Stage-Specific Toxicity of Novaluron to Second-Instar Spodoptera frugiperda and Plutella xylostella and Associated Enzyme Responses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Test Chemicals
2.3. Laboratory Bioassays of Toxicity
2.3.1. Toxicity of Novaluron to Second-Instar S. frugiperda
2.3.2. Toxicity of Novaluron to Second-Instar P. xylostella
2.4. Changes in Detoxifying Enzyme Activities and Ecd Levels
2.4.1. Preparation of Test Solutions
2.4.2. Enzyme Source Preparation and Sample Processing
2.4.3. Determination of Detoxifying Enzyme Activities and Ecd Content
2.5. Data Analysis
3. Results
3.1. Toxicity of Novaluron to Second-Instar S. frugiperda and P. xylostella
3.2. Enzyme Activity Changes
3.2.1. CarE Activity Assays
3.2.2. P450 Activity Assays
3.2.3. GST Activity Assays
3.2.4. AChE Activity Assays
3.3. Ecd Content Determination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, H.; Ling, S.; Guo, Z.; Zheng, C.; Ma, H.; Li, J.; Ma, K. Effects of lufenuron treatments on the growth and development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 263, 109499. [Google Scholar] [CrossRef]
- Sarkowi, F.; Mokhtar, A. The fall army worm the fall armyworm (faw) Spodoptera frugiperda: A review on biology, life history, invasion, dispersion and control. Outlooks Pest Manag. 2021, 27, 27–32. [Google Scholar] [CrossRef]
- Jiang, J.-Z.; Huang, B.-Y.; Wu, Q.; Li, S.-Y.; Gu, J.; Huang, L.-H. Identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) and its two host strains in China by PCR-RFLP. J. Econ. Entomol. 2023, 116, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, Q.-L.; Zhang, H.-W.; Wu, K.-M. Spread of invasive migratory pest Spodoptera frugiperda and management practices throughout China. J. Integr. Agric. 2021, 20, 637–645. [Google Scholar] [CrossRef]
- Tay, W.T.; Meagher, R.L.; Czepak, C.; Groot, A.T. Spodoptera frugiperda: Ecology, Evolution, and Management Options of an Invasive Species. Annu. Rev. Entomol. 2023, 68, 299–317. [Google Scholar] [CrossRef]
- Wan, J.; Huang, C.; Li, C.-Y.; Zhou, H.-X.; Ren, Y.-L.; Li, Z.-Y.; Xing, L.-S.; Zhang, B.; Qiao, X.; Liu, B.; et al. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Integr. Agric. 2021, 20, 646–663. [Google Scholar] [CrossRef]
- Eschen, R.; Beale, T.; Bonnin, J.M.; Constantine, K.L.; Duah, S.; Finch, E.A.; Makale, F.; Nunda, W.; Ogunmodede, A.; Pratt, C.F.; et al. Towards estimating the economic cost of invasive alien species to African crop and livestock production. CABI Agric. Biosci. 2021, 2, 18. [Google Scholar] [CrossRef]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef]
- Tyler, C.J.; Mahajan, S.; Smith, L.; Okamoto, H.; Wijnen, H. Adult Diel Locomotor Behaviour in the Agricultural Pest Plutella xylostella Reflects Temperature-Driven and Light-Repressed Regulation Rather than Coupling to Circadian Clock Gene Rhythms. Insects 2025, 16, 182. [Google Scholar] [CrossRef]
- Li, Z.; Feng, X.; Liu, S.-S.; You, M.; Furlong, M.J. Biology, Ecology, and Management of the Diamondback Moth in China. Annu. Rev. Entomol. 2016, 61, 277–296. [Google Scholar] [CrossRef]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef]
- You, M.; Ke, F.; You, S.; Wu, Z.; Liu, Q.; He, W.; Baxter, S.W.; Yuchi, Z.; Vasseur, L.; Gurr, G.M.; et al. Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore. Nat. Commun. 2020, 11, 2321. [Google Scholar] [CrossRef]
- Dong, L.; Zhu, L.; Cheng, Z.; Bai, Y.; Li, P.; Yang, H.; Tang, S.; Crickmore, N.; Zhou, X.; Guo, Z.; et al. Characterization of an Ecdysone Oxidase from Plutella xylostella (L.) and Its Role in Bt Cry1Ac Resistance. J. Agric. Food Chem. 2025, 73, 1193–1202. [Google Scholar] [CrossRef]
- Shen, J.; Li, Z.; Li, D.; Wang, R.; Zhang, S.; You, H.; Li, J. Biochemical Mechanisms, Cross-resistance and Stability of Resistance to Metaflumizone in Plutella xylostella. Insects 2020, 11, 311. [Google Scholar] [CrossRef]
- Xu, H.; Xing, Y.; Zhou, Y.; Zhang, M.; Dang, X. MiR8523 negatively regulates the immunity of Plutella xylostella against entomopathogenic fungus Isaria cicadae by targeting PxSpz5. Int. J. Biol. Macromol. 2025, 293, 139417. [Google Scholar] [CrossRef]
- Wei, H.; Wang, J.; Li, H.-S.; Dai, H.-G.; Gu, X.-J. Sub-Lethal Effects of Fenvalerate on the Development, Fecundity, and Juvenile Hormone Esterase Activity of Diamondback Moth, Plutella xylostella (L.). Agric. Sci. China 2010, 9, 1612–1622. [Google Scholar] [CrossRef]
- Verkerk, R.H.; Wright, D.J. Multitrophic interactions and management of the diamondback moth: A review. Bull. Entomol. Res. 1996, 86, 205–216. [Google Scholar] [CrossRef]
- Thanasoponkul, W.; Changbunjong, T.; Sukkurd, R.; Saiwichai, T. Spent Coffee Grounds and Novaluron Are Toxic to Aedes aegypti (Diptera: Culicidae) Larvae. Insects 2023, 14, 564. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Suby, S.B.; Vasmatkar, P.; Nebapure, S.M.; Kumar, N.; Mahapatro, G.K. Influence of temperature on insecticidal toxicity and detoxifying enzymes to Spodoptera frugiperda. Phytoparasitica 2023, 51, 533–545. [Google Scholar] [CrossRef]
- Kumar, S.; Suby, S.B.; Kumar, N.; Sekhar, J.C.; Nebapure, S.; Mahapatro, G.K. Insecticide susceptibility vis-à-vis molecular variations in geographical populations of fall armyworm, Spodoptera frugiperda (J.E. smith) in India. 3 Biotech 2022, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, J. Laboratory bioassay of insecticides and field control effect on Plutella xylostella. China Plant Prot. Guide 2017, 37, 60–62+76. [Google Scholar] [CrossRef]
- Litchfield, J.T., Jr.; Wilcoxon, F. A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-M.; Song, Y.-F.; Sun, X.-X.; Shen, X.-J.; Wu, Q.-L.; Zhang, H.-W.; Zhang, D.-D.; Zhao, S.-Y.; Liang, G.-M.; Wu, K.-M. Population occurrence of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in the winter season of China. J. Integr. Agric. 2021, 20, 772–782. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Régnière, J.; Vasseur, L.; Lin, J.; Huang, S.; Ke, F.; Chen, S.; Li, J.; Huang, J.; et al. Large-scale genome-wide study reveals climate adaptive variability in a cosmopolitan pest. J. Integr. Agric. 2021, 12, 7206. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Han, S.; Sami, A.; Haider, M.Z.; Ali, Q.; Shafiq, M.; Ali, D.; Iqbal, J.; Manzoor, M.A.; Sabir, I.A.; et al. Genome-wide identification of Cytochrome P450 gene in Fall Armyworm (Spodoptera frugiperda) in response to insecticide resistance. Plant Stress 2024, 14, 100579. [Google Scholar] [CrossRef]
- Ankersmit, G.W. DDT-resistance in Plutella maculipennis (Curt.) (Lep.) in Java. Bull. Entomol. Res. 1953, 44, 421–425. [Google Scholar] [CrossRef]
- Ge, J.; Xie, W.; Liu, J.; Si, G.; Lü, W.; Zhang, W.; Ju, C. An Insecticidal Composition Containing Fluacrypyrim and Fenpropathrin CN201811001427.8, 30 August 2018.
- Zhu, W.Y.; Fan, R.; Mei, W.H.; Zhang, Y.; Wang, J. Sublethal effects of chlorantraniliprole on the parasitic ability and major detoxifying enzyme activities of Trichogramma chilonis. J. Environ. Entomol. 2024, 46, 1233–1238. [Google Scholar] [CrossRef]
- Li, X.; Li, R.; Zhu, B.; Gao, X.; Liang, P. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). Pest Manag. Sci. 2018, 74, 1386–1393. [Google Scholar] [CrossRef]
- Gao, Z.P.; Guo, J.F.; He, K.L.; Wang, Z.Y. Toxicity of spinetoram to Spodoptera frugiperda larvae and its effects on detoxifying enzymes and acetylcholinesterase activities. Acta Entomol. Sin. 2020, 63, 558–564. [Google Scholar]
- Tian, X.; Yin, X.; Long, Y.; Li, M.; Cai, T.; Li, R.; Zhu, L. Effects of low doses of spinetoram on detoxifying enzymes in Plutella xylostella. Acta Pestic. Sin. 2016, 18, 589–595. [Google Scholar]
- Gharib, B.; de Reggi, M.; Connat, J.-L.; Chaix, J.-C. Ecdysteroid and juvenile hormone changes in Bombyx mori eggs, related to the initiation of diapause. FEBS Lett. 1983, 160, 119–123. [Google Scholar] [CrossRef]
- Yin, X.H.; Wu, Q.J.; Li, X.F.; Zhang, Y.J.; Xu, B.Y. Sublethal effects of spinosad on detoxifying enzyme activities in Plutella xylostella. Acta Pestic. Sin. 2008, 1, 28–34. [Google Scholar] [CrossRef]
- Du, T.; Xue, H.; Zhou, X.; Gui, L.; Belyakova, N.A.; Zhang, Y.; Yang, X. The UDP-glycosyltransferase UGT352A3 contributes to the detoxification of thiamethoxam and imidacloprid in resistant whitefly. Pestic. Biochem. Physiol. 2025, 208, 106321. [Google Scholar] [CrossRef]
- Meng, J.-Y.; Zhang, C.-Y.; Zhu, F.; Wang, X.-P.; Lei, C.-L. Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. J. Insect Physiol. 2009, 55, 588–592. [Google Scholar] [CrossRef]
Target | Regression Equation | r | LC10 (95%FL) (mg/L) | LC50 (95%FL) (mg/L) | X2 | df |
---|---|---|---|---|---|---|
Spodoptera furgiperda | y = 0.8353x + 0.2359 | 0.9737 | 0.087 (0.012–0.179) | 0.480 (0.274–0.731) | 33.509 | 18 |
Plutella xylostella | y = 0.005551x + 0.4326 | 0.9340 | 0.003 (0.000–0.080) | 3.479 (0.308–9.472) | 15.209 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Yang, J.; Huang, W.; Jia, J.; Wang, J.; Pan, F.; Ji, X. Stage-Specific Toxicity of Novaluron to Second-Instar Spodoptera frugiperda and Plutella xylostella and Associated Enzyme Responses. Insects 2025, 16, 1051. https://doi.org/10.3390/insects16101051
Feng Q, Yang J, Huang W, Jia J, Wang J, Pan F, Ji X. Stage-Specific Toxicity of Novaluron to Second-Instar Spodoptera frugiperda and Plutella xylostella and Associated Enzyme Responses. Insects. 2025; 16(10):1051. https://doi.org/10.3390/insects16101051
Chicago/Turabian StyleFeng, Qing, Jian Yang, Weikang Huang, Jingjing Jia, Jialing Wang, Fei Pan, and Xuncong Ji. 2025. "Stage-Specific Toxicity of Novaluron to Second-Instar Spodoptera frugiperda and Plutella xylostella and Associated Enzyme Responses" Insects 16, no. 10: 1051. https://doi.org/10.3390/insects16101051
APA StyleFeng, Q., Yang, J., Huang, W., Jia, J., Wang, J., Pan, F., & Ji, X. (2025). Stage-Specific Toxicity of Novaluron to Second-Instar Spodoptera frugiperda and Plutella xylostella and Associated Enzyme Responses. Insects, 16(10), 1051. https://doi.org/10.3390/insects16101051