A Review on Modelling of Viscoelastic Contact Problems
Abstract
:1. Introduction
2. Linear and Non-Linear Viscoelastic Materials
2.1. Characteristics of Viscoelastic Materials
2.2. Constitutive Law and Relevant Rheological Models
3. Dry Contact Modelling of Viscoelastic Materials
3.1. Indentation
3.2. Frictionless or Frictional Sliding/Rolling Contact
3.3. Viscoelastic Rough Contact
3.4. Viscoelastic-Adhesive Contact
- (1)
- The contacting surface is extremely smooth;
- (2)
- One of the contacting components is much softer or compliant;
- (3)
- The surface contact is considered on a micro-scale.
4. Lubricated Contact of Viscoelastic Bodies
5. Thermoviscoelastic (TVE) Contact
6. Non-Linear Viscoelastic Contact
7. Case Studies
7.1. Lubrication Analysis of UHMWPE Hip Replacements
7.2. Viscoelastic-Adhesive Contact Analysis of PDMS in Nanotechnology
7.3. Failure and Instability Analysis of Viscoelastic Rocks
8. Conclusions and Future Research
- (1)
- As discussed in Section 3.2, the simulation of sliding or rolling contact was commonly assumed to be frictionless. The reason behind such practice is relevant to the intrinsic property of some specific polymers. It is known that elastomers are incompressible. For the problem of an incompressible half-space sliding on a rigid surface, there exists no coupling between the normal pressure and shear tractions. As the normal and tangential contact problems are independent of each other, the simplest way to simulate the sliding or rolling contact problems of viscoelastic materials is to neglect shear tractions in the lateral direction, together with their related coupling effects affecting the pressure profile, and to quantify the friction force exclusively derived from the viscoelastic losses. However, the case where uncoupled conditions can be applied is not ubiquitous. When addressing the common material combination for engineering products, such as the knee or hip prosthesis (usually a hard metal against a soft and compressible polymer), the inclusion of the coupling effect seems inevitable. A fully coupled model, which provides information on both normal and tangential fields in frictional viscoelastic sliding contact problems, is worth studying for fine precision engineering applications. To date, there is no exhaustive numerical analysis in terms of the effects of the coupled partial slip period on the later sliding contact solutions, which is worthwhile to investigate.
- (2)
- As mentioned in Section 3.4, the development of viscoelastic-adhesive contact models is still in the early stage, as the developed models can only solve indentation problems. Since the additional adhesive force makes it difficult to obtain closed-form contact solutions based on energy approaches, and extremely careful consideration of energy terms is required, the surface adhesion in coupled normal and tangential contact of viscoelastic surfaces seems to be a knowledge gap.
- (3)
- Few BEM-based models simulating the nonlinear viscoelastic model were reported, as BEM-based algorithms are limited by the assumptions of linear viscoelasticity. However, the extension of BEM-based models to contact problems, where nonlinear interface constitutive response is involved, may be possible by applying specific computational techniques or approximation approaches. Considering the higher computational efficiency of BEM compared to FEM, it is worthwhile to develop a general BEM-based nonlinear viscoelastic model.
- (4)
- Although the effect of surface roughness on the dry contact of linear viscoelastic materials was investigated and reported in several numerical studies, as mentioned in Section 3.3, it was barely included when it comes to the modelling of lubricated contact, thermoviscoelastic contact and nonlinear viscoelastic contact. The synergy of the surface roughness and other variables can be essential, which needs to be analyzed in future modelling work.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
2D | two-dimensional |
3D | three-dimensional |
BEM | boundary Element Method |
DC-FFT | discrete convolution fast Fourier transform |
DEM | discrete element method |
DMT | Derjaguin–Muller–Toporov |
EHL | elastohydrodynamic lubrication |
FEM | Finite Element Method |
FFT | Fast Fourier Transform |
GFMD | Green’s function molecular dynamics |
JKR | Johnson–Kendall–Roberts |
MIM | matrix inversion method |
PDMS | polydimethylsiloxane |
PMMA | polymethyl methacrylate |
SLS | standard linear solid |
SAM | semi-analytical method |
TENG | triboelectric nanogenerator |
THP | total hip replacement |
TIM | two-scale iterative method |
TVE | thermoviscoelastic |
TVEHL | thermal-viscoelasto-hydrodynamic lubrication |
UHMWPE | ultra-high molecular weight polyethylene |
VEHL | viscoelastic-hydrodynamic lubrication |
Hertz solution of contact radius using the instantaneous modulus | |
power spectral density of a fractal rough surface | |
fractal dimension | |
composite modulus of contacting surfaces | |
complex modulus of material | |
modulus of spring in rheological model | |
Hurst exponent | |
Heaviside step function | |
lateral size of rough surface | |
number of scales when describing fractal rough surface | |
Hertz solution of peak pressure using the instantaneous modulus | |
wavevector | |
short-distance roll-off wavevector | |
long-distance cut-off wavevector | |
smallest possible wavevector | |
distance between two interacting particles (bodies) | |
combined radius of contacting bodies | |
equilibrium distance | |
complex number frequency parameter in the Laplace transform domain | |
time | |
potential energy | |
work of adhesion | |
size of the interacting particles | |
strain | |
viscosity of dashpot in rheological model | |
Tabor parameter | |
stress | |
relaxation time | |
function of creep compliance | |
function of relaxation modulus | |
frequency |
References
- Kiumarsi, M.; Rafe, A.; Yeganehzad, S. Effect of Different Bulk Sweeteners on the Dynamic Oscillatory and Shear Rheology of Chocolate. Appl. Rheol. 2017, 27, 11–19. [Google Scholar] [CrossRef]
- Cheng, Q.Q.; Liu, P.X.; Lai, P.H.; Ni Zou, Y. An Interactive Meshless Cutting Model for Nonlinear Viscoelastic Soft Tissue in Surgical Simulators. IEEE Access 2017, 5, 16359–16371. [Google Scholar] [CrossRef]
- Persson, B. Rubber friction and tire dynamics. J. Phys. Condens. Matter 2010, 23, 015003. [Google Scholar] [CrossRef] [Green Version]
- James, M.; Bagdassarov, N.; Müller, K.; Pinkerton, H. Viscoelastic behaviour of basaltic lavas. J. Volcanol. Geotherm. Res. 2004, 132, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Cowie, R.M.; Briscoe, A.; Fisher, J.; Jennings, L.M. Wear and Friction of UHMWPE-on-PEEK OPTIMATM. J. Mech. Behav. Biomed. Mater. 2018, 89, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Vakis, A.; Yastrebov, V.; Scheibert, J.; Nicola, L.; Dini, D.; Minfray, C.; Almqvist, A.; Paggi, M.; Lee, S.; Limbert, G.; et al. Modeling and simulation in tribology across scales: An overview. Tribol. Int. 2018, 125, 169–199. [Google Scholar] [CrossRef]
- Banks, H.T.; Hu, S.; Kenz, Z.R. A Brief Review of Elasticity and Viscoelasticity for Solids. Adv. Appl. Math. Mech. 2011, 3, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.W.; Wang, Q.J.; Huan, Z.; Luo, X. Semi-Analytical Viscoelastic Contact Modeling of Polymer-Based Materials. J. Tribol. 2011, 133, 041404. [Google Scholar] [CrossRef]
- Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 1971, 324, 301–313. [Google Scholar]
- Derjaguin, B.; Muller, V.; Toporov, Y. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975, 53, 314–326. [Google Scholar] [CrossRef]
- Bergström, J. Linear Viscoelasticity. In Mechanics of Solid Polymers: Theory and Computational Modelling; Bergström, J., Ed.; William Andrew Publishing: San Diego, CA, USA, 2015. [Google Scholar] [CrossRef]
- Marques, S.P.C.; Creus, G.J. Computational Viscoelasticity; Springer: Berlin, Germany, 2012. [Google Scholar]
- Popov, V. Contact Mechanics and Friction-Physical Principles and Applications; Springer: Berlin, Germany, 2010. [Google Scholar]
- Popov, V.L.; Heß, M.; Willert, E. Handbook of Contact Mechanics; Springer: Berlin, Germany, 2019. [Google Scholar]
- Phan-Thien, N.; Mai-Duy, N. Understanding Viscoelasticity: An Introduction to Rheology; Springer: Berlin, Germany, 2017. [Google Scholar]
- Papanicolaou, G.; Zaoutsos, S. Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites. In Creep and Fatigue in Polymer Matrix Composites; Guedes, R.M., Ed.; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Kelly, P. Solid Mechanics Part I: An Introduction to Solid Mechanics; Solid Mechanics Lecture Notes; University of Auckland: Auckland, New Zealand, 2019. [Google Scholar]
- Christensen, R.M. Theory of Viscoelasticity; Academic Press: London, UK, 1982. [Google Scholar]
- Kumar, M.; Narasimhan, R. Analysis of spherical indentation of linear viscoelastic materials. Curr. Sci. 2004, 87, 1088–1095. [Google Scholar]
- Bugnicourt, R. Simulation of the Contact between a Rough Surface and a Viscoelastic Material with Friction; Université de Lyon: Lyon, France, 2017. [Google Scholar]
- Bugnicourt, R.; Sainsot, P.; Lesaffre, N.; Lubrecht, A. Transient frictionless contact of a rough rigid surface on a viscoelastic half-space. Tribol. Int. 2017, 113, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Green, A.E.; Rivlin, R.S. The mechanics of non-linear materials with memory, Part III. Arch. Ration. Mech. Anal. 1959, 4, 387–404. [Google Scholar] [CrossRef]
- Green, A.E.; Rivlin, R.S. The mechanics of non-linear materials with memory, Part I. Arch. Ration. Mech. Anal. 1957, 1, 1–21. [Google Scholar] [CrossRef]
- Green, A.E.; Rivlin, R.S.; Spencer, A.J.M. The mechanics of non-linear materials with memory, Part II. Arch. Ration. Mech. Anal. 1959, 3, 82–90. [Google Scholar] [CrossRef]
- Pipkin, A.; Rogers, T. A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 1968, 16, 59–72. [Google Scholar] [CrossRef]
- Leaderman, H. Elastic and Creep Properties of Filamentous Materials and Other High Polymers; Massachusetts Institute of Technology: Cambridge, MA, USA, 1941. [Google Scholar]
- Brueller, O.S. On the nonlinear characterization of the long term behavior of polymeric materials. Polym. Eng. Sci. 1987, 27, 144–148. [Google Scholar] [CrossRef]
- Brueller, O.S. Predicting the behavior of nonlinear viscoelastic materials under spring loading. Polym. Eng. Sci. 1993, 33, 97–99. [Google Scholar] [CrossRef]
- Schapery, R.A. On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 1969, 9, 295–310. [Google Scholar] [CrossRef]
- Lee, E.H. Stress analysis in visco-elastic bodies. Q. Appl. Math. 1955, 13, 183–190. [Google Scholar] [CrossRef]
- Radok, J.R.M. Visco-elastic stress analysis. Q. Appl. Math. 1957, 15, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.H.; Radok, J.R.M. The Contact Problem for Viscoelastic Bodies. J. Appl. Mech. 1960, 27, 438–444. [Google Scholar] [CrossRef]
- Alfrey, T. Non-homogeneous stresses in visco-elastic media. Q. Appl. Math. 1944, 2, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Tsien, H.S. A generalization of Alfrey’s theorem for visco-elastic media. Q. Appl. Math. 1950, 8, 104–106. [Google Scholar] [CrossRef] [Green Version]
- Hunter, S. The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids 1960, 8, 219–234. [Google Scholar] [CrossRef]
- Graham, G. The contact problem in the linear theory of viscoelasticity when the time dependent contact area has any number of maxima and minima. Int. J. Eng. Sci. 1967, 5, 495–514. [Google Scholar] [CrossRef]
- Yang, W.H. The Contact Problem for Viscoelastic Bodies. J. Appl. Mech. 1966, 33, 395–401. [Google Scholar] [CrossRef]
- Ting, T.C.T. The Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-Space. J. Appl. Mech. 1966, 33, 845–854. [Google Scholar] [CrossRef]
- Ting, T.C.T. Contact Problems in the Linear Theory of Viscoelasticity. J. Appl. Mech. 1968, 35, 248–254. [Google Scholar] [CrossRef]
- Oyen, M.L. Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 2006, 86, 5625–5641. [Google Scholar] [CrossRef]
- Greenwood, J. Contact between an axisymmetric indenter and a viscoelastic half-space. Int. J. Mech. Sci. 2010, 52, 829–835. [Google Scholar] [CrossRef]
- Fu, G. Theoretical study of complete contact indentations of viscoelastic materials. J. Mater. Sci. 2004, 39, 2877–2878. [Google Scholar] [CrossRef]
- Yakovenko, A.; Goryacheva, I. The periodic contact problem for spherical indenters and viscoelastic half-space. Tribol. Int. 2021, 161, 107078. [Google Scholar] [CrossRef]
- Papangelo, A.; Ciavarella, M. Viscoelastic dissipation in repeated normal indentation of an Hertzian profile. Int. J. Solids Struct. 2022, 236–237, 111362. [Google Scholar] [CrossRef]
- Argatov, I.; Mishuris, G. Frictionless elliptical contact of thin viscoelastic layers bonded to rigid substrates. Appl. Math. Model. 2011, 35, 3201–3212. [Google Scholar] [CrossRef]
- Argatov, I. An analytical solution of the rebound indentation problem for an isotropic linear viscoelastic layer loaded with a spherical punch. Acta Mech. 2012, 223, 1441–1453. [Google Scholar] [CrossRef]
- Argatov, I.; Mishuris, G. An analytical solution for a linear viscoelastic layer loaded with a cylindrical punch: Evaluation of the rebound indentation test with application for assessing viability of articular cartilage. Mech. Res. Commun. 2011, 38, 565–568. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Jia, Y.; Yang, F.; Huang, C.-C.; Lee, S. Boussinesq problem of a Burgers viscoelastic layer on an elastic substrate. Mech. Mater. 2015, 87, 27–39. [Google Scholar] [CrossRef]
- Kozhevnikov, I.; Cesbron, J.; Duhamel, D.; Yin, H.; Anfosso-Lédée, F. A new algorithm for computing the indentation of a rigid body of arbitrary shape on a viscoelastic half-space. Int. J. Mech. Sci. 2008, 50, 1194–1202. [Google Scholar] [CrossRef] [Green Version]
- Kozhevnikov, I.; Duhamel, D.; Yin, H.; Feng, Z.-Q. A new algorithm for solving the multi-indentation problem of rigid bodies of arbitrary shapes on a viscoelastic half-space. Int. J. Mech. Sci. 2010, 52, 399–409. [Google Scholar] [CrossRef]
- Boussinesq, J. Applications des Potentiels à l’étude de l’équilibre et Mouvement des Solides Elastiques; Gauthier–Villard: Paris, France, 1885. [Google Scholar]
- Liu, S.; Wang, Q.; Liu, G. A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 2000, 243, 101–111. [Google Scholar] [CrossRef]
- Koumi, K.E.; Nelias, D.; Chaise, T.; Duval, A. Modeling of the contact between a rigid indenter and a heterogeneous viscoelastic material. Mech. Mater. 2014, 77, 28–42. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Zhao, Z.; Zhang, H. The effect of meso-structure and surface topography on the indentation variability of viscoelastic composite materials. Compos. Struct. 2019, 220, 81–92. [Google Scholar] [CrossRef]
- Spinu, S. Viscoelastic Contact Modelling: Application to the Finite Length Line Contact. Tribol. Ind. 2018, 40, 538–551. [Google Scholar] [CrossRef]
- Zhao, Y.; Morales-Espejel, G.; Venner, C. Aspects of modeling and numerical simulation of dry point contacts between viscoelastic solids. Tribol. Int. 2021, 165, 107245. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Hwu, C. Boundary element method for contact between multiple rigid punches and anisotropic viscoelastic foundation. Eng. Anal. Bound. Elements 2020, 118, 295–305. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Hwu, C. Indentation by multiple rigid punches on two-dimensional anisotropic elastic or viscoelastic solids. Int. J. Mech. Sci. 2020, 178, 105595. [Google Scholar] [CrossRef]
- Olsson, E.; Jelagin, D. A contact model for the normal force between viscoelastic particles in discrete element simulations. Powder Technol. 2019, 342, 985–991. [Google Scholar] [CrossRef]
- Wang, D.; de Boer, G.; Ghanbarzadeh, A. A Numerical Model for Investigating the Effect of Viscoelasticity on the Partial Slip Solution. Materials 2022, 15, 5182. [Google Scholar] [CrossRef]
- Koumi, K.E.; Chaise, T.; Nelias, D. Rolling contact of a rigid sphere/sliding of a spherical indenter upon a viscoelastic half-space containing an ellipsoidal inhomogeneity. J. Mech. Phys. Solids 2015, 80, 1–25. [Google Scholar] [CrossRef]
- Hunter, S.C. The Rolling Contact of a Rigid Cylinder With a Viscoelastic Half Space. J. Appl. Mech. 1961, 28, 611–617. [Google Scholar] [CrossRef]
- Morland, L.W. Exact solutions for rolling contact between viscoelastic cylinders. Q. J. Mech. Appl. Math. 1967, 20, 73–106. [Google Scholar] [CrossRef]
- Morland, L.W. Rolling contact between dissimilar viscoelastic cylinders. Q. Appl. Math. 1968, 25, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Panek, C.; Kalker, J.J. Three-dimensional Contact of a Rigid Roller Traversing a Viscoelastic Half Space. IMA J. Appl. Math. 1980, 26, 299–313. [Google Scholar] [CrossRef]
- Aleksandrov, V.M.; Goryacheva, I.G.; Torskaya, E.V. Sliding contact of a smooth indenter and a viscoelastic half-space (3D problem). Dokl. Phys. 2010, 55, 77–80. [Google Scholar] [CrossRef]
- Persson, B.N.J. Rolling friction for hard cylinder and sphere on viscoelastic solid. Eur. Phys. J. E 2010, 33, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Padovan, J.; Paramadilok, O. Transient and steady state viscoelastic rolling contact. Comput. Struct. 1985, 20, 545–553. [Google Scholar] [CrossRef]
- Padovan, J.; Kazempour, A.; Tabaddor, F.; Brockman, B. Alternative formulations of rolling contact problems. Finite Elem. Anal. Des. 1992, 11, 275–284. [Google Scholar] [CrossRef]
- Le Tallec, P.; Rahler, C. Numerical models of steady rolling for non-linear viscoelastic structures in finite deformations. Int. J. Numer. Methods Eng. 1994, 37, 1159–1186. [Google Scholar] [CrossRef]
- Nackenhorst, U. The ALE-formulation of bodies in rolling contact: Theoretical foundations and finite element approach. Comput. Methods Appl. Mech. Eng. 2004, 193, 4299–4322. [Google Scholar] [CrossRef]
- Padovan, J. Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure—I. Theory. Comput. Struct. 1987, 27, 249–257. [Google Scholar] [CrossRef]
- Nasdala, L.; Kaliske, M.; Becker, A.; Rothert, H. An efficient viscoelastic formulation for steady-state rolling structures. Comput. Mech. 1998, 22, 395–403. [Google Scholar] [CrossRef]
- Carbone, G.; Putignano, C. A novel methodology to predict sliding and rolling friction of viscoelastic materials: Theory and experiments. J. Mech. Phys. Solids 2013, 61, 1822–1834. [Google Scholar] [CrossRef]
- Menga, N.; Putignano, C.; Carbone, G.; Demelio, G.P. The sliding contact of a rigid wavy surface with a viscoelastic half-space. Proc. R. Soc. A:Math. Phys. Eng. Sci. 2014, 470, 20140392. [Google Scholar] [CrossRef] [Green Version]
- Putignano, C.; Carbone, G.; Dini, D. Mechanics of rough contacts in elastic and viscoelastic thin layers. Int. J. Solids Struct. 2015, 69–70, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Menga, N.; Afferrante, L.; Carbone, G. Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles. J. Mech. Phys. Solids 2016, 95, 517–529. [Google Scholar] [CrossRef]
- Menga, N.; Afferrante, L.; Demelio, G.; Carbone, G. Rough contact of sliding viscoelastic layers: Numerical calculations and theoretical predictions. Tribol. Int. 2018, 122, 67–75. [Google Scholar] [CrossRef]
- Torskaya, E.V.; Stepanov, F.I. Effect of Surface Layers in Sliding Contact of Viscoelastic Solids (3-D Model of Material). Front. Mech. Eng. 2019, 5, 26. [Google Scholar] [CrossRef]
- Stepanov, F.I.; Torskaya, E.V. Study of stress state of viscoelastic half-space in sliding contact with smooth indenter. J. Frict. Wear 2016, 37, 101–106. [Google Scholar] [CrossRef]
- van Dokkum, J.S.; Nicola, L. Green’s function molecular dynamics including viscoelasticity. Model. Simul. Mater. Sci. Eng. 2019, 27, 075006. [Google Scholar] [CrossRef]
- Wallace, E.R.; Chaise, T.; Nelias, D. Three-dimensional rolling/sliding contact on a viscoelastic layered half-space. J. Mech. Phys. Solids 2020, 143, 104067. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.J.; He, T. Transient and steady-state viscoelastic contact responses of layer-substrate systems with interfacial imperfections. J. Mech. Phys. Solids 2020, 145, 104170. [Google Scholar] [CrossRef]
- Dayalan, S.K.; Sundaram, N.K. Partial slip contact of a rigid pin and a linear viscoelastic plate. Int. J. Solids Struct. 2016, 100, 319–331. [Google Scholar] [CrossRef]
- Bonari, J.; Paggi, M. Viscoelastic Effects during Tangential Contact Analyzed by a Novel Finite Element Approach with Embedded Interface Profiles. Lubricants 2020, 8, 107. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Hwu, C. Time-stepping method for frictional contact of anisotropic viscoelastic solids. Int. J. Mech. Sci. 2020, 184, 105836. [Google Scholar] [CrossRef]
- Goriacheva, I. Contact problem of rolling of a viscoelastic cylinder on a base of the same material. J. Appl. Math. Mech. 1973, 37, 877–885. [Google Scholar] [CrossRef]
- Goodman, L.E. Contact Stress Analysis of Normally Loaded Rough Spheres. J. Appl. Mech. 1962, 29, 515–522. [Google Scholar] [CrossRef]
- Goryacheva, I.; Sadeghi, F. Contact characteristics of a rolling/sliding cylinder and a viscoelastic layer bonded to an elastic substrate. Wear 1995, 184, 125–132. [Google Scholar] [CrossRef]
- Goryacheva, I.; Stepanov, F.; Torskaya, E. Sliding of a smooth indentor over a viscoelastic half-space when there is friction. J. Appl. Math. Mech. 2015, 79, 596–603. [Google Scholar] [CrossRef]
- Goryacheva, I.; Stepanov, F.; Torskaya, E. Effect of Friction in Sliding Contact of a Sphere Over a Viscoelastic Half-Space. In Mathematical Modeling and Optimization of Complex Structures; Neittaanmäki, P., Repin, S., Tuovinen, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 93–103. [Google Scholar]
- Goryacheva, I.; Miftakhova, A. Modelling of the viscoelastic layer effect in rolling contact. Wear 2019, 430–431, 256–262. [Google Scholar] [CrossRef]
- Putignano, C.; Carbone, G. Viscoelastic Damping in alternate reciprocating contacts. Sci. Rep. 2017, 7, 8333. [Google Scholar] [CrossRef] [Green Version]
- Putignano, C.; Carbone, G.; Dini, D. Theory of reciprocating contact for viscoelastic solids. Phys. Rev. E 2016, 93, 043003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putignano, C.; Carbone, G. Viscoelastic reciprocating contacts in presence of finite rough interfaces: A numerical investigation. J. Mech. Phys. Solids 2018, 114, 185–193. [Google Scholar] [CrossRef]
- Santeramo, M.; Putignano, C.; Vorlaufer, G.; Krenn, S.; Carbone, G. Viscoelastic steady-state rolling contacts: A generalized boundary element formulation for conformal and non-conformal geometries. J. Mech. Phys. Solids 2023, 171, 105129. [Google Scholar] [CrossRef]
- Persson, B. Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 2006, 61, 201–227. [Google Scholar] [CrossRef] [Green Version]
- Persson, B.; Albohr, O.; Tartaglino, U.; Volokitin, A.; Tosatti, E. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 2004, 17, R1–R62. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, T.D.B.; Junge, T.; Pastewka, L. Quantitative characterization of surface topography using spectral analysis. Surf. Topogr. Metrol. Prop. 2017, 5, 013001. [Google Scholar] [CrossRef] [Green Version]
- Persson, B.N.J.; Albohr, O.; Creton, C.; Peveri, V. Contact area between a viscoelastic solid and a hard, randomly rough, substrate. J. Chem. Phys. 2004, 120, 8779–8793. [Google Scholar] [CrossRef] [Green Version]
- Persson, B.N.J. Theory of rubber friction and contact mechanics. J. Chem. Phys. 2001, 115, 3840–3861. [Google Scholar] [CrossRef] [Green Version]
- Carbone, G.; Lorenz, B.; Persson, B.; Wohlers, A. Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. Eur. Phys. J. E 2009, 29, 275–284. [Google Scholar] [CrossRef]
- Afferrante, L.; Putignano, C.; Menga, N.; Carbone, G. Friction in rough contacts of linear viscoelastic surfaces with anisotropic statistical properties. Eur. Phys. J. E 2019, 42, 80. [Google Scholar] [CrossRef] [PubMed]
- Scaraggi, M.; Persson, B.N.J. Friction and universal contact area law for randomly rough viscoelastic contacts. J. Phys. Condens. Matter 2015, 27, 105102. [Google Scholar] [CrossRef] [PubMed]
- Scaraggi, M.; Comingio, D. Rough contact mechanics for viscoelastic graded materials: The role of small-scale wavelengths on rubber friction. Int. J. Solids Struct. 2017, 125, 276–296. [Google Scholar] [CrossRef]
- Papangelo, A.; Ciavarella, M. Viscoelastic normal indentation of nominally flat randomly rough contacts. Int. J. Mech. Sci. 2021, 211, 106783. [Google Scholar] [CrossRef]
- Putignano, C.; Afferrante, L.; Carbone, G.; Demelio, G. The influence of the statistical properties of self-affine surfaces in elastic contacts: A numerical investigation. J. Mech. Phys. Solids 2012, 60, 973–982. [Google Scholar] [CrossRef]
- Carbone, G.; Putignano, C. Rough viscoelastic sliding contact: Theory and experiments. Phys. Rev. E 2014, 89, 032408. [Google Scholar] [CrossRef]
- Putignano, C. Viscoelastic rough contact mechanics: A multiscale investigation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 230, 1374–1381. [Google Scholar] [CrossRef]
- Putignano, C.; Menga, N.; Afferrante, L.; Carbone, G. Viscoelasticity induces anisotropy in contacts of rough solids. J. Mech. Phys. Solids 2019, 129, 147–159. [Google Scholar] [CrossRef]
- Menga, N.; Carbone, G.; Dini, D. Exploring the effect of geometric coupling on friction and energy dissipation in rough contacts of elastic and viscoelastic coatings. J. Mech. Phys. Solids 2020, 148, 104273. [Google Scholar] [CrossRef]
- Putignano, C.; Carbone, G. On the Role of Roughness in the Indentation of Viscoelastic Solids. Tribol. Lett. 2022, 70, 117. [Google Scholar] [CrossRef]
- Medina, S.; Dini, D. A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. Int. J. Solids Struct. 2014, 51, 2620–2632. [Google Scholar] [CrossRef] [Green Version]
- Israelachvili, J.N. Intermolecular and Surface Forces: Revised, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Müser, M.H.; Sukhomlinov, S.V.; Pastewka, L. Interatomic potentials: Achievements and challenges. Adv. Phys. X 2023, 8, 2093129. [Google Scholar] [CrossRef]
- Tabor, D. Surface forces and surface interactions. J. Colloid Interface Sci. 1977, 58, 2–13. [Google Scholar] [CrossRef]
- Maugis, D.; Barquins, M. Fracture Mechanics and Adherence of Viscoelastic Solids. In Adhesion and Adsorption of Polymers; Lee, L.-H., Ed.; Springer: Boston, MA, USA, 1980; pp. 203–277. [Google Scholar]
- Greenwood, J.A.; Johnson, K.L. The mechanics of adhesion of viscoelastic solids. Philos. Mag. A 1981, 43, 697–711. [Google Scholar] [CrossRef]
- Muller, V. On the theory of pull-off of a viscoelastic sphere from a flat surface. J. Adhes. Sci. Technol. 1999, 13, 999–1016. [Google Scholar] [CrossRef]
- Hui, C.-Y.; Baney, J.M.; Kramer, E.J. Contact Mechanics and Adhesion of Viscoelastic Spheres. Langmuir 1998, 14, 6570–6578. [Google Scholar] [CrossRef]
- Haiat, G.; Huy, M.P.; Barthel, E. The adhesive contact of viscoelastic spheres. J. Mech. Phys. Solids 2003, 51, 69–99. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-Y.; Hui, C.Y. Mechanics of contact and adhesion between viscoelastic spheres: An analysis of hysteresis during loading and unloading. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 772–793. [Google Scholar] [CrossRef]
- Dugdale, D.S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 1960, 8, 100–104. [Google Scholar] [CrossRef]
- Barenblatt, G.I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. In Advances in Applied Mechanics; Dryden, H.L., von Kármán, T., Kuerti, G., van den Dungen, F.H., Howarth, L., Eds.; Elsevier: Cambridge, MA, USA, 1962; Volume 7, pp. 55–129. [Google Scholar]
- Bärthel, E.; Frétigny, C. Adhesive contact of elastomers: Effective adhesion energy and creep function. J. Phys. D Appl. Phys. 2009, 42, 195302. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Wang, Q.J. Viscoelastic-adhesive contact modeling: Application to the characterization of the viscoelastic behavior of materials. Mech. Mater. 2013, 60, 55–65. [Google Scholar] [CrossRef]
- Schapery, R.A. On the mechanics of crack closing and bonding in linear viscoelastic media. Int. J. Fract. 1989, 39, 163–189. [Google Scholar] [CrossRef]
- Maugis, D. Adhesion of spheres: The JKR-DMT transition using a dugdale model. J. Colloid Interface Sci. 1992, 150, 243–269. [Google Scholar] [CrossRef]
- Goryacheva, I.; Makhovskaya, Y. Adhesion effect in sliding of a periodic surface and an individual indenter upon a viscoelastic base. J. Strain Anal. Eng. Des. 2016, 51, 286–293. [Google Scholar] [CrossRef]
- Goryacheva, I.G.; Gubenko, M.M.; Makhovskaya, Y.Y. Sliding of a spherical indenter on a viscoelastic foundation with the forces of molecular attraction taken into account. J. Appl. Mech. Tech. Phys. 2014, 55, 81–88. [Google Scholar] [CrossRef]
- Goryacheva, I.G.; Makhovskaya, Y.Y. Sliding of a wavy indentor on a viscoelastic layer surface in the case of adhesion. Mech. Solids 2015, 50, 439–450. [Google Scholar] [CrossRef]
- Afferrante, L.; Violano, G. On the effective surface energy in viscoelastic Hertzian contacts. J. Mech. Phys. Solids 2021, 158, 104669. [Google Scholar] [CrossRef]
- Derjaguin, V.B. Theorie des Anhaftens kleiner Teilchen. Prog. Surf. Sci. 1992, 40, 6–15. [Google Scholar] [CrossRef]
- Müser, M.H.; Persson, B.N.J. Crack and pull-off dynamics of adhesive, viscoelastic solids. EPL Europhys. Lett. 2022, 137, 36004. [Google Scholar] [CrossRef]
- Persson, B.N.J.; Brener, E.A. Crack propagation in viscoelastic solids. Phys. Rev. E 2005, 71, 036123. [Google Scholar] [CrossRef]
- Carbone, G.; Mandriota, C.; Menga, N. Theory of viscoelastic adhesion and friction. Extreme Mech. Lett. 2022, 56, 101877. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Chen, P.; Qiao, X. Viscoelastic adhesive contact between a sphere and a two-dimensional nano-wavy surface. Appl. Surf. Sci. 2022, 586, 152828. [Google Scholar] [CrossRef]
- Pérez-Ràfols, F.; Van Dokkum, J.S.; Nicola, L. On the interplay between roughness and viscoelasticity in adhesive hysteresis. J. Mech. Phys. Solids 2023, 170, 105079. [Google Scholar] [CrossRef]
- Yoo, H.S. Some Effects of Viscoelastic Matrix on the Squeeze Films. ASLE Trans. 1987, 30, 403–408. [Google Scholar] [CrossRef]
- Kaneko, S.; Tanaka, T.; Abe, S.; Ishikawa, T. A Study on Squeeze Films Between Porous Rubber Surface and Rigid Surface: Analysis Based on the Viscoelastic Continuum Model. J. Tribol. 2004, 126, 719–727. [Google Scholar] [CrossRef]
- Elsharkawy, A.A. Visco-elastohydrodynamic lubrication of line contacts. Wear 1996, 199, 45–53. [Google Scholar] [CrossRef]
- Hooke, C.J.; Huang, P. Elastohydrodynamic lubrication of soft viscoelastic materials in line contact. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1997, 211, 185–194. [Google Scholar] [CrossRef]
- Scaraggi, M.; Persson, B. Theory of viscoelastic lubrication. Tribol. Int. 2014, 72, 118–130. [Google Scholar] [CrossRef]
- Pandey, A.; Karpitschka, S.; Venner, C.H.; Snoeijer, J.H. Lubrication of soft viscoelastic solids. J. Fluid Mech. 2016, 799, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Putignano, C.; Dini, D. Soft Matter Lubrication: Does Solid Viscoelasticity Matter? ACS Appl. Mater. Interfaces 2017, 9, 42287–42295. [Google Scholar] [CrossRef]
- Putignano, C. Soft lubrication: A generalized numerical methodology. J. Mech. Phys. Solids 2019, 134, 103748. [Google Scholar] [CrossRef]
- Putignano, C.; Campanale, A. Squeeze lubrication between soft solids: A numerical study. Tribol. Int. 2022, 176, 107824. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Morales-Espejel, G.; Venner, C. Effects of solid viscoelasticity on elastohydrodynamic lubrication of point contacts. Tribol. Int. 2022, 171, 107562. [Google Scholar] [CrossRef]
- He, T.; Wang, Q.J.; Zhang, X.; Liu, Y.; Li, Z.; Kim, H.J.; Pack, S. Visco-elastohydrodynamic lubrication of layered materials with imperfect layer-substrate interfaces. Int. J. Mech. Sci. 2020, 189, 105993. [Google Scholar] [CrossRef]
- Li, D.; Zhu, C.; Wang, A.; He, T. Modelling visco-elastohydrodynamic lubrication of polymer-based composites. Tribol. Int. 2022, 174, 107716. [Google Scholar] [CrossRef]
- Persson, B. Rubber friction: Role of the flash temperature. J. Phys. Condens. Matter 2006, 18, 7789–7823. [Google Scholar] [CrossRef]
- Persson, B.N.J. Role of Frictional Heating in Rubber Friction. Tribol. Lett. 2014, 56, 77–92. [Google Scholar] [CrossRef]
- Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B.N.J. General theory of frictional heating with application to rubber friction. J. Phys. Condens. Matter 2015, 27, 175008. [Google Scholar] [CrossRef]
- Putignano, C.; Le Rouzic, J.; Reddyhoff, T.; Carbone, G.; Dini, D. A theoretical and experimental study of viscoelastic rolling contacts incorporating thermal effects. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014, 228, 1112–1121. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Wang, Q.J.; Zhang, X.; Liu, Y.; Li, Z.; Kim, H.J.; Pack, S. Modeling thermal-visco-elastohydrodynamic lubrication (TVEHL) interfaces of polymer-based materials. Tribol. Int. 2021, 154, 106691. [Google Scholar] [CrossRef]
- Zhang, X.; Gan, R.Z. Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition. Ann. Biomed. Eng. 2013, 41, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.J.; He, T.; Liu, Y.; Li, Z.; Kim, H.J.; Pack, S. Fully coupled thermo-viscoelastic (TVE) contact modeling of layered materials considering frictional and viscoelastic heating. Tribol. Int. 2022, 170, 107506. [Google Scholar] [CrossRef]
- Corr, D.T.; Starr, M.J.; Vanderby, R.; Best, T.M. A Nonlinear Generalized Maxwell Fluid Model for Viscoelastic Materials. J. Appl. Mech. 2001, 68, 787–790. [Google Scholar] [CrossRef]
- Zhang, W.; Capilnasiu, A.; Nordsletten, D. Comparative Analysis of Nonlinear Viscoelastic Models Across Common Biomechanical Experiments. J. Elast. 2021, 145, 117–152. [Google Scholar] [CrossRef]
- Balbi, V.; Shearer, T.; Parnell, W.J. A modified formulation of quasi-linear viscoelasticity for transversely isotropic materials under finite deformation. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20180231. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, M. Nonlinear viscoelastic stress analysis—A finite element approach. Comput. Struct. 1984, 18, 133–139. [Google Scholar] [CrossRef]
- Roy, S.; Reddy, J. A finite element analysis of adhesively bonded composite joints with moisture diffusion and delayed failure. Comput. Struct. 1988, 29, 1011–1031. [Google Scholar] [CrossRef]
- Lai, J.; Bakker, A. 3-D schapery representation for non-linear viscoelasticity and finite element implementation. Comput. Mech. 1996, 18, 182–191. [Google Scholar] [CrossRef]
- Haj-Ali, R.M.; Muliana, A.H. Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int. J. Numer. Methods Eng. 2004, 59, 25–45. [Google Scholar] [CrossRef]
- Shen, Y.; Hasebe, N.; Lee, L. The finite element method of three-dimensional nonlinear viscoelastic large deformation problems. Comput. Struct. 1995, 55, 659–666. [Google Scholar] [CrossRef]
- Mahmoud, F.; El-Shafei, A.; Abdelrahman, A.; Attia, M. Modeling of nonlinear viscoelastic contact problems with large deformations. Appl. Math. Model. 2013, 37, 6730–6745. [Google Scholar] [CrossRef]
- Mahmoud, F.; El-Shafei, A.; Attia, M.; Rahman, A.A. Analysis of quasistatic frictional contact problems in nonlinear viscoelasticity with large deformations. Int. J. Mech. Sci. 2013, 66, 109–119. [Google Scholar] [CrossRef]
- Abdelrahman, A.A.; El-Shafei, A.G.; Mahmoud, F.F. Analysis of steady-state frictional rolling contact problems in Schapery–nonlinear viscoelasticity. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2019, 233, 911–926. [Google Scholar] [CrossRef]
- Mabuchi, K.; Sasada, T. Numerical analysis of elastohydrodynamic squeeze film lubrication of total hip prostheses. Wear 1990, 140, 1–16. [Google Scholar] [CrossRef]
- Wang, C.-T.; Wang, Y.-L.; Chen, Q.-L.; Yang, M.-R. Calculation of Elastohydrodynamic Lubrication Film Thickness for Hip Prostheses During Normal Walking. Tribol. Trans. 1990, 33, 239–245. [Google Scholar] [CrossRef]
- Jagatia, M.; Jalali-Vahid, D.; Jin, Z.M. Elastohydrodynamic lubrication analysis of ultra-high molecular weight polyethylene hip joint replacements under squeeze-film motion. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2001, 215, 141–151. [Google Scholar] [CrossRef]
- Deng, M.; Uhrich, K. Viscoelastic Behaviors of Ultrahigh Molecular Weight Polyethylene under Three-Point Bending and Indentation Loading. J. Biomater. Appl. 2010, 24, 713–732. [Google Scholar] [CrossRef]
- Lu, X.; Meng, Q.; Wang, J.; Jin, Z. Transient viscoelastic lubrication analyses of UHMWPE hip replacements. Tribol. Int. 2018, 128, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Meng, Q.; Jin, Z. Effects of UHMWPE viscoelasticity on the squeeze-film lubrication of hip replacements. Biosurf. Biotribol. 2021, 7, 60–69. [Google Scholar] [CrossRef]
- Wu, C.; Wang, A.; Ding, W.; Guo, H.; Wang, Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2018, 9, 1802906. [Google Scholar] [CrossRef]
- Jin, C.; Kia, D.S.; Jones, M.; Towfighian, S. On the contact behavior of micro-/nano-structured interface used in vertical-contact-mode triboelectric nanogenerators. Nano Energy 2016, 27, 68–77. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Li, H.; Wu, J.; Hu, Y. Comprehensive contact analysis for vertical-contact-mode triboelectric nanogenerators with micro-/nano-textured surfaces. Nano Energy 2018, 51, 241–249. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Hu, Y.; Li, L.; Li, Z.; Wu, H.; Zhao, Z. Investigation on the adhesive contact and electrical performance for triboelectric nanogenerator considering polymer viscoelasticity. Nano Res. 2021, 14, 4625–4633. [Google Scholar] [CrossRef]
- Zhou, H.; Qin, W.; Yu, Q.; Cheng, H.; Yu, X.; Wu, H. Transfer Printing and its Applications in Flexible Electronic Devices. Nanomaterials 2019, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Wu, M.; Yu, Q.; Shan, Y.; Zhang, Y. Investigations on the Adhesive Contact Behaviors between a Viscoelastic Stamp and a Transferred Element in Microtransfer Printing. Coatings 2021, 11, 1201. [Google Scholar] [CrossRef]
- Wang, M.; Li, H.-B.; Han, J.-Q.; Xiao, X.-H.; Zhou, J.-W. Large deformation evolution and failure mechanism analysis of the multi-freeface surrounding rock mass in the Baihetan underground powerhouse. Eng. Fail. Anal. 2019, 100, 214–226. [Google Scholar] [CrossRef]
- Ma, T.; Tang, C.; Tang, L.; Zhang, W.; Wang, L. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Tunn. Undergr. Space Technol. 2015, 49, 345–368. [Google Scholar] [CrossRef]
- Sun, T.; Wang, K.; Iinuma, T.; Hino, R.; He, J.; Fujimoto, H.; Kido, M.; Osada, Y.; Miura, S.; Ohta, Y.; et al. Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake. Nature 2014, 514, 84–87. [Google Scholar] [CrossRef]
- Cheng, X.; Tang, C.; Zhuang, D. A finite-strain viscoelastic-damage numerical model for time-dependent failure and instability of rocks. Comput. Geotech. 2022, 143, 104596. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; de Boer, G.; Neville, A.; Ghanbarzadeh, A. A Review on Modelling of Viscoelastic Contact Problems. Lubricants 2022, 10, 358. https://doi.org/10.3390/lubricants10120358
Wang D, de Boer G, Neville A, Ghanbarzadeh A. A Review on Modelling of Viscoelastic Contact Problems. Lubricants. 2022; 10(12):358. https://doi.org/10.3390/lubricants10120358
Chicago/Turabian StyleWang, Dongze, Gregory de Boer, Anne Neville, and Ali Ghanbarzadeh. 2022. "A Review on Modelling of Viscoelastic Contact Problems" Lubricants 10, no. 12: 358. https://doi.org/10.3390/lubricants10120358
APA StyleWang, D., de Boer, G., Neville, A., & Ghanbarzadeh, A. (2022). A Review on Modelling of Viscoelastic Contact Problems. Lubricants, 10(12), 358. https://doi.org/10.3390/lubricants10120358