** | 2.6–1.6 | 0.32 | |||||
C4 | Cu | Start | 0.66 | 0.60 | 0.66 | 2.1 | 0.64 |
End | 0.60 | 0.58 | 0.51 | 1.2 | 0.56 | ||
CaO | 11 | ||||||
Cr2O3 ** | 2.7–3.5 | 0.34 | |||||
C5 | Cu | Start | 0.73 | 0.86 | 0.90 | 0.73 | 0.83 |
End | 0.64 | 0.61 | 0.54 | 0.86 | 0.60 | ||
CaO | 15 | ||||||
Cr2O3 ** | 0.83-5.7 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaksson, J.; Vikström, T.; Lennartsson, A.; Andersson, A.; Samuelsson, C. Settling of Copper Phases in Lime Modified Iron Silicate Slag. Metals 2021, 11, 1098. https://doi.org/10.3390/met11071098
Isaksson J, Vikström T, Lennartsson A, Andersson A, Samuelsson C. Settling of Copper Phases in Lime Modified Iron Silicate Slag. Metals. 2021; 11(7):1098. https://doi.org/10.3390/met11071098
Chicago/Turabian StyleIsaksson, Jenny, Tommy Vikström, Andreas Lennartsson, Anton Andersson, and Caisa Samuelsson. 2021. "Settling of Copper Phases in Lime Modified Iron Silicate Slag" Metals 11, no. 7: 1098. https://doi.org/10.3390/met11071098
APA StyleIsaksson, J., Vikström, T., Lennartsson, A., Andersson, A., & Samuelsson, C. (2021). Settling of Copper Phases in Lime Modified Iron Silicate Slag. Metals, 11(7), 1098. https://doi.org/10.3390/met11071098