Diversity of Lacewings (Neuroptera) in an Altitudinal Gradient of the Tacaná Volcano, Southern Mexico
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Method
2.3. Data Analysis
2.3.1. Inventory Completeness Estimation
2.3.2. Alpha Diversity: Species and Taxa
2.3.3. Beta Diversity: Species and Taxa
3. Results
3.1. Inventory Completeness
3.2. Alpha Diversity: Species and Taxa
3.3. Beta Diversity: Species and Taxa
4. Discussion
4.1. Inventory Completeness
4.2. Alpha Diversity: Species and Taxa
4.3. Beta Diversity: Species and Taxa
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Mendoza, G.; Traunspurger, W.; Palomo, A.; Catalan, J. Nematode distributions as spatial null models for macroinvertebrate species richness across environmental gradients: A case from mountain lakes. Ecol. Evol. 2017, 7, 3016–3028. [Google Scholar] [CrossRef] [PubMed]
- Noriega, J.A.; Realpe, E. Altitudinal turnover of species in a Neotropical peripheral mountain system: A case study with dung beetles (Coleoptera: Aphodiinae and Scarabaeinae). Environ. Entomol. 2018, 47, 1376–1387. [Google Scholar] [CrossRef] [PubMed]
- Escobar, F.; Lobo, J.M.; Halffter, G. Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes. Glob. Ecol. Biogeogr. 2005, 14, 327–337. [Google Scholar] [CrossRef]
- Girardin, C.A.J.; Farfan-Rios, W.; Garcia, K.; Feeley, K.J.; Jørgensen, P.M.; Araujo Murakami, A.; Cayola Pérez, L.; Seidel, R.; Paniagua, N.; Fuentes Claros, A.F.; et al. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant. Ecol. Divers. 2014, 7, 161–171. [Google Scholar] [CrossRef]
- Castro, D.M.P.; Callisto, M.; Solar, R.R.C.; Macedo, D.R.; Fernandes, G.W. Beta diversity of aquatic invertebrates increases along an altitudinal gradient in a Neotropical mountain. Biotropica 2019, 5, 399–411. [Google Scholar] [CrossRef]
- Willig, M.R.; Presley, S.J. The spatial configuration of taxonomic biodiversity along a tropical elevational gradient: α-, β-, and γ-partitions. Biotropica 2019, 51, 104–116. [Google Scholar] [CrossRef]
- Guerrero, R.J.; Sarmiento, C.E. Distribución altitudinal de hormigas (Hymenoptera, Formicidae) en la vertiente Noroccidental de la sierra nevada de santa Marta (Colombia). Acta Zool. Mex. 2010, 26, 279–302. [Google Scholar] [CrossRef]
- Perillo, L.N.; Neves, F.d.S.; Antonini, Y.; Martins, R.P. Compositional changes in bee and wasp communities along Neotropical mountain altitudinal gradient. PLoS ONE 2017, 12, e0182054. [Google Scholar] [CrossRef]
- Stevens, G.C. The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. Amer. Nat. 1992, 140, 893–911. [Google Scholar] [CrossRef]
- Colwell, R.K.; Rahbek, C.; Gotelli, N.J. The mid-domain effect and species richness patterns: What have we learned so far? Am. Nat. 2004, 163, E1–E23. [Google Scholar] [CrossRef]
- Fontana, V.; Guariento, E.; Hilpold, A.; Niedrist, G.; Steinwandter, M.; Spitale, D.; Nascimbene, J.; Tappeiner, U.; Seeber, J. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 2020, 10, 12516. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Soininen, J.; Zhang, Y.; Wang, B.; Yang, X.; Shen, J. Patterns of elevational beta diversity in micro and macroorganisms. Glob. Ecol. Biogeogr. 2012, 21, 743–750. [Google Scholar] [CrossRef]
- Tello, J.S.; Myers, J.A.; Macía, M.J.; Fuentes, A.F.; Cayola, L.; Arellano, G.; Loza, M.I.; Torrez, V.; Cornejo, M.; Miranda, T.B.; et al. Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales. PLoS ONE 2015, 10, e0121458. [Google Scholar] [CrossRef] [PubMed]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Pérez-Toledo, G.R.; Valenzuela-González, J.E.; Moreno, C.E.; Villalobos, F.; Silva, R.R. Patterns and drivers of leaf-litter ant diversity along a tropical elevational gradient in Mexico. J. Biogeogr. 2021, 48, 2512–2523. [Google Scholar] [CrossRef]
- Stelzl, M.; Devetak, D. Neuroptera in agricultural ecosystems. Agric. Ecosyst. Environ. 1999, 74, 305–321. [Google Scholar] [CrossRef]
- Bozdogan, H. Species richness and composition of Neuroptera in the forests fragments of the Taurus Mountains Range, Turkey. Saudi J. Biol. Sci. 2020, 27, 1201–1207. [Google Scholar] [CrossRef]
- Oswald, J.D.; Machado, R.J.P. Biodiversity of the Neuropterida (Insecta: Neuroptera: Megaloptera, and Raphidioptera). In Insect Biodiversity: Science and Society, 1st ed.; Foottit, R.G., Adler, P.H., Eds.; John Wiley and Sons: New York, NY, USA, 2018; Volume 2, pp. 627–671. [Google Scholar]
- Winterton, S.L.; Hardy, N.B.; Wiegmann, B.M. On wings of lace: Phylogeny and bayesian divergence time stimates of Neuropterida (Insecta) based on morphological and molecular data. Syst. Entomol. 2010, 35, 349–378. [Google Scholar] [CrossRef]
- Thierry, D.; Deutsch, B.; Paulian, M.; Villenave, J.; Canard, M. Typifying ecosystems by using green lacewing assemblages. Agron. Sustain. Dev. 2005, 25, 473–479. [Google Scholar] [CrossRef]
- Thierry, D.; Canard, M. The biodiversity of green lacewings (Neuroptera Chrysopidae) in a mosaic ecosystem in southern France. In Proceedings of the Ninth International Symposium on Neuropterology, Ferrara, Italy, 20–23 June 2005; Volume 8, pp. 131–138. [Google Scholar]
- Monserrat, V.J. Los berótidos de la Península Ibérica (Insecta: Neuropterida: Neuroptera: Berothidae). Heteropterus Rev. Entomol. 2014, 14, 31–54. [Google Scholar]
- Chen, Z.Z.; Liu, L.Y.; Liu, S.Y.; Cheng, L.Y.; Wang, X.H.; Xu, Y.Y. Response of Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae) under long and short photoperiods. J. Insect Sci. 2017, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gruppe, A.; Sobek, S. Effect of tree species diversity on the neuropterid community in a deciduous forest. Acta Entomol. Slov. 2011, 19, 17–28. [Google Scholar]
- Badano, D.; Makris, C.; John, E.; Hadjiconstantis, M.; Sparrow, D.; Sparrow, R.; Thomas, B.; Devetak, D. The antlions of Cyprus: Review and new reports (Neuroptera: Myrmeleontidae). Frag. Entomol. 2018, 50, 95–102. [Google Scholar] [CrossRef]
- Duelli, P.; Obrist, M.K.; Fluckiger, P.F. Forest edges are biodiversity hotspots–also for Neuroptera. Acta Zool. Acad. Sci. Hung. 2002, 48, 75–87. [Google Scholar]
- Monserrat, V.J. Los hemeróbidos de la Península Ibérica y Baleares (Insecta, Neuropterida, Neuroptera: Hemerobiidae). Graellsia 2015, 71, 1–71. [Google Scholar] [CrossRef]
- Agustinur, S.; Lizmah, F.; Sarong, M. Diversity of Insect Pest in Monoculture and Polyculture Nutmeg (Myristica fragrans Houtt.) Plantation in South Aceh District. Environ. Earth Sci. 2020, 515, 012006. [Google Scholar] [CrossRef]
- Bozdogan, H.; Toroglu, E. Lacewing (Insecta: Neuroptera) fauna of Başkonuş Mountain National Park (Kahramanmaraş Province-Turkey). BAUN Fen. Bil. Enst. Dergisi. 2016, 18, 89–103. [Google Scholar]
- New, T.R. Neuroptera of Australia: Faunal elements, diversity and relationships. Dtsch. Entomol. Z. 1997, 44, 259–265. [Google Scholar] [CrossRef]
- Lai, Y.; Liu, Y.; Liu, X. Elevational diversity patterns of green lacewings (Neuroptera: Chrysopidae) uncovered with DNA barcoding in a biodiversity hotspot of Southwest China. Front. Ecol. Evol. 2021, 9, 778686. [Google Scholar] [CrossRef]
- Bhattacharya, D.K.; Dey, S.R. Biodiversity of Neuroptera associated with aphids of Western Himalaya. Entomon 2001, 26, 320–325. [Google Scholar]
- CONANP. Programa de Manejo Reserva de la Biosfera Volcán Tacaná, 1st ed.; SEMARNAT: Mexico City, Mexico, 2013; p. 204. [Google Scholar]
- Lugo Hubp, J.; Córdova, C. Regionalización geomorfológica de la república mexicana. Investig. Geogr. 1992, 25, 25–63. [Google Scholar] [CrossRef]
- Morrone, J.J. Biogeographical regionalization of the Neotropical region. Zootaxa 2014, 3782, 1–110. [Google Scholar] [CrossRef] [PubMed]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Instituto de Geografía Unam: Mexico City, Mexico, 2008; pp. 1–71. [Google Scholar]
- Vas, J.; Ábrahám, L.; Markó, V. Methodological investigations on a Neuropteroidea community. Acta Phytopathol. Entomol. Hung. 2001, 36, 101–113. [Google Scholar] [CrossRef]
- Ábrahám, L.; Markó, V.; Vas, J. Investigations on a neuropteroid community by using different methods. Acta Phytopathol. Entomol. Hung. 2003, 38, 199–207. [Google Scholar] [CrossRef]
- Cancino-López, R.J.; Martins, C.C.; Contreras-Ramos, A. Neuroptera Diversity from Tacaná Volcano, Mexico: Species Composition, Altitudinal and Biogeographic Pattern of the Fauna. Diversity 2021, 13, 537. [Google Scholar] [CrossRef]
- Chao, A.; Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 2012, 93, 2533–2547. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT Online: Interpolationand Extrapolation (Version 1.2.0). 2013. Available online: http://chao.stat.nthu.edu.tw/inext/ (accessed on 28 April 2021).
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Cultid-Medina, C.; Escobar, F. Pautas para la estimación y comparación estadística de la diversidad biológica (qD). In La Biodiversidad en un Mundo Cambiante: Fundamentos Teóricos y Metodológicos Para su Estudio; Moreno, C.E., Ed.; Universidad Autónoma del Estado de Hidalgo/Libermex: Mexico City, Mexico, 2019; pp. 175–202. [Google Scholar]
- Clarke, K.R.; Warwick, R.M. A further biodiversity index applicable to species lists: Variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 2001, 216, 265–278. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research); Version 6; PRIMER-E Ltd.: Plymouth, UK, 2006. [Google Scholar]
- Bacaro, G.; Ricotta, C.; Mazzoleni, S. Measuring beta-diversity from taxonomic similarity. J. Veg. Sci. 2007, 18, 793–798. [Google Scholar] [CrossRef]
- Baselga, A.; Orme, L.A. Betapart: An R package for the study beta diversity. Methods Ecol. Evol. 2012, 3, 808–812. [Google Scholar] [CrossRef]
- Sarmiento-Cordero, M.A.; Rodríguez-Vélez, B.; Huerta-Martínez, F.M.; Uribe-Mú, C.A.; Contreras-Ramos, A. Community structure of Neuroptera (Insecta) in a Mexican lime orchard in Colima, Mexico. Rev. Mex. Biodivers. 2021, 92, e923399. [Google Scholar] [CrossRef]
- Marquez-López, Y.; Herrera Fuentes, M.D.C.; Contreras-Ramos, A. Alpha and beta diversity of dustwings and brown lacewings (Neuroptera: Coniopterygidae, Hemerobiidae) in a temperate forest of Tlaxcala, Mexico. Proc. Entomol. Soc. Wash. 2020, 122, 869–889. [Google Scholar] [CrossRef]
- Bozdogan, H. Diversity of lacewing assemblages (Neuropterida: Neuroptera) in different forest habitats and agricultural areas in the East Mediterranean area of Turkey. Entomol. Res. 2020, 50, 163–173. [Google Scholar] [CrossRef]
- Monserrat, V.J. Los coniopterígidos de la Península Ibérica e Islas Baleares (Insecta, Neuropterida, Neuroptera: Coniopterigydae). Graellsia 2016, 72, 1–115. [Google Scholar] [CrossRef]
- Martins, C.C.; Santos, R.S.; Sutil, W.P.; de Oliveira, J.F.A. Diversity and abundance of green lacewings (Neuroptera: Chrysopidae) in a Conilon coffee plantation in Acre, Brazil. Acta Amaz. 2019, 49, 173–178. [Google Scholar] [CrossRef]
- De Melo, M.A.; Araujo, M.L.N.M.; Martins, C.C. Entomofauna de Hemerobiidae (Neuroptera) em sistema de cultivo orgânico e convencional de frutíferas no município de Avaré, SP, Brasil. Rev. Biol. Neotrop. 2020, 17, 121–129. [Google Scholar] [CrossRef]
- Kovanci, B.; Canbulat, S.; Kovanci, B. The brown lacewings (Neuroptera, Hemerobiidae) of northwestern Turkey with new records, their spatio-temporal distribution and harbouring plants. Rev. Bras. Entomol. 2014, 58, 147–156. [Google Scholar] [CrossRef][Green Version]
- da Luz, G.R.; da Mota, G.S.; Spadeto, C.; Tolentino, G.S.; Fernandes, G.W.; Nunes, Y.R.F. Regenerative potential of the soil seed bank along an elevation gradient of rupestrian grassland in southeastern Brazil. Botany 2018, 96, 281–298. [Google Scholar] [CrossRef]
- Castro-Delgado, S.; Vergara-Cobian, C.; Arellano-Ugarte, C. Distribucíon de la riqueza, composición taxonómica y grupo funcionales de hormigas del suelo a lo largo de un gradiente altitudinal en el refugio de vida silvestre Laquipampa, Lambayeque-Perú. Ecol. Apl. 2008, 7, 89–103. [Google Scholar] [CrossRef][Green Version]
- Pérez-Hernández, C.X. Distintividad taxonómica: Evaluación de la diversidad en la estructura taxonómica en los ensambles. In La Biodiversidad en un Mundo Cambiante: Fundamentos Teóricos y Metodológicos para su Estudio; Moreno, C.E., Ed.; Universidad Autónoma del Estado de Hidalgo/Libermex: Mexico City, Mexico, 2019; pp. 285–306. [Google Scholar]
- Leingärtner, A.; Krauss, J.; Steffan-Dewenter, I. Species richness and trait composition of butterfly assemblages change along an altitudinal gradient. Oecologia 2014, 175, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.H.; Lee, C.B. Diversity patterns and phylogenetic structure of vascular plants along elevational gradients in a mountain ecosystem, South Korea. J. Mt. Sci. 2018, 15, 280–295. [Google Scholar] [CrossRef]
- Worthy, S.J.; Jiménez Paz, R.A.; Pérez, A.J.; Reynolds, A.; Cruse-Sanders, J.; Valencia, R.; Barone, J.A.; Burgess, K.S. Distribution and community assembly of trees along an andean elevational gradient. Plants 2019, 8, 326. [Google Scholar] [CrossRef] [PubMed]
- McEwen, P.K.; New, T.R.; Whittington, A.E. Lacewings in the Crop Environment; Cambridge University Press: Cambridge, MA, USA, 2001; 564p. [Google Scholar]
- Podlesnik, J.; Jakšić, P.; Nahirnić, A.; Janžekovič, F.; Klenovšek, T.; Klokočovnik, V.; Devetak, D. Fauna of the brown lacewings of Serbia (Insecta: Neuroptera: Hemerobiidae). Acta Entomol. Slov. 2019, 27, 17–29. [Google Scholar]
- Baselga, A.; Gómez-Rodríguez, C.; Lobo, J.M. Historical legacies in world amphibian diversity revealed by the turnover and nestedness components of beta diversity. PLoS ONE 2012, 7, e32341. [Google Scholar] [CrossRef]
- Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 2012, 21, 1223–1232. [Google Scholar] [CrossRef]
- Bakoidi, A.; Dobo, F.; Djibo, I.; Maoge, J.; Bozdogan, H.; Tinkeu Ngamo, L.S. Diversity and distribution of antlions (Neuroptera: Myrmeleontidae) in the Northern region of Cameroon (Afrotropical region). J. Biodivers. Environ. Sci. 2020, 16, 61–71. [Google Scholar]
- Czechowska, W. Raphidioptera and Neuroptera (Neuropterida) of the canopy in montane, upland and lowland fir forests of Abies alba Mill. in Poland. Fragm. Faun. 2002, 45, 31–56. [Google Scholar] [CrossRef][Green Version]
Scientific Name | ||||||||
---|---|---|---|---|---|---|---|---|
Family | Number of Sites Occupied | S1 | S2 | S3 | S4 | S5 | TOTAL | |
Genus Ceraeochrysa | 661–774 m | 1050–1393 m | 1406–1767 m | 2057–2460 m | 2884–3246 m | |||
Chrysopidae | C. achillea de Freitas & Penny, 2009 | 2 | 7 | 1 | 0 | 0 | 0 | 8 |
C. arioles (Banks, 1944) | 4 | 1 | 11 | 1 | 2 | 0 | 15 | |
C. cincta (Schneider, 1851) | 3 | 1 | 3 | 0 | 1 | 0 | 5 | |
C. cubana (Hagen, 1861) | 2 | 2 | 0 | 0 | 1 | 0 | 3 | |
C. defreitasi Penny, 2002 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | |
C. derospogon de Freitas & Penny, 2009 | 2 | 0 | 2 | 1 | 0 | 0 | 3 | |
C. effusa (Navás, 1911) | 3 | 2 | 3 | 14 | 0 | 0 | 19 | |
C. infausta (Banks, 1945) | 2 | 2 | 0 | 0 | 1 | 0 | 3 | |
C. lineaticornis (Fitch, 1855) | 2 | 0 | 6 | 1 | 0 | 0 | 7 | |
C. sanchezi (Navás, 1924) | 2 | 1 | 2 | 0 | 0 | 0 | 3 | |
C. sarta (Banks, 1914) | 4 | 5 | 37 | 48 | 11 | 0 | 101 | |
C. squama de Freitas & Penny, 2001 | 2 | 1 | 1 | 0 | 0 | 0 | 2 | |
C. tacanensis Cancino & Contreras, 2019 | 3 | 0 | 2 | 35 | 26 | 0 | 63 | |
Ceraeochrysa sp. 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | |
Genus Chrysoperla | ||||||||
C. asoralis (Banks, 1915) | 2 | 0 | 2 | 0 | 1 | 0 | 3 | |
C. externa (Hagen, 1861) | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
Genus Chrysopodes Subgenus Chrysopodes | ||||||||
C. crassinervis Penny, 1998 | 2 | 0 | 41 | 3 | 0 | 0 | 44 | |
C. varicosus (Navás, 1914) | 4 | 1 | 8 | 42 | 2 | 0 | 53 | |
Chrysopodes sp. 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
Chrysopodes sp. 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | |
Genus Leucochrysa Subgenus Leucochrysa | ||||||||
L. clara (McLachlan, 1867) | 2 | 0 | 6 | 2 | 0 | 0 | 8 | |
L. colombia (Banks, 1910) | 2 | 0 | 0 | 1 | 1 | 0 | 2 | |
L. pretiosa (Banks, 1910) | 1 | 36 | 0 | 0 | 0 | 0 | 36 | |
L. varia (Schneider, 1851) | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
L. variata (Navás, 1913 | 3 | 1 | 2 | 1 | 0 | 0 | 4 | |
Subgenus Nodita | ||||||||
L. amistadensis Penny, 2001 | 2 | 0 | 0 | 1 | 2 | 0 | 3 | |
L. askanes (Banks, 1945) | 2 | 23 | 1 | 0 | 0 | 0 | 24 | |
L. azevedoi Navás, 1913 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
L. camposi (Navás, 1933) | 2 | 0 | 1 | 2 | 0 | 0 | 3 | |
L. caucella Banks, 1910 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | |
L. lateralis Navás, 1913 | 1 | 17 | 0 | 0 | 0 | 0 | 17 | |
L. maculosa de Freitas & Penny, 2001 | 3 | 1 | 13 | 7 | 0 | 0 | 21 | |
L. nigrovaria (Walker, 1853) | 2 | 1 | 10 | 0 | 0 | 0 | 11 | |
L. squamisetosa de Freitas & Penny, 2001 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
L. tarini (Navás, 1924) | 2 | 13 | 1 | 0 | 0 | 0 | 14 | |
Leucochrysa sp. 1 | 3 | 4 | 1 | 1 | 0 | 0 | 6 | |
Leucochrysa sp. 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | |
Leucochrysa sp. 3 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
Leucochrysa sp. 4 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
Leucochrysa sp. 5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
Leucochrysa sp. 6 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | |
Genus Meleoma | ||||||||
M. macleodi Tauber, 1969 | 2 | 0 | 0 | 1 | 3 | 0 | 4 | |
M. titschacki Navás, 1928 | 3 | 0 | 2 | 76 | 17 | 0 | 95 | |
Meleoma sp. 1 | 2 | 0 | 0 | 0 | 2 | 1 | 3 | |
Genus Plesiochrysa | ||||||||
P. brasiliensis (Schneider, 1851) | 4 | 1 | 7 | 4 | 4 | 0 | 16 | |
Plesiochrysa sp. 1 | 1 | 0 | 0 | 0 | 5 | 0 | 5 | |
Plesiochrysa sp. 2 | 2 | 1 | 3 | 0 | 0 | 0 | 4 | |
Genus Titanochrysa | ||||||||
T. annotaria (Banks, 1945) | 2 | 0 | 2 | 10 | 0 | 0 | 12 | |
T. simpliciala Tauber et al., 2012 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | |
Genus Ungla | ||||||||
Ungla sp. 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | |
Ungla sp. 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | |
Coniopterygidae | Genus Coniopteryx Species group Scotoconioptery | |||||||
C. fumata Enderlein, 1907 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
C. josephus Sarmiento & Contreras, 2019 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
C. latipalpis Meinander, 1972 | 2 | 0 | 0 | 0 | 2 | 18 | 20 | |
C. quadricornis Meinander, 1982 | 2 | 3 | 8 | 0 | 0 | 0 | 11 | |
Species group Coniopteryx | ||||||||
C. simplicior Meinander, 1972 | 4 | 0 | 6 | 18 | 124 | 5 | 153 | |
C. westwoodii (Fitch, 1855) | 2 | 0 | 3 | 0 | 2 | 0 | 5 | |
Genus Conwentzia | ||||||||
C. barretti (Banks, 1899) | 3 | 0 | 0 | 1 | 2 | 17 | 20 | |
Genus Neoconis | ||||||||
N. dentata Meinander, 1972 | 5 | 3 | 3 | 18 | 10 | 1 | 35 | |
Genus Semidalis | ||||||||
S. boliviensis (Enderlein, 1905) | 1 | 9 | 0 | 0 | 0 | 0 | 9 | |
S. hidalgoana Meinander, 1975 | 3 | 10 | 19 | 2 | 0 | 0 | 31 | |
S. manausensis Meinander, 1980 | 1 | 0 | 0 | 0 | 18 | 0 | 18 | |
S. problematica Monserrat, 1984 | 4 | 2 | 107 | 174 | 21 | 0 | 304 | |
S. soleri Monserrat, 1984 | 1 | 101 | 0 | 0 | 0 | 0 | 101 | |
Hemerobiidae | Genus Biramus | |||||||
B. aggregatus Oswald, 2004 | 1 | 0 | 0 | 18 | 0 | 0 | 18 | |
Genus Hemerobiella | ||||||||
H. sinuata Kimmins, 1940 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | |
Genus Hemerobius | ||||||||
H. alpestris Banks, 1908 | 1 | 0 | 0 | 0 | 0 | 15 | 15 | |
H. bolivari Banks, 1910 | 4 | 0 | 4 | 14 | 8 | 2 | 28 | |
H. discretus Navás, 1917 | 3 | 0 | 0 | 1 | 31 | 286 | 318 | |
H. domingensis Banks, 1941 | 3 | 0 | 1 | 7 | 7 | 0 | 15 | |
H. gaitoi Monserrat, 1996 | 3 | 0 | 10 | 15 | 9 | 0 | 34 | |
H. hernandezi Monserrat, 1996 | 4 | 3 | 20 | 135 | 15 | 0 | 173 | |
H. hirsuticornis Monserrat & Deretsky, 1999 | 2 | 5 | 1 | 0 | 0 | 0 | 6 | |
H. jucundus Navás, 1928 | 5 | 2 | 3 | 16 | 69 | 268 | 358 | |
H. martinezae Monserrat, 1996 | 3 | 0 | 0 | 12 | 14 | 3 | 29 | |
H. nigridorsus Monserrat, 1996 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | |
H. withycombei (Kimmins, 1928) | 1 | 4 | 0 | 0 | 0 | 0 | 4 | |
Genus Megalomus | ||||||||
M. minor Banks, 1905 | 2 | 21 | 9 | 0 | 0 | 0 | 30 | |
M. pictus Hagen, 1861 | 2 | 0 | 0 | 0 | 2 | 1 | 3 | |
Megalomus sp. 1 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | |
Genus Micromus | ||||||||
M. subanticus (Walker, 1853) | 1 | 0 | 0 | 1 | 0 | 0 | 1 | |
Genus Notiobiella | ||||||||
N. cixiiformis Gerstaecker, 1888 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | |
N. mexicana Banks, 1913 | 1 | 2 | 0 | 0 | 0 | 0 | 2 | |
Genus Nusalala | ||||||||
N. championi Kimmins, 1936 | 4 | 1 | 6 | 10 | 2 | 0 | 19 | |
N. irrebita (Navás, 1929d) | 3 | 0 | 1 | 1 | 5 | 0 | 7 | |
N. tessellata (Gerstaecker, 1888) | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
N. unguicaudata Monserrat, 2000 | 1 | 5 | 0 | 0 | 0 | 0 | 5 | |
Genus Sympherobius | ||||||||
S. axillaris Navás, 1928 | 2 | 0 | 0 | 0 | 2 | 8 | 10 | |
S. distinctus Carpenter, 1940 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | |
S. marginatus (Kimmins, 1928) | 3 | 0 | 0 | 4 | 1 | 1 | 6 | |
S. similis Carpenter, 1940 | 2 | 0 | 1 | 0 | 1 | 0 | 2 | |
S. subcostalis Monserrat, 1990 | 1 | 2 | 0 | 0 | 0 | 0 | 2 | |
Sympherobius sp. 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | |
Mantispidae | Genus Dicromantispa | |||||||
D. sayi (Banks, 1897) | 1 | 6 | 0 | 0 | 0 | 0 | 6 | |
Genus Leptomantispa | ||||||||
L. pulchella (Banks, 1912) | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
Genus Nolima | ||||||||
N. infensa Navás, 1924 | 2 | 0 | 1 | 2 | 0 | 0 | 3 | |
N. victor Navás, 1914 | 1 | 0 | 0 | 3 | 0 | 0 | 3 | |
Genus Zeugomantispa | ||||||||
Z. compellens (Walker, 1860) | 2 | 4 | 0 | 1 | 0 | 0 | 5 | |
Z. minuta (Fabricius, 1775) | 3 | 0 | 2 | 2 | 4 | 0 | 8 | |
Myrmeleontidae | Genus Myrmeleon | |||||||
M. immaculatus De Geer, 1773 | 3 | 0 | 9 | 16 | 2 | 0 | 27 | |
M. timidus Gerstaecker, 1888 | 1 | 14 | 0 | 0 | 0 | 0 | 14 | |
M. uniformis Navás, 1920 | 2 | 0 | 0 | 2 | 4 | 0 | 6 | |
Genus Ululodes | ||||||||
U. bicolor (Banks, 1895) | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
Genus Ameropterus | ||||||||
A. trivialis (Gerstaecker, 1888) * | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
Rhachiberothidae | Genus Trichoscelia | |||||||
T. santareni (Navás, 1914) | 3 | 2 | 5 | 1 | 0 | 0 | 8 | |
Total | 329 | 393 | 737 | 438 | 630 | 2527 | ||
Number of observed species | - | 48 | 51 | 51 | 42 | 16 | 105 | |
Number of genera | - | 20 | 18 | 20 | 18 | 8 | 28 | |
Sample completeness (%) | - | 66% | 74% | 75% | 88% | 62% | 73% |
Taxonomic Beta Diversity | Phylogenetic Beta Diversity | |||||
---|---|---|---|---|---|---|
Pair Sites | βsim | +βnes= | βsor | βsim | +βnes | =βsor |
1 vs. 2 | 0.468 | 0.0217 | 0.489 | 0.333 | 0.007 | 0.34 |
1 vs. 3 | 0.659 | 0.0138 | 0.673 | 0.476 | 0.009 | 0.485 |
1 vs. 4 | 0.714 | 0.016 | 0.73 | 0.434 | 0.028 | 0.462 |
1 vs. 5 | 0.875 | 0.0615 | 0.936 | 0.5 | 0.211 | 0.711 |
2 vs. 3 | 0.372 | 0 | 0.372 | 0.255 | 0.004 | 0.259 |
2 vs. 4 | 0.476 | 0.0506 | 0.526 | 0.315 | 0.042 | 0.357 |
2 vs. 5 | 0.75 | 0.13 | 0.88 | 0.411 | 0.259 | 0.67 |
3 vs. 4 | 0.38 | 0.0599 | 0.44 | 0.289 | 0.047 | 0.336 |
3 vs. 5 | 0.5 | 0.261 | 0.761 | 0.323 | 0.296 | 0.619 |
4 vs. 5 | 0.25 | 0.336 | 0.582 | 0.117 | 0.336 | 0.453 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cancino-López, R.J.; Moreno, C.E.; Contreras-Ramos, A. Diversity of Lacewings (Neuroptera) in an Altitudinal Gradient of the Tacaná Volcano, Southern Mexico. Insects 2022, 13, 652. https://doi.org/10.3390/insects13070652
Cancino-López RJ, Moreno CE, Contreras-Ramos A. Diversity of Lacewings (Neuroptera) in an Altitudinal Gradient of the Tacaná Volcano, Southern Mexico. Insects. 2022; 13(7):652. https://doi.org/10.3390/insects13070652
Chicago/Turabian StyleCancino-López, Rodolfo J., Claudia E. Moreno, and Atilano Contreras-Ramos. 2022. "Diversity of Lacewings (Neuroptera) in an Altitudinal Gradient of the Tacaná Volcano, Southern Mexico" Insects 13, no. 7: 652. https://doi.org/10.3390/insects13070652
APA StyleCancino-López, R. J., Moreno, C. E., & Contreras-Ramos, A. (2022). Diversity of Lacewings (Neuroptera) in an Altitudinal Gradient of the Tacaná Volcano, Southern Mexico. Insects, 13(7), 652. https://doi.org/10.3390/insects13070652