The ACTN-3 c.1729C>T (rs1815739) Polymorphism Is Associated with Match-Play Maximal Running Speed in Elite Football Players: A Preliminary Report
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Genetic Testing
- forward 5′-CTGTTGCCTGTGGTAAGTGGG-3′
- reverse 5′-TGGTCACAGTATGCAGGAGGG-3′.
2.3. Maximal Running Speed (MRS) During Official Matches
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MRS | Maximal Running Speed |
GPS | Global Position System |
ACTN-3 | Alpha-actinin-3 |
RFLP | Restriction Fragment Length Polymorphism |
PCR | Polymerase chain reaction |
References
- De Moor, M.H.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; De Geus, E.J. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Beck, K.L.; Thomson, J.S.; Swift, R.J.; von Hurst, P.R. Role of nutrition in performance enhancement and postexercise recovery. Open Access J. Sports Med. 2015, 6, 259–267. [Google Scholar] [CrossRef]
- Rees, T.; Hardy, L.; Güllich, A.; Abernethy, B.; Côté, J.; Woodman, T.; Montgomery, H.; Laing, S.; Warr, C. The Great British Medalists Project: A Review of Current Knowledge on the Development of the World’s Best Sporting Talent. Sports Med. 2016, 46, 1041–1058. [Google Scholar] [CrossRef]
- Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef]
- North, K.N.; Beggs, A.H. Deficiency of a skeletal muscle isoform of alpha-actinin (alpha-actinin-3) in merosin-positive congenital muscular dystrophy. Neuromuscul. Disord. 1996, 6, 229–235. [Google Scholar] [CrossRef]
- North, K.N.; Yang, N.; Wattanasirichaigoon, D.; Mills, M.; Easteal, S.; Beggs, A.H. A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nat. Genet. 1999, 21, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. ACTN3: More than Just a Gene for Speed. Front Physiol. 2017, 8, 1080. [Google Scholar] [CrossRef] [PubMed]
- Hogarth, M.W.; Garton, F.C.; Houweling, P.J.; Tukiainen, T.; Lek, M.; Macarthur, D.G.; Seto, J.T.; Quinlan, K.G.; Yang, N.; Head, S.I.; et al. Analysis of the ACTN3 heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion. Hum. Mol. Genet. 2016, 25, 866–877. [Google Scholar] [CrossRef]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 2003, 73, 27–631. [Google Scholar] [CrossRef]
- MacArthur, D.G.; North, K.N. A gene for speed? The evolution and function of alpha-actinin-3. Bioessays 2004, 26, 786–795. [Google Scholar] [CrossRef]
- Eynon, N.; Duarte, J.A.; Oliveira, J.; Sagiv, M.; Yamin, C.; Meckel, Y.; Sagiv, M.; Goldhammer, E. ACTN3 R577X polymorphism and Israeli top-level athletes. Int. J. Sports Med. 2009, 30, 695–698. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Druzhevskaya, A.M.; Lyubaeva, E.V.; Popov, D.V.; Vinogradova, O.L.; Williams, A.G. The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp. Physiol. 2011, 96, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Cięszczyk, P.; Eider, J.; Ostanek, M.; Arczewska, A.; Leońska-Duniec, A.; Sawczyn, S.; Ficek, K.; Krupecki, K. Association of the ACTN3 R577X Polymorphism in Polish Power-Orientated Athletes. J. Hum. Kinet. 2011, 28, 55–61. [Google Scholar]
- Ma, F.; Yang, Y.; Li, X.; Zhou, F.; Gao, C.; Li, M.; Gao, L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. PLoS ONE 2013, 8, e54685. [Google Scholar]
- Pimenta, E.M.; Coelho, D.B.; Cruz, I.R.; Morandi, R.F.; Veneroso, C.E.; de Azambuja, P.G.; Carvalho, M.R.; Silami-Garcia, E.; De Paz Fernández, J.A. The ACTN3 genotype in soccer players in response to acute eccentric training. Eur. J. Appl. Physiol. 2012, 12, 1495–1503. [Google Scholar]
- Massidda, M.; Voisin, S.; Culigioni, C.; Piras, F.; Cugia, P.; Yan, X.; Eynon, N.; Calò, C.M. ACTN3 R577X Polymorphism Is Associated with the Incidence and Severity of Injuries in Professional Football Players. Clin. J. Sport Med. 2019, 29, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Rodas, G.; Moreno-Pérez, V.; Del Coso, J.; Florit, D.; Osaba, L.; Lucia, A. Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact Muscle Injuries: Preliminary Findings in a Top-Level Soccer Team. Genes 2021, 12, 769. [Google Scholar] [PubMed]
- Massidda, M.; Corrias, L.; Ibba, G.; Scorcu, M.; Vona, G.; Calò, C.M. Genetic markers and explosive leg-muscle strength in elite Italian soccer players. J. Sports Med. Phys. Fitness. 2012, 52, 328–334. [Google Scholar] [PubMed]
- Pimenta, E.M.; Coelho, D.B.; Veneroso, C.E.; Barros Coelho, E.J.; Cruz, I.R.; Morandi, R.F.; De A Pussieldi, G.; Carvalho, M.R.; Garcia, E.S.; De Paz Fernández, J.A. Effect of ACTN3 gene on strength and endurance in soccer players. J. Strength Cond. Res. 2013, 27, 3286–3292. [Google Scholar] [CrossRef]
- Dionísio, T.J.; Thiengo, C.R.; Brozoski, D.T.; Dionísio, E.J.; Talamoni, G.A.; Silva, R.B.; Garlet, G.P.; Santos, C.F.; Amaral, S.L. The influence of genetic polymorphisms on performance and cardiac and hemodynamic parameters among Brazilian soccer players. Appl. Physiol. Nutr. Metab. 2017, 42, 596–604. [Google Scholar] [CrossRef]
- Atabas, E.G.; Yapıcı Öksüzoğlu, A.; Turel, S.; Akca, H. The relationship of polymorphism with explosive forces in ACTN3, ACE, and UCP3 genes in soccer players. Progr. Nutr. 2020, 22, e2020048. [Google Scholar]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Kelly, A.L. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: A systematic review and meta-analysis. J. Sports Sci. 2021, 39, 200–211. [Google Scholar] [CrossRef]
- Coelho, D.B.; Pimenta, E.M.; Rosse, I.C.; de Castro, B.M.; Becker, L.K.; de Oliveira, E.C.; Carvalho, M.R.S.; Garcia, E.S. Evidence for a Role of ACTN3 R577X Polymorphism in Football Player’s Career Progression. Int. J. Sports Med. 2018, 39, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Carling, C.; Le Gall, F.; Dupont, G. Analysis of repeated high intensity running performance in professional soccer. J. Sports Sci. 2012, 30, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.L.; Norton, K.I. Evolution of World Cup soccer final games 1966-2010: Game structure, speed and play patterns. J. Sci. Med. Sport 2014, 17, 223–228. [Google Scholar] [CrossRef]
- Nassis, G.P.; Massey, A.; Jacobsen, P.; Brito, J.; Randers, M.B.; Castagna, C.; Mohr, M.; Krustrup, P. Elite football of 2030 will not be the same as that of 2020: Preparing players, coaches, and support staff for the evolution. Scand. J. Med. Sci. Sports 2020, 30, 962–964. [Google Scholar] [CrossRef]
- Del Coso, J.; Rodas, G.; Soler-Aguinaga, A.; López-Del Campo, R.; Resta, R.; González-Rodenas, J.; Ferrandis, J.; Moreno-Pérez, V. ACTN3 XX Genotype Negatively Affects Running Performance and Increases Muscle Injury Incidence in LaLiga Football Players. Genes 2024, 15, 386. [Google Scholar] [CrossRef]
- Tanisawa, K.; Wang, G.; Seto, J.; Verdouka, I.; Twycross-Lewis, R.; Karanikolou, A.; Tanaka, M.; Borjesson, M.; Di Luigi, L.; Dohi, M.; et al. Sport and exercise genomics: The FIMS 2019 consensus statement update. Br. J. Sports Med. 2020, 54, 969–975. [Google Scholar] [CrossRef]
- Mills, M.; Yang, N.; Weinberger, R.; Vander Woude, D.L.; Beggs, A.H.; Easteal, S.; North, K. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: Implications for the evolution of functional redundancy. Hum. Mol. Genet. 2001, 10, 1335–1346. [Google Scholar]
- Calderón-Pellegrino, G.; Gallardo, L.; Garcia-Unanue, J.; Felipe, J.L.; Hernandez-Martin, A.; Paredes-Hernández, V.; Sánchez-Sánchez, J. Physical Demands during the Game and Compensatory Training Session (MD + 1) in Elite Football Players Using Global Positioning System Device. Sensors 2022, 22, 3872. [Google Scholar] [CrossRef] [PubMed]
- Schutz, Y.; Herren, R. Assessment of speed of human locomotion using a differential satellite global positioning system. Med. Sci. Sports Exerc. 2000, 32, 642–646. [Google Scholar] [CrossRef]
- Gray, A.J.; Jenkins, D.; Andrews, M.H.; Taaffe, D.R.; Glover, M.L. Validity and reliability of GPS for measuring distance travelled in field-based team sports. J. Sports Sci. 2010, 28, 1319–1325. [Google Scholar] [CrossRef]
- Larsson, P. Global positioning system and sport-specific testing. Sports Med. 2003, 33, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Bastida Castillo, A.; Gómez Carmona, C.D.; De la Cruz Sánchez, E.; Pino Ortega, J. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer. Eur. J. Sport Sci. 2018, 18, 450–457. [Google Scholar] [CrossRef]
- De Hoyo, M.; Sañudo, B.; Suárez-Arrones, L.; Carrasco, L.; Joel, T.; Domínguez-Cobo, S.; Núñez, F.J. Analysis of the acceleration profile according to initial speed and positional role in elite professional male soccer players. J. Sports Med. Phys. Fitness 2018, 58, 1774–1780. [Google Scholar] [CrossRef]
- Carling, C.; Bloomfield, J.; Nelsen, L.; Reilly, T. The role of motion analysis in elite soccer: Contemporary performance measurement techniques and work rate data. Sports Med. 2008, 38, 839–862. [Google Scholar] [CrossRef]
- Santiago, C.; González-Freire, M.; Serratosa, L.; Morate, F.J.; Meyer, T.; Gómez-Gallego, F.; Lucia, A. ACTN3 genotype in professional soccer players. Br. J. Sports Med. 2008, 42, 71–73. [Google Scholar]
- Miñano-Espin, J.; Casáis, L.; Lago-Peñas, C.; Gómez-Ruano, M.Á. High speed running and sprinting profiles of elite soccer players. J. Hum. Kinet. 2017, 58, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Lozano, J.M.; Fortes, V.; Krustrup, P.; Muyor, J.M. Acceleration and sprint profiles of professional male football players in relation to playing position. PLoS ONE. 2020, 15, e0236959. [Google Scholar]
- Del Coso, J.; Brito de Souza, D.; Moreno-Perez, V.; Buldú, J.M.; Nevado, F.; Resta, R.; López-Del Campo, R. Influence of Players’ Maximum Running Speed on the Team’s Ranking Position at the End of the Spanish LaLiga. Int. J. Environ. Res. Public Health 2020, 17, 8815. [Google Scholar] [CrossRef] [PubMed]
- Petr, M.; Thiel, D.; Kateřina, K.; Brož, P.; Malý, T.; Zahálka, F.; Vostatková, P.; Wilk, M.; Chycki, J.; Stastny, P. Speed and power-related gene polymorphisms associated with playing position in elite soccer players. Biol. Sport. 2022, 39, 355–366. [Google Scholar] [CrossRef]
- de Almeida, K.Y.; Zempo, H.; Saito, M.; Cetolin, T.; Dos Santos Guimarães, R.; Marrero, A.R.; Aguiar, A.S., Jr.; Kikuchi, N. Influence of ACTN3 R577X Polymorphism on Blood Creatine Kinase Levels Relative to Number of Sprints in Brazilian Professional Soccer Players. Genes 2024, 15, 896. [Google Scholar] [CrossRef]
- Coelho, D.B.; Pimenta, E.; Rosse, I.C.; Veneroso, C.; Becker, L.K.; Carvalho, M.R.; Pussieldi, G.; Silami-Garcia, E. The alpha-actinin-3 R577X polymorphism and physical performance in soccer players. J. Sports Med. Phys. Fitness 2016, 56, 241–248. [Google Scholar] [PubMed]
- MacArthur, D.G.; North, K.N. ACTN3: A genetic influence on muscle function and athletic performance. Exerc. Sport Sci. Rev. 2007, 35, 30–34. [Google Scholar] [CrossRef]
- Druzhevskaya, A.M.; Ahmetov, I.I.; Astratenkova, I.V.; Rogozkin, V.A. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur. J. Appl. Physiol. 2008, 103, 631–634. [Google Scholar] [CrossRef]
- Niemi, A.K.; Majamaa, K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur. J. Hum. Genet. 2005, 13, 965–969. [Google Scholar] [CrossRef]
- Roth, S.M.; Walsh, S.; Liu, D.; Metter, E.J.; Ferrucci, L.; Hurley, B.F. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur. J. Hum. Genet. 2008, 16, 391–394. [Google Scholar] [CrossRef]
- Papadimitriou, I.D.; Papadopoulos, C.; Kouvatsi, A.; Triantaphyllidis, C. The ACTN3 gene in elite Greek track and field athletes. Int. J. Sports Med. 2008, 29, 352–355. [Google Scholar] [CrossRef]
- Mikami, E.; Fuku, N.; Murakami, H.; Tsuchie, H.; Takahashi, H.; Ohiwa, N.; Tanaka, H.; Pitsiladis, Y.P.; Higuchi, M.; Miyachi, M.; et al. ACTN3 R577X genotype is associated with sprinting in elite Japanese athletes. Int. J. Sports Med. 2014, 35, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, I.D.; Lucia, A.; Pitsiladis, Y.P.; Pushkarev, V.P.; Dyatlov, D.A.; Orekhov, E.F.; Artioli, G.G.; Guilherme, J.P.; Lancha, A.H., Jr.; Ginevičienė, V.; et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: A multi-cohort study. BMC Genom. 2016, 17, 285. [Google Scholar]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar]
- Chmura, P.; Andrzejewski, M.; Konefał, M.; Mroczek, D.; Rokita, A.; Chmura, J. Analysis of Motor Activities of Professional Soccer Players during the 2014 World Cup in Brazil. J. Hum. Kinet. 2017, 56, 187–195. [Google Scholar] [CrossRef]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.; Connor, M.; Jamil, M.; Beato, M. Quantifying and comparing the match demands of U18, U23, and 1ST team English professional soccer players. Front. Physiol. 2021, 12, 706451. [Google Scholar] [CrossRef] [PubMed]
- Lago-Peñas, C.; Lorenzo-Martinez, M.; López-Del Campo, R.; Resta, R.; Rey, E. Evolution of physical and technical parameters in the Spanish LaLiga 2012–2019. Sci. Med. Footb. 2023, 7, 41–46. [Google Scholar]
- Martínez-Hernández, D.; Quinn, M.; Jones, P. Linear advancing actions followed by deceleration and turn are the most common movements preceding goals in male professional soccer. Sci. Med. Footb. 2022, 7, 25–33. [Google Scholar] [CrossRef]
- Robles-Palazón, F.J.; López-Valenciano, A.; Croix, M.D.; Oliver, J.L.; Garcia-Gómez, A.; de Baranda, P.S.; Ayala, F. Epidemiology of injuries in male and female youth football players: A systematic review and meta-analysis. J. Sport Health Sci. 2022, 11, 681–695. [Google Scholar] [CrossRef] [PubMed]
Variables | CC | CT | TT | p Value |
---|---|---|---|---|
Number (observed frequency, %) | 18 (40.9) | 20 (45.4) | 7 (15.9) | 0.433 |
Number (expected frequency, %) | 17.3 (38.4) | 21.3 (47.3) | 6.3(14) | |
Age (years) | 20.4 ± 5.7 | 19.3 ± 3.1 | 22.0 ± 6.4 | 0.315 |
Height (cm) | 180.7 ± 6.6 | 177.5 ± 8.5 | 178.2 ± 11.2 | 0.717 |
Weight (kg) | 74.1 ± 9.2 | 72.0 ± 6.7 | 71.8 ± 12.7 | 0.531 |
Variables | CC | CT | TT | p Value |
---|---|---|---|---|
Number (frequency, %) | 15 (40.5) | 16 (43.2) | 6 (16.2) | 0.484 |
Age (years) | 21.1 ± 6.0 | 19.8 ± 3.3 | 23.3 ± 5.9 | 0.345 |
Height (cm) | 181.8 ± 6.0 | 176.6 ± 8.1 | 181.0 ± 9.3 | 0.163 |
Weight (kg) | 76.1 ± 8.7 | 71.0 ± 6.3 | 75.4 ± 9.2 | 0.182 |
MRS (km/h) | 33.1 ± 1.3 | 32.7 ± 1.6 | 31.5 ± 1.9 | 0.041 |
Match time exposure (min) | 1321.5 ± 565.2 | 957.6 ± 740.0 | 1109.9 ± 501.9 | 0.298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massidda, M.; Flore, L.; Ghiani, G.M.; Losinska, K.; Baldus, M.; Secci, J.; Allegra, G.; Scorcu, M.; Kikuchi, N.; Cieszczyk, P.; et al. The ACTN-3 c.1729C>T (rs1815739) Polymorphism Is Associated with Match-Play Maximal Running Speed in Elite Football Players: A Preliminary Report. Sports 2025, 13, 331. https://doi.org/10.3390/sports13090331
Massidda M, Flore L, Ghiani GM, Losinska K, Baldus M, Secci J, Allegra G, Scorcu M, Kikuchi N, Cieszczyk P, et al. The ACTN-3 c.1729C>T (rs1815739) Polymorphism Is Associated with Match-Play Maximal Running Speed in Elite Football Players: A Preliminary Report. Sports. 2025; 13(9):331. https://doi.org/10.3390/sports13090331
Chicago/Turabian StyleMassidda, Myosotis, Laura Flore, Giovanna Maria Ghiani, Kinga Losinska, Mauro Baldus, Jacopo Secci, Giuseppe Allegra, Marco Scorcu, Naoki Kikuchi, Pawel Cieszczyk, and et al. 2025. "The ACTN-3 c.1729C>T (rs1815739) Polymorphism Is Associated with Match-Play Maximal Running Speed in Elite Football Players: A Preliminary Report" Sports 13, no. 9: 331. https://doi.org/10.3390/sports13090331
APA StyleMassidda, M., Flore, L., Ghiani, G. M., Losinska, K., Baldus, M., Secci, J., Allegra, G., Scorcu, M., Kikuchi, N., Cieszczyk, P., Calò, C. M., & Tocco, F. (2025). The ACTN-3 c.1729C>T (rs1815739) Polymorphism Is Associated with Match-Play Maximal Running Speed in Elite Football Players: A Preliminary Report. Sports, 13(9), 331. https://doi.org/10.3390/sports13090331