The Respiratory Metabolism of Polistes biglumis, a Paper Wasp from Mountainous Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Set-Up and Measurement Procedures
2.3. Critical Thermal Maximum (CTmax)
2.4. Microclimate Measurements
2.5. Data Analysis
3. Results
3.1. Standard Metabolic Rate (SMR) and Activity Metabolic Rate (AMR)
3.2. Endothermic Performance and Metabolic Rate
3.3. The Critical Thermal Maximum (CTmax)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fucini, S.; Di Bona, V.; Mola, F.; Piccaluga, C.; Lorenzi, M. Social wasps without workers: Geographic variation of caste expression in the paper wasp Polistes biglumis. Insect. Soc. 2009, 56, 347–358. [Google Scholar] [CrossRef]
- Yamane, S.; Kawamichi, T. Bionomic Comparison of Polistes biglumis. Kontyû Tokyo 1975, 43, 214–232. [Google Scholar]
- Lorenzi, M.C.; Turillazzi, S. Behavioral and ecological adaptations to the high mountain environment of Polistes biglumus bimaculatus. Ecol. Entomol. 1986, 11, 199–204. [Google Scholar] [CrossRef]
- Chown, S.L.; Nicolson, S.W. Insect Physiological Ecology: Mechanisms and Patterns; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Käfer, H.; Kovac, H.; Oswald, B.; Stabentheiner, A. Respiration and metabolism of the resting European paper wasp (Polistes dominulus). J. Comp. Physiol. B 2015, 185, 647–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Käfer, H.; Kovac, H.; Stabentheiner, A. Resting metabolism and critical thermal maxima of vespine wasps (Vespula sp.). J. Insect. Physiol. 2012, 58, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Kovac, H.; Stabentheiner, A.; Schmaranzer, S. Thermoregulation of water foraging wasps (Vespula vulgaris and Polistes dominulus). J. Insect. Physiol. 2009, 55, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Weiner, S.A.; Upton, C.T.; Noble, K.; Woods, W.A.; Starks, P.T. Thermoregulation in the primitively eusocial paper wasp, Polistes dominulus. Insect. Soc. 2010, 57, 157162. [Google Scholar] [CrossRef]
- Addo-Bediako, A.; Chown, S.L.; Gaston, K.J. Metabolic cold adaptation in insects: A large-scale perspective. Funct. Ecol. 2002, 16, 332–338. [Google Scholar] [CrossRef]
- Terblanche, J.S.; Clusella-Trullas, S.; Deere, J.A.; Van Vuuren, B.J.; Chown, S.L. Directional evolution of the slope of the metabolic rate-temperature relationship is correlated with climate. Physiol. Biochem. Zool. 2009, 82, 495–503. [Google Scholar] [CrossRef]
- Chown, S.L.; Haupt, T.M.; Sinclair, B.J. Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth. J. Insect. Physiol. 2016, 85, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Pörtner, H.O. Climate variations and the physiological basis of temperature dependent biogeography systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. A 2002, 132, 739–761. [Google Scholar] [CrossRef]
- Stabentheiner, A.; Kovac, H.; Hetz, S.K.; Käfer, H.; Stabentheiner, G. Assessing honeybee and wasp thermoregulation and energetics—New insights by combination of flow-through respirometry with infrared thermography. Thermochim. Acta 2012, 534, 77–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovac, H.; Stabentheiner, A. Efect of food quality on the body temperature of wasps (Paravespula vulgaris). J. Insect. Physiol. 1999, 45, 183–190. [Google Scholar] [CrossRef]
- Stabentheiner, A.; Schmaranzer, S. Thermographic determination of body temperatures in honey bees and hornets: Calibration and applications. Thermology 1987, 2, 563–572. [Google Scholar]
- Schmaranzer, S.; Stabentheiner, A. Variability of the thermal behavior of honeybees on a feeding place. J. Comp. Physiol. B 1988, 158, 135–141. [Google Scholar] [CrossRef]
- Lighton, J.R.B.; Turner, R.J. Thermolimit respirometry: An objective assessment of critical thermal maxima in two sympatric desert harvester ants. Pogonomyrmex rugosus and P. californicus. J. Exp. Biol. 2004, 207, 1903–1913. [Google Scholar] [CrossRef] [Green Version]
- Kovac, H.; Käfer, H.; Petrocelli, I.; Stabentheiner, A. Comparison of thermal traits of Polistes dominula and Polistes gallicus, two European paper wasps with strongly differing distribution ranges. J. Comp. Physiol. B 2017, 187, 277–290. [Google Scholar] [CrossRef] [Green Version]
- Lake, S.L.; MacMillan, H.A.; Williams, C.M.; Sinclair, J.B. Static and dynamic approaches yield similar estimates of the thermal sensitivity of insect metabolism. J. Insect. Physiol. 2013, 59, 761–766. [Google Scholar] [CrossRef]
- Fangue, N.A.; Richards, J.G.; Schulte, P.M. Do mitochondrial properties explain intraspecific variation in thermal tolerance. J. Exp. Biol. 2009, 212, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Vorhees, A.S.; Gray, E.M.J.; Bradley, J.T. Thermal resistance and performance correlate with climate in populations of a widespread mosquito. Physiol. Biochem. Zool. 2013, 86, 73–81. [Google Scholar] [CrossRef] [Green Version]
- May, C.; Hillerbrand, N.; Thompson, L.M.; Faske, T.M.; Martinez, E.; Parry, D.; Agosta, S.J.; Grayson, K.L. Geographic Variation in Larval Metabolic Rate Between Northern and Southern Populations of the Invasive Gypsy Moth. J. Ins. Sci. 2018, 18, 1–7. [Google Scholar] [CrossRef]
- Vogt, J.T.; Appel, A.G. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: Effects of temperature, mass, and caste. J. Insect. Physiol. 1999, 45, 655–666. [Google Scholar] [CrossRef]
- Niven, J.E.; Scharlemann, J.P.W. Do insect metabolic rates at rest and during flight scale with body mass? Biol. Let. 2005, 1, 346–349. [Google Scholar] [CrossRef]
- Nannoni, A.; Cervo, R.; Turillazzi, S. Foraging activity in European Polistes wasps (Hymenoptera, Vespidae). Boll. Soc. Entomol. Italiana 2001, 133, 67–78. [Google Scholar]
- Schmid-Egger, C.; van Achterberg, K.; Neumeyer, R.; Morinière, J.; Schmidt, S. Revision of the West Palaearctic Polistes Latreille, with the description of two species–an integrative approach using morphology and DNA barcodes (Hymenoptera, Vespidae). ZooKeys 2017, 713, 53–112. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, G.A.; Lighton, J.R.B.; Louw, G.N. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol. B 1985, 155, 155–162. [Google Scholar] [CrossRef]
- Lighton, J.R.B.; Feener, D.H., Jr. A comparison of energetics and ventilation of desert ants during voluntary and forced locomotion. Nature 1989, 342, 174–175. [Google Scholar] [CrossRef]
- Berrigan, D.; Lighton, J.R.B. Energetics of pedestrian locomotion in adult male blowflies, Protophormia terraenovae (Diptera: Calliphoridae). Physiol. Zool. 1994, 67, 1140–1153. [Google Scholar] [CrossRef]
- Duncan, F.D.; Lighton, J.R.B. Discontinuous ventilation and energetics of locomotion in the desert-dwelling female mutillid wasp, Dasymutilla gloriosa. Physiol. Entomol. 1997, 22, 310–315. [Google Scholar] [CrossRef]
- Lipp, A.; Wolf, H.; Lehmann, F.O. Walking on inclines: Energetics of locomotion in the ant Camponotus. J. Exp. Biol. 2005, 208, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Weiner, S.A.; Woods, W.A., Jr.; Starks, P.T. The energetic costs of stereotyped behavior in the paper wasp, Polistes dominulus. Naturwissenschaften 2009, 96, 297–302. [Google Scholar] [CrossRef]
- Kovac, H.; Stabentheiner, A.; Brodschneider, R. What do foraging wasps optimize in a variable environment, energy investment or body temperature? J. Comp. Physiol. A 2015, 201, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Kovac, H.; Stabentheiner, A.; Brodschneider, R. Foraging strategy of wasps—Optimisation of intake rate or energetic efficiency. J. Exp. Biol. 2018, 221, jeb174169. [Google Scholar] [CrossRef] [Green Version]
- Stabentheiner, A.; Kovac, H. Energetic optimisation of foraging honeybees: Flexible change of strategies in response to environmental challenges. PLoS ONE 2014, 9, e105432. [Google Scholar] [CrossRef] [Green Version]
- Stabentheiner, A.; Kovac, H. Honeybee economics: Optimisation of foraging in a variable world. Sci. Rep. 2016, 6, 28339. [Google Scholar] [CrossRef] [Green Version]
- Kovac, H.; Stabentheiner, A. Does size matter–Thermoregulation of ‘heavyweight’ and ‘lightweight’ wasps (Vespa crabro and Vespula sp.). BIO 2012, 1, 848–856. [Google Scholar] [CrossRef] [Green Version]
- Kovac, H.; Stabentheiner, A.; Schmaranzer, S. Thermoregulation of water foraging honeybees–Balancing of endothermic activity with radiative heat gain and functional requirements. J. Insect. Physiol. 2010, 56, 1834–1845. [Google Scholar] [CrossRef] [Green Version]
- Käfer, H.; Kovac, H.; Simov, N.; Battisti, A.; Erregger, B.; Schmidt, A.K.D.; Stabentheiner, A. Temperature tolerance and thermal environment of European seed bugs. Insects 2020, 11. in press. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovac, H.; Käfer, H.; Stabentheiner, A. The Respiratory Metabolism of Polistes biglumis, a Paper Wasp from Mountainous Regions. Insects 2020, 11, 165. https://doi.org/10.3390/insects11030165
Kovac H, Käfer H, Stabentheiner A. The Respiratory Metabolism of Polistes biglumis, a Paper Wasp from Mountainous Regions. Insects. 2020; 11(3):165. https://doi.org/10.3390/insects11030165
Chicago/Turabian StyleKovac, Helmut, Helmut Käfer, and Anton Stabentheiner. 2020. "The Respiratory Metabolism of Polistes biglumis, a Paper Wasp from Mountainous Regions" Insects 11, no. 3: 165. https://doi.org/10.3390/insects11030165
APA StyleKovac, H., Käfer, H., & Stabentheiner, A. (2020). The Respiratory Metabolism of Polistes biglumis, a Paper Wasp from Mountainous Regions. Insects, 11(3), 165. https://doi.org/10.3390/insects11030165