Analysis of Recent Interception Records Reveals Frequent Transport of Arboreal Ants and Potential Predictors for Ant Invasion in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Interception Records
2.2. Border Interception Record vs. Establishment Risk
2.3. Predictors of Establishment Risk
2.4. Prevalence of Secondary Introductions
3. Results
3.1. Analysis of Interception Records
3.2. Border Interception Record vs. Establishment Risk
3.3. Predictors of Establishment Risk
3.4. Prevalence of Secondary Introductions
4. Discussion
4.1. Overrepresentation of Arboreal Ants
4.2. Predictors of Establishment Risk
4.3. Secondary Introductions
4.4. Quarantine Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hulme, P.E.; Bacher, S.; Kenis, M.; Klotz, S.; Kühn, I.; Minchin, D.; Nentwig, W.; Olenin, S.; Panov, V.; Pergl, J.; et al. Grasping at the routes of biological invasions: A framework for integrating pathways into policy. J. Appl. Ecol. 2008, 45, 403–414. [Google Scholar] [CrossRef]
- Hulme, P.E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Mack, R.N.; Simberloff, D.; Lonsdale, W.M.; Evans, E.; Clout, M.; Bazzaz, F.A. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecology 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Syst. 2010, 41, 59–80. [Google Scholar] [CrossRef] [Green Version]
- Lodge, D.M.; Williams, S.; MacIsaac, H.J.; Hayes, K.R.; Leung, B.; Reichard, S.; Mack, R.N.; Moyle, P.B.; Smith, M.; Andow, D.A.; et al. Biological invasions: Recommendations for US policy and management. Ecol. Appl. 2006, 16, 2035–2054. [Google Scholar] [CrossRef] [Green Version]
- Leung, B.; Roural-Pascual, N.; Bacher, S.; Heikkilä, J.; Brotons, L.; Burgman, M.A.; Dehnen-Schmutz, K.; Essl, F.; Hulme, P.E.; Richardson, D.M.; et al. TEASIng apart alien species risk assessments: A framework for best practices. Ecol. Lett. 2012, 15, 1475–1493. [Google Scholar] [CrossRef]
- McGlynn, T.P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeogr. 1999, 26, 535–548. [Google Scholar] [CrossRef]
- Suarez, A.V.; Holway, D.A.; Case, T.J. Patterns of spread in biological invasions dominated by long-distance jump dispersal: Insights from Argentine ants. Proc. Natl. Acad. Sci. USA 2001, 98, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Ward, D.F.; Beggs, J.R.; Clout, M.N.; Harris, R.J.; O’Connor, S. The diversity and origin of exotic ants arriving in New Zealand via human-mediated dispersal. Divers. Distrib. 2006, 12, 601–609. [Google Scholar] [CrossRef]
- Ascunce, M.S.; Yang, C.C.; Oakey, J.; Calcaterra, L.; Wu, W.J.; Shih, C.J.; Goudet, J.; Ross, K.G.; Shoemaker, D. Global invasion history of the fire ant Solenopsis invicta. Science 2011, 331, 1066–1068. [Google Scholar] [CrossRef] [PubMed]
- Bertelsmeier, C.; Ollier, S.; Liebhold, A.; Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 2017, 1, 0184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toral-Granda, M.V.; Causton, C.E.; Jäger, H.; Trueman, M.; Izurieta, J.C.; Araujo, E.; Cruz, M.; Zander, K.K.; Izurieta, A.; Garnett, S.T. Alien species pathways to the Galapagos Islands, Ecuador. PLoS ONE 2017, 12, e0184379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.W.; Ning, D.D.; Ni, M.H.; Hassan, B.; Wu, J.J.; Xu, Y.J. Interception of exotic ants and survey of the ant fauna at Gaoming Port, China. Asian Myrmecol. 2019, 11, e011002. [Google Scholar]
- Terayama, M. A synopsis of the family Formicidae of Taiwan (Insecta, Hymenoptera). Res. Bull. Kanto Gakuen Univ. 2009, 17, 81–266. [Google Scholar]
- Kolar, C.S.; Lodge, D.M. Progress in invasion biology: Predicting invaders. Trends Ecol. Evol. 2001, 16, 199–204. [Google Scholar] [CrossRef]
- Inderjit, S. Invasive Plants: Ecological and Agricultural Aspects; Birkhäuser Verlag AG: Basel, Switzerland, 2005; p. 283. [Google Scholar]
- Brockerhoff, E.G.; Bain, J.; Kimberley, M.; Knížek, M. Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can. J. For. Res. 2006, 36, 289–298. [Google Scholar] [CrossRef]
- Caley, P.; Ingram, R.; De Barro, P. Entry of exotic insects into Australia: Does border interception count match incursion risk? Biol. Invasions 2015, 17, 1087–1094. [Google Scholar] [CrossRef]
- Lee, W.; Lee, Y.; Kim, S.; Lee, J.H.; Lee, H.; Lee, S.; Hong, K.J. Current status of exotic insect pests in Korea: Comparing border interception and incursion during 1996–2014. J. Asia-Pac. Entomol. 2016, 19, 1095–1101. [Google Scholar] [CrossRef]
- Lockwood, J.L.; Cassey, P.; Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 2005, 20, 223–228. [Google Scholar] [CrossRef]
- Simberloff, D. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 81–102. [Google Scholar] [CrossRef]
- Yang, C.C.; Ascunce, M.S.; Luo, L.Z.; Shao, J.G.; Shih, C.J.; Shoemaker, D. Propagule pressure and colony social organization are associated with the successful invasion and rapid range expansion of fire ants in China. Mol. Ecol. 2012, 21, 817–833. [Google Scholar] [CrossRef] [PubMed]
- Holway, D.A.; Suarez, A.V.; Case, T.J. Role of abiotic factors in governing susceptibility to invasion: A test with Argentine ants. Ecology 2002, 83, 1610–1619. [Google Scholar] [CrossRef]
- You, W.H.; Han, C.M.; Fang, L.X.; Du, D.L. Propagule pressure, habitat conditions and clonal integration influence the establishment and growth of an invasive clonal plant, Alternanthera philoxeroides. Front. Plant Sci. 2016, 7, 568. [Google Scholar] [CrossRef] [Green Version]
- Tschinkel, W.R.; King, J.R. Ant community and habitat limit colony establishment by the fire ant, Solenopsis invicta. Funct. Ecol. 2017, 31, 955–964. [Google Scholar] [CrossRef] [Green Version]
- Lombaert, E.; Guillemaud, T.; Cornuet, J.M.; Malausa, T.; Facon, B.; Estoup, A. Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE 2010, 5, e9743. [Google Scholar] [CrossRef]
- Bertelsmeier, C.; Ollier, S.; Liebhold, A.M.; Brockerhoff, E.G.; Ward, D.; Keller, L. Recurrent bridgehead effects accelerate global alien ant spread. Proc. Natl. Acad. Sci. USA 2018, 115, 5486–5491. [Google Scholar] [CrossRef] [Green Version]
- Bolton, B. Identification Guide to the Ant Genera of the World; Harvard University Press: Cambridge, MA, USA, 1994; p. 232. [Google Scholar]
- Bolton, B.; Alpert, G.; Ward, P.S.; Naskrecki, P. Bolton’s Catalogue of Ants of the World; Harvard University Press (CD-ROM): Cambridge, MA, USA, 2007. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 20 December 2018).
- Janicki, J.; Narula, N.; Ziegler, M.; Guénard, B.; Economo, E.P. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecol. Inform. 2016, 32, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.C.; Chen, S.J.; Wu, M.S. An analysis of the timber harvest volume and production in Taiwan between 1991 and 2013. Taiwan. J. For. Sci. 2015, 30, 121–130, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.C.; Lin, J.C. Analysis of timber supplier selection and domestic timber requirements of the domestic forest products industry in Taiwan. Taiwan J. For. Sci. 2011, 26, 135–149. [Google Scholar]
- Lin, J.C.; Chen, Y.H.; Yang, S.C. Trade Statistics of Major Forest Products in Taiwan; Taiwan Forestry Research Institute: Taipei, Taiwan, 2014; p. 108.
- Brockerhoff, E.G.; Kimberley, M.; Liebhold, A.M.; Haack, R.A.; Cavey, J.F. Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology 2014, 95, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Harada, Y. Diel and seasonal patterns of foraging activity in the arboreal ant Crematogaster matsumurai Forel. Entomol. Sci. 2005, 8, 167–172. [Google Scholar] [CrossRef]
- Hosoishi, S.; Yamane, S.; Ogata, K. Subterranean species of the ant genus Crematogaster in Asia (Hymenoptera: Formicidae). Entomol. Sci. 2010, 13, 345–350. [Google Scholar] [CrossRef]
- Eguchi, K.; Bui, T.V.; Yamane, S. Generic synopsis of the Formicidae of Vietnam. Part 1—Myrmicinae and Pseudomyrmecinae. Zootaxa 2011, 2878, 1–61. [Google Scholar] [CrossRef]
- Bolton, B. A New General Catalogue of the Ants of the World; Harvard University Press: Cambridge, MA, USA, 1995; p. 512. [Google Scholar]
- MacGown, J.A.; Brown, R.L.; Hill, J.G.; Layton, B. Carpenter ants of Mississippi. Miss. Agric. For. Exp. Stn. Bull. 2007, 1158, 1–35. [Google Scholar]
- Ward, P.S. The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): Generic revision and relationship to other formicids. Syst. Entomol. 1990, 15, 449–489. [Google Scholar] [CrossRef] [Green Version]
- Crooks, J.A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience 2005, 12, 316–329. [Google Scholar] [CrossRef]
- Grarock, K.; Lindenmayer, D.B.; Wood, J.T.; Tidemann, C.R. Using invasion process theory to enhance the understanding and management of introduced species: A case study reconstructing the invasion sequence of the common myna (Acridotheres tristis). J. Environ. Manag. 2013, 129, 398–409. [Google Scholar] [CrossRef]
- Epanchin-Niell, R.S. Economics of invasive species policy and management. Biol. Invasions 2017, 19, 3333–3354. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Macel, M.; Tielbörger, K.; Verhoeven, K.J. Effects of admixture in native and invasive populations of Lythrum salicaria. Biol. Invasions 2018, 20, 2381–2393. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, A.S.; Cordeiro, E.M.; Omoto, C. Agricultural insect hybridization and implications for pest management. Pest Manag. Sci. 2019, 75, 2857–2864. [Google Scholar] [CrossRef] [PubMed]
- Cassey, P.; Blackburn, T.M.; Duncan, R.P.; Lockwood, J.L. Lessons from the establishment of exotic species: A meta-analytical case study using birds. J. Anim. Ecol. 2005, 74, 250–258. [Google Scholar] [CrossRef]
- Holway, D.A.; Lach, L.; Suarez, A.V.; Tsutsui, N.D.; Case, T.J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Evol. Syst. 2002, 33, 181–233. [Google Scholar] [CrossRef] [Green Version]
- McGlynn, T.P. Non-native ants are smaller than related native ants. Am. Nat. 1999, 154, 690–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, Y.; Mori, H.; Ohnishi, H.; Imai, H.; Kishimoto, T.; Toda, M.; Kishi, S.; Goka, K. Surveys of the ant faunas at ports of Tokyo Bay and the Ogasawara Islands. Appl. Entomol. Zool. 2016, 51, 661–667. [Google Scholar] [CrossRef]
- Murakami, T. Three case studies for control of invasive alien ant species, fire ant (Solenopsis invicta, Formicidae) in Japan. Kyushu Univ. Inst. Repos. 2018, 4, 33–42. [Google Scholar]
- Meurisse, N.; Rassati, D.; Hurley, B.P.; Brockerhoff, E.G.; Haack, R.A. Common pathways by which non-native forest insects move internationally and domestically. J. Pest Sci. 2018, 92, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Bickel, T.O.; Watanasit, S. Diversity of leaf litter ant communities in Ton Nga Chang Wildlife Sanctuary and nearby rubber plantations, Songkhla, Southern Thailand. Songklanakarin J. Sci. Technol. 2005, 27, 943–955. [Google Scholar]
- Hansen, D.M.; Müller, C.B. Invasive ants disrupt gecko pollination and seed dispersal of the endangered plant Roussea simplex in Mauritius. Biotropica 2009, 41, 202–208. [Google Scholar] [CrossRef]
- Meiado, M.V.; Simabukuro, E.A.; Iannuzzi, L. Entomofauna associated to fruits and seeds of two species of Enterolobium Mart. (Leguminosae): Harm or benefit? Rev. Bras. Entomol. 2013, 57, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Wielgoss, A.; Tscharntke, T.; Rumede, A.; Fiala, B.; Seidel, H.; Shahabuddin, S.; Clough, Y. Interaction complexity matters: Disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proc. R. Soc. Lond. B Biol. Sci. 2013, 281, 20132144. [Google Scholar] [CrossRef]
- Abbott, K.L. Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on an oceanic island: Forager activity patterns, density and biomass. Insect. Soc. 2005, 52, 266–273. [Google Scholar] [CrossRef]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Most Invasive Alien Species: A Selection from the Global Invasive Species Database; The Invasive Species Specialist Group; 2000. Available online: http://www.issg.org/pdf/publications/worst_100/english_100_worst.pdf (accessed on 15 November 2004).
- Suarez, A.V.; Holway, D.A.; Ward, P.S. The role of opportunity in the unintentional introduction of nonnative ants. Proc. Natl. Acad. Sci. USA 2005, 102, 17032–17035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suhr, E.L.; O’Dowd, D.J.; Suarez, A.V.; Cassey, P.; Wittmann, T.A.; Ross, J.V.; Cope, R.C. Ant interceptions reveal roles of transport and commodity in identifying biosecurity risk pathways into Australia. NeoBiota 2019, 53, 1. [Google Scholar] [CrossRef] [Green Version]
Species a | Number of Records | Established Status b,c |
---|---|---|
More than five interceptions | ||
Crematogaster teranishii | 23 | – |
Camponotus kiusiuensis | 17 | Ea/Na |
Crematogaster matsumurai | 15 | Na |
Solenopsis geminata * | 14 | Ex |
Tapinoma melanocephalum * | 14 | Na/Tr/Ws |
Paratrechina longicornis * | 12 | Ex/Tr/Tw |
Tetramorium nipponense | 10 | Ea/Na |
Tetraponera nigra | 10 | – |
Anoplolepis gracilipes * | 9 | Ex/Tw |
Pristomyrmex punctatus | 9 | IA/Na/Or |
Vollenhovia emeryi | 8 | Ea |
Technomyrmex brunneus | 7 | Ea/Na/Tw |
Camponotus pennsylvanicus | 7 | – |
Dolichoderus thoracicus | 6 | IA/Na/Or |
Technomyrmex gibbosus | 6 | – |
Two–five interceptions | ||
Brachyponera chinensis * | 5 | Na/Or |
Camponotus herculeanus | 5 | – |
Solenopsis invicta * | 4 | Ex |
Tetramorium pacificum | 4 | Na/Tr |
Monomorium pharaonis * | 3 | Ex/Tr |
Camponotus keihitoi | 3 | – |
Pheidole megacephala * | 2 | Ex |
Pheidole nodus | 2 | Na/Or |
Technomyrmex albipes * | 2 | Ea/Na/Tw |
Technomyrmex horni | 2 | Na/Tw |
Tetramorium simillimum | 2 | Ex/Tr |
Trichomyrmex destructor * | 2 | Ex |
Camponotus bishamon | 2 | – |
Camponotus hemichlaena | 2 | – |
Camponotus nawai | 2 | Na |
Camponotus obscuripes | 2 | – |
Lasius japonicus | 2 | Ea/Na |
Lasius productus | 2 | – |
Lasius sakagamii | 2 | – |
Temnothorax makora | 2 | – |
One interception | ||
Camponotus variegatus dulcis | 1 | Na/Or |
Crematogaster dohrni fabricans | 1 | IA/Na/Or |
Monomorium intrudens | 1 | Na/Tr |
Monomorium floricola * | 1 | Na/Tr |
Brachyponera luteipes | 1 | Ea/Na |
Nylanderia amia | 1 | Ea/Na |
Pheidole fervens | 1 | Na/Or |
Polyrhachis illaudata | 1 | IA/Na/Or |
Tetramorium lanuginosum | 1 | Na/Or |
Camponotus novaeboracensis | 1 | – |
Camponotus singularis | 1 | – |
Crematogaster egidyi | 1 | – |
Formica japonica | 1 | Na/Or |
Linepithema humile * | 1 | – |
Oecophylla smaragdina | 1 | – |
Tetramorium caespitum | 1 | – |
Wasmannia auropunctata * | 1 | – |
Country | Number of Records | Primary Commodities (% of Records) | Primary Species (% of Records) |
---|---|---|---|
Vietnam | 128 | Wood products (75) Log/timber (23.4) | Tetraponera nigra (24.4) Paratrechina longicornis (19.5) Tetramorium nipponense (14.6) |
Japan | 121 | Log/timber (84.3) Wood products (15.7) | Crematogaster teranishii (21.3) Camponotus kiusiuensis (15.7) Crematogaster matsumurai (12) |
China | 43 | Live plants (46.5) Bamboo/Bamboo products (44.2) | Tapinoma melanocephalum (22.2) Dolichoderus thoracicus (16.7) Technomyrmex brunneus (16.7) |
USA | 35 | Log/timber (91.4) Live plants (5.7) | Camponotus pennsylvanicus (41.2) Camponotus herculeanus (23.5) Solenopsis geminata (23.5) |
Thailand | 32 | Live plants (96.9) Log/timber (3.1) | Tapinoma melanocephalum (50) Technomyrmex brunneus (12.5) Technomyrmex horni (12.5) |
Subfamily | Interception Records (%) | Intercepted/Established a (%) | Exotic/Established b (%) |
---|---|---|---|
Dolichoderinae | 7 (13.5) | 0 | 1 (6.7) |
Formicinae | 20 (38.5) | 2 (22.2) | 3 (20.0) |
Myrmicinae | 22 (42.3) | 7 (77.8) | 10 (66.7) |
Ponerinae | 2 (3.8) | 0 | 1 (6.7) |
Pseudomyrmecinae | 1 (1.9) | 0 | 0 |
Rank | (Intercept) | Fixed Effect a | R2 | df | BIC | Weight | ||||
---|---|---|---|---|---|---|---|---|---|---|
C.F.M. | I.R. | W.S. | N.S. | Q.N. | ||||||
1 | −4.10 × 101 | + a | 20.49 | 0.69 | 4 | 16.10 | 0.29 | |||
2 | −2.38 × 103 | 108.80 | −35.27 | + | 0.72 | 5 | 16.66 | 0.22 | ||
3 | −9.35 × 102 | 39.65 | + | 0.67 | 4 | 17.15 | 0.17 | |||
4 | 4.61 × 10−21 | + | 0.62 | 3 | 18.31 | 0.10 | ||||
5 | −4.25 × 101 | + | 20.17 | 0.61 | 0.69 | 5 | 19.43 | 0.06 | ||
6 | −9.23 × 102 | + | 39.12 | + | 0.72 | 6 | 19.99 | 0.04 | ||
7 | −4.24 × 101 | 56.45 | −19.95 | + | 0.67 | 5 | 20.48 | 0.03 | ||
8 | −1.76 × 100 | + | 0.65 | 0.62 | 4 | 21.36 | 0.02 | |||
9 | −4.05 × 101 | + | 20.25 | + | 0.69 | 6 | 22.77 | 0.01 | ||
10 | −7.12 × 102 | 38.96 | + | + | 0.69 | 6 | 22.77 | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-C.; Weng, Y.-M.; Lai, L.-C.; Suarez, A.V.; Wu, W.-J.; Lin, C.-C.; Yang, C.-C.S. Analysis of Recent Interception Records Reveals Frequent Transport of Arboreal Ants and Potential Predictors for Ant Invasion in Taiwan. Insects 2020, 11, 356. https://doi.org/10.3390/insects11060356
Lee C-C, Weng Y-M, Lai L-C, Suarez AV, Wu W-J, Lin C-C, Yang C-CS. Analysis of Recent Interception Records Reveals Frequent Transport of Arboreal Ants and Potential Predictors for Ant Invasion in Taiwan. Insects. 2020; 11(6):356. https://doi.org/10.3390/insects11060356
Chicago/Turabian StyleLee, Ching-Chen, Yi-Ming Weng, Li-Chuan Lai, Andrew V. Suarez, Wen-Jer Wu, Chung-Chi Lin, and Chin-Cheng Scotty Yang. 2020. "Analysis of Recent Interception Records Reveals Frequent Transport of Arboreal Ants and Potential Predictors for Ant Invasion in Taiwan" Insects 11, no. 6: 356. https://doi.org/10.3390/insects11060356
APA StyleLee, C.-C., Weng, Y.-M., Lai, L.-C., Suarez, A. V., Wu, W.-J., Lin, C.-C., & Yang, C.-C. S. (2020). Analysis of Recent Interception Records Reveals Frequent Transport of Arboreal Ants and Potential Predictors for Ant Invasion in Taiwan. Insects, 11(6), 356. https://doi.org/10.3390/insects11060356