Next Issue
Previous Issue

Table of Contents

Galaxies, Volume 4, Issue 3 (September 2016)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-24
Export citation of selected articles as:
Open AccessArticle
Exploring the Magnetic Field Configuration in BL Lac Using GMVA
Received: 15 July 2016 / Revised: 9 September 2016 / Accepted: 13 September 2016 / Published: 20 September 2016
Viewed by 1588 | PDF Full-text (1612 KB) | HTML Full-text | XML Full-text
Abstract
The high radio frequency polarization imaging of non-thermal emission from active galactic nuclei (AGN) is a direct way to probe the magnetic field strength and structure in the immediate vicinity of supermassive black holes (SMBHs) and is crucial in testing the jet-launching scenario. [...] Read more.
The high radio frequency polarization imaging of non-thermal emission from active galactic nuclei (AGN) is a direct way to probe the magnetic field strength and structure in the immediate vicinity of supermassive black holes (SMBHs) and is crucial in testing the jet-launching scenario. To explore the the magnetic field configuration at the base of jets in blazars, we took advantage of the full polarization capabilities of the Global Millimeter VLBI Array (GMVA). With an angular resolution of ∼50 micro-arcseconds (μas) at 86 GHz, one could resolve scales up to ∼450 gravitational radii (for a 10 9 solar mass black hole at a redshift of 0.1). We present here the preliminary results of our study on the blazar BL Lac. Our results suggest that on sub-mas scales the core and the central jet of BL Lac are significantly polarized with two distinct regions of polarized intensity. We also noted a great morphological similarity between the 7 mm/3 mm VLBI images at very similar angular resolution. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
The Radio/Gamma-Ray Connection from 120 MHz to 230 GHz
Received: 14 July 2016 / Revised: 3 September 2016 / Accepted: 5 September 2016 / Published: 13 September 2016
Cited by 2 | Viewed by 1273 | PDF Full-text (772 KB) | HTML Full-text | XML Full-text
Abstract
Radio loud active galactic nuclei are composed of different spatial features, each one characterized by different spectral properties in the radio band. Among them, blazars are the most common class of sources detected at gamma-rays by Fermi, and their radio emission is [...] Read more.
Radio loud active galactic nuclei are composed of different spatial features, each one characterized by different spectral properties in the radio band. Among them, blazars are the most common class of sources detected at gamma-rays by Fermi, and their radio emission is dominated by the flat spectrum compact core. In this contribution, we explore the connection between emission at high energy revealed by Fermi and at radio frequencies. Taking as a reference the strong and very highly significant correlation found between gamma rays and cm-λ radio emission, we explore the different behaviours found as we change the energy range in gamma rays and in radio, therefore changing the physical parameters of the zones involved in the emitted radiation. We find that the correlation weakens when we consider (1) gamma rays of energy above 10 GeV (except for high synchrotron peaked blazars) or (2) low frequency radio data taken by the Murchison Widefield Array; on the other hand, the correlation strengthens when we consider mm-λ data taken by Atacama Large Millimeter Array (ALMA). Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
AGN Jet Kinematics on Parsec-Scales: The MOJAVE Program
Received: 20 July 2016 / Accepted: 2 September 2016 / Published: 9 September 2016
Cited by 4 | Viewed by 1527 | PDF Full-text (992 KB) | HTML Full-text | XML Full-text
Abstract
Very long baseline interferometry offers the best means of investigating the complex dynamics of relativistic jets powered by active galactic nuclei, via multi-epoch, sub-milliarcsecond, full-polarization imaging at radio wavelengths. Although targeted studies have yielded important information on the structures of individual AGN jets, [...] Read more.
Very long baseline interferometry offers the best means of investigating the complex dynamics of relativistic jets powered by active galactic nuclei, via multi-epoch, sub-milliarcsecond, full-polarization imaging at radio wavelengths. Although targeted studies have yielded important information on the structures of individual AGN jets, the strong selection effects associated with relativistically beaming imply that general aspects of the flows can only be determined via large statistical studies. In this review I discuss major results from the Monitoring of Jets in Active Galactic Nuclei With VLBA Experiments (MOJAVE) program, which has gathered multi-epoch Very Long Baseline Array (VLBA) data at 15 GHz on over 400 AGN jets over the course of two decades. The sample is large enough to encompass a range of AGN optical class, radio luminosity and synchrotron peak frequency, and has been used to show that within a particular jet, individual bright features have a spread of apparent speed and velocity vector position angle about a characteristic value. We have found that in some cases there is a secular evolution of launch angle direction over time, indicative of evolving narrow energized channels within a wider outflow. The majority of the jet features are superluminal and accelerating, with changes in speed more common than changes in direction. Within approximately 100 pc of the AGN, the flows are generally accelerating, while beyond this distance the flows begin to decelerate or remain nearly constant in speed. We also find evidence for a maximum bulk flow Lorentz factor of 50 in the pc-scale radio regime, and a trend of higher jet speeds in lower-synchrotron peaked and gamma-ray-loud blazars. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
Applying Relativistic Reconnection to Blazar Jets
Received: 15 July 2016 / Revised: 2 September 2016 / Accepted: 3 September 2016 / Published: 8 September 2016
Cited by 3 | Viewed by 862 | PDF Full-text (220 KB) | HTML Full-text | XML Full-text
Abstract
Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic reconnection is being actively studied by kinetic numerical simulations. Relativistic reconnection [...] Read more.
Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic reconnection is being actively studied by kinetic numerical simulations. Relativistic reconnection produces hard power-law electron energy distributions N ( γ ) γ p exp ( γ / γ max ) with index p 1 and exponential cut-off Lorentz factor γ max σ in the limit of magnetization σ = B 2 / ( 4 π w ) 1 (where w is the relativistic enthalpy density). Reconnection in electron-proton plasma can additionally boost γ max by the mass ratio m p / m e . Hence, in order to accelerate particles to γ max 10 6 in the case of BL Lacs, reconnection should proceed in plasma of very high magnetization σ max 10 3 . On the other hand, moderate mean jet magnetization values are required for magnetic bulk acceleration of relativistic jets, σ mean Γ j 20 (where Γ j is the jet bulk Lorentz factor). I propose that the systematic dependence of γ max on blazar luminosity class—the blazar sequence—may result from a systematic trend in σ max due to homogeneous loading of leptons by pair creation regulated by the energy density of high-energy external radiation fields. At the same time, relativistic AGN jets should be highly inhomogeneous due to filamentary loading of protons, which should determine the value of σ mean roughly independently of the blazar class. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Open AccessArticle
Sharp Polarimetric Eyes: More Trees than Forest?
Received: 14 July 2016 / Revised: 29 August 2016 / Accepted: 30 August 2016 / Published: 7 September 2016
Cited by 5 | Viewed by 1246 | PDF Full-text (4828 KB) | HTML Full-text | XML Full-text
Abstract
The Fermi Gamma-ray Space Telescope (Fermi) has focused the intensive multi-wavelength and international observational effort on blazars since it was launched in 2008. Part of this effort involves systematic monitoring of the highly variable polarization of the continuum emission from these [...] Read more.
The Fermi Gamma-ray Space Telescope (Fermi) has focused the intensive multi-wavelength and international observational effort on blazars since it was launched in 2008. Part of this effort involves systematic monitoring of the highly variable polarization of the continuum emission from these objects. These observations are valuable in that they provide direct information on the degree of ordering and orientation on the sky of the magnetic field within the non-thermal emission region(s). Unfortunately, it is not yet possible to measure the polarization of the inverse-Compton continuum, only that of the lower-energy synchrotron emission. The inability to directly compare the polarization of the two dominant continuum sources in blazars is a drawback and leads to more ambiguities in determining their relative locations. There are many compelling examples of strong connections between γ-ray, X-ray, UV/optical/IR, and radio behavior in blazars that suggest the same region produces much of the observed emission at all wavelengths at least some of the time. However, the wealth of polarization behavior seen relative to flux changes invariably results in a complex situation that is difficult to interpret and model. The long-term blazar monitoring program undertaken at Steward Observatory is designed to primarily obtain accurate optical polarimetry of γ-ray-bright blazars during the Fermi mission with the goal of gaining important insights into the jet structure and physics of these objects. Data from this program are available to all researchers as soon as reductions are completed. I briefly detail the current status and progress of the program and the data products available. Although the wide variety of polarization behavior in blazars adds another layer of complexity to an already difficult problem, I summarize several important conclusions that can be drawn from the polarization information gathered during the Fermi era. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
Flaring γ-Ray Emission from High Redshift Blazars
Received: 14 July 2016 / Revised: 16 August 2016 / Accepted: 16 August 2016 / Published: 6 September 2016
Cited by 1 | Viewed by 1179 | PDF Full-text (732 KB) | HTML Full-text | XML Full-text
Abstract
High redshift blazars are among the most powerful objects in the Universe. Although they represent a significant fraction of the extragalactic hard X-ray sky, they are not commonly detected in γ-rays. High redshift (z>2) objects represent <10 [...] Read more.
High redshift blazars are among the most powerful objects in the Universe. Although they represent a significant fraction of the extragalactic hard X-ray sky, they are not commonly detected in γ-rays. High redshift ( z > 2 ) objects represent < 10 per cent of the active galactic nuclei (AGN) population observed by Fermi so far, and γ-ray flaring activity from these sources is even more uncommon. The characterization of the radio-to-γ-ray properties of high redshift blazars represents a powerful tool for the study of the energetics of such extreme objects and the Extragalactic Background Light. This contribution will present results of multi-band campaigns, from radio to γ-rays, on PKS 0836+710, PKS 2149−306, and TXS 0536+145. The latter is the highest redshift detection of a flaring γ-ray blazar so far. At the peaks of their respective flares these sources reached an apparent isotropic gamma-ray luminosity of about 10 50 erg·s 1 , which is comparable with the luminosity observed from the most powerful blazars. The physical properties derived from the multi-wavelength observations of these sources are then compared with those shown by the high redshift population. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
Intra-Day Simultaneous Optical Monitoring of S5 0716+714
Received: 14 July 2016 / Revised: 31 August 2016 / Accepted: 31 August 2016 / Published: 6 September 2016
Cited by 1 | Viewed by 965 | PDF Full-text (1349 KB) | HTML Full-text | XML Full-text
Abstract
We present the results of simultaneous optical multi-color observations of BL Lac object 0716+714 in November 2014 and February 2016. The intra-day variability (IDV) varies from 0.04 to 0.3 mags. Both achromatic and bluer-when-brighter (BWB) color behaviors were detected. A probable quasi-periodic oscillation [...] Read more.
We present the results of simultaneous optical multi-color observations of BL Lac object 0716+714 in November 2014 and February 2016. The intra-day variability (IDV) varies from 0.04 to 0.3 mags. Both achromatic and bluer-when-brighter (BWB) color behaviors were detected. A probable quasi-periodic oscillation overlapping on a significant flare was also observed. We used the interpolated cross-correlation function to calculate time lags between light curves in different bands. Variations in the B and R lagging behind that in the I band were found, which corresponds with anti-clockwise loops on the color-magnitude diagrams. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
Optical Outburst of the Blazar S4 0954+658 in Early 2015
Received: 12 July 2016 / Revised: 29 August 2016 / Accepted: 30 August 2016 / Published: 3 September 2016
Viewed by 1274 | PDF Full-text (2145 KB) | HTML Full-text | XML Full-text
Abstract
We analyze the behavior of the BL Lac object S4 0954+658 during an unprecedented bright optical flare in early 2015. The optical flare was accompanied by a powerful γ-ray flare and the detection of very-high-energy γ-ray emission. We analyze total and [...] Read more.
We analyze the behavior of the BL Lac object S4 0954+658 during an unprecedented bright optical flare in early 2015. The optical flare was accompanied by a powerful γ -ray flare and the detection of very-high-energy γ -ray emission. We analyze total and polarized intensity images obtained with the VLBA at 43 GHz and discover a new bright polarized superluminal knot, which was ejected from the VLBI-core during the peak of the flare. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Graphical abstract

Open AccessArticle
TimeTubes: Visualization of Polarization Variations in Blazars
Received: 15 July 2016 / Revised: 26 August 2016 / Accepted: 30 August 2016 / Published: 3 September 2016
Cited by 3 | Viewed by 1769 | PDF Full-text (1844 KB) | HTML Full-text | XML Full-text
Abstract
Optical polarization provides important clues to the magnetic field in blazar jets. It is easy to find noteworthy patterns in the time-series data of the polarization degree (PD) and position angle (PA). On the other hand, we need to see the trajectory of [...] Read more.
Optical polarization provides important clues to the magnetic field in blazar jets. It is easy to find noteworthy patterns in the time-series data of the polarization degree (PD) and position angle (PA). On the other hand, we need to see the trajectory of the object in the Stokes Q U plane when the object has multiple polarized components. In this case, ironically, the more data we have, the more difficult it is to gain any knowledge from it. Here, we introduce TimeTubes, a new visualization scheme to explore the time-series data of polarization observed in blazars. In TimeTubes, the data is represented by tubes in 3D (Q, U, and time) space. The measurement errors of Q and U, color, and total flux of objects are expressed as the size, color, and brightness of the tubes. As a result, TimeTubes allows us to see the behavior of six variables in one view. We used TimeTubes for our data taken by the Kanata telescope between 2008 and 2014. We found that this tool facilitates the recognition of the patterns in blazar variations; for example, favored PA of flares and PA rotations associated with a series of flares. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Graphical abstract

Open AccessArticle
Spectral and Polarization Signatures of Relativistic Shocks in Blazars
Received: 7 July 2016 / Revised: 29 August 2016 / Accepted: 30 August 2016 / Published: 2 September 2016
Cited by 2 | Viewed by 1205 | PDF Full-text (2709 KB) | HTML Full-text | XML Full-text
Abstract
Relativistic shocks are one of the most plausible sites of the emission of strongly variable, polarized multi-wavelength emission from relativistic jet sources such as blazars, via the diffusive shock acceleration (DSA) of relativistic particles. This paper summarizes recent results on a self-consistent coupling [...] Read more.
Relativistic shocks are one of the most plausible sites of the emission of strongly variable, polarized multi-wavelength emission from relativistic jet sources such as blazars, via the diffusive shock acceleration (DSA) of relativistic particles. This paper summarizes recent results on a self-consistent coupling of diffusive shock acceleration and radiation transfer in blazar jets. We demonstrate that the observed spectral energy distributions (SEDs) of blazars strongly constrain the nature of hydromagnetic turbulence responsible for pitch-angle scattering by requiring a strongly energy-dependent pitch-angle mean free path. The prominent soft X-ray excess (“Big Blue Bump”) in the SED of the BL Lac object AO 0235+164 can be modelled as the signature of bulk Compton scattering of external radiation fields by the thermal electron population, which places additional constraints on the level of hydromagnetic turbulence. It has further been demonstrated that internal shocks propagating in a jet pervaded by a helical magnetic field naturally produce polarization-angle swings by 180 , in tandem with multi-wavelength flaring activity, without requiring any helical motion paths or other asymmetric jet structures. The specific application of this model to 3C279 presents the first consistent simultaneous modeling of snap-shot SEDs, multi-wavelength light curves, and time-dependent polarization signatures of a blazar during a polarization-angle (PA) rotation. This model has recently been generalized to a lepto-hadronic model, in which the high-energy emission is dominated by proton synchrotron radiation. It is shown that in this case, the high-energy (X-ray and γ-ray) polarization signatures are expected to be significantly more stable (not showing PA rotations) than the low-energy (electron-synchrotron) signatures. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessEditorial
The Conference Blazars through Sharp Multi-Wavelength Eyes
Received: 30 August 2016 / Accepted: 31 August 2016 / Published: 1 September 2016
Viewed by 921 | PDF Full-text (161 KB) | HTML Full-text | XML Full-text
Abstract
Blazars are active, galactic nuclei with jets of magnetized, high-energy plasma that flow outward from the center of the host galaxy at near-light speeds.[...] Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Open AccessArticle
Gamma-Ray Variability Induced by Microlensing on Intermediate Size Structures in Lensed Blazars
Received: 12 July 2016 / Revised: 24 August 2016 / Accepted: 25 August 2016 / Published: 31 August 2016
Viewed by 839 | PDF Full-text (629 KB) | HTML Full-text | XML Full-text
Abstract
Changes of the magnification ratio of images in a lensed blazar, caused by microlensing on individual stars, have been proposed as a probe of the size and velocity of the emission region in the lensed source. We study whether similar changes in the [...] Read more.
Changes of the magnification ratio of images in a lensed blazar, caused by microlensing on individual stars, have been proposed as a probe of the size and velocity of the emission region in the lensed source. We study whether similar changes in the magnification ratio can be caused by the microlensing on the intermediate size structures in the lensing galaxy, namely stellar clusters and giant molecular clouds. Our numerical simulations show that changes in the magnification ratio of two images with similar time scales (as seen in QSO B0218+357) can be obtained for relativistically-moving emission regions with sizes up to 0.01 pc in the case of microlensing on clumps in giant molecular clouds. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
Time-Dependent Injection as a Model for Rapid Blazar Flares
Received: 8 July 2016 / Revised: 22 August 2016 / Accepted: 26 August 2016 / Published: 31 August 2016
Viewed by 779 | PDF Full-text (260 KB) | HTML Full-text | XML Full-text
Abstract
Time-dependent injection can cause non-linear cooling effects, which lead to a faster energy loss of the electrons in jets. The most obvious result is the appearance of unique breaks in the SED, which would normally be attributed to a complicated electron distribution. Knowledge [...] Read more.
Time-dependent injection can cause non-linear cooling effects, which lead to a faster energy loss of the electrons in jets. The most obvious result is the appearance of unique breaks in the SED, which would normally be attributed to a complicated electron distribution. Knowledge of the observation time and duration is important for the interpretation of the observed spectra, because of the non-trivial evolution of the spectral energy distributions (SED). Intrinsic gamma–gamma absorption processes in the emission region are only of minor importance. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
18–22 cm VLBA Observational Evidence for Toroidal B-Field Components in Six AGN Jets
Received: 5 July 2016 / Revised: 20 August 2016 / Accepted: 26 August 2016 / Published: 30 August 2016
Cited by 1 | Viewed by 1342 | PDF Full-text (575 KB) | HTML Full-text | XML Full-text
Abstract
The formation of relativistic jets in Active Galactic Nuclei (AGN) is related to accretion onto their central supermassive black holes, and magnetic (B) fields are believed to play a central role in launching, collimating, and accelerating the jet streams from very [...] Read more.
The formation of relativistic jets in Active Galactic Nuclei (AGN) is related to accretion onto their central supermassive black holes, and magnetic (B) fields are believed to play a central role in launching, collimating, and accelerating the jet streams from very compact regions out to kiloparsec scales. We present results of Faraday rotation studies based on Very Long Baseline Array (VLBA) data obtained at 18–22 cm for six well known AGN (OJ 287, 3C 279, PKS 1510-089, 3C 345, BL Lac, and 3C 454.3), which probe projected distances out to tens of parsecs from the observed cores. We have identified statistically significant, monotonic, transverse Faraday rotation gradients across the jets of all but one of these sources, indicating the presence of toroidal B fields, which may be one component of helical B fields associated with these AGN jets. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
The Optical Variability of the BL Lac AO 0235+164
Received: 14 July 2016 / Revised: 17 August 2016 / Accepted: 18 August 2016 / Published: 30 August 2016
Cited by 1 | Viewed by 1149 | PDF Full-text (1295 KB) | HTML Full-text | XML Full-text
Abstract
In this work, we present optical R band observations of AO 0235+164 carried out during the period of November 2006 to December 2012 using the Ap6E CCD camera attached to the primary focus of the 70 cm meniscus telescope at Abastumani Observatory, Georgia. [...] Read more.
In this work, we present optical R band observations of AO 0235+164 carried out during the period of November 2006 to December 2012 using the Ap6E CCD camera attached to the primary focus of the 70 cm meniscus telescope at Abastumani Observatory, Georgia. It shows a large variation of Δ R = 4.88 mag (14.19–19.07 mag) and a short time scale of Δ T v = 73.5 min during our monitoring period. When periodicity analysis methods are applied to the R-band data from both historic and our observations, periods P 1 = 8.26 yr and P 2 = 0.54 yr are found. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
The Classifications and Some Correlations for Fermi Blazars
Received: 14 July 2016 / Revised: 17 August 2016 / Accepted: 17 August 2016 / Published: 29 August 2016
Cited by 1 | Viewed by 1231 | PDF Full-text (1430 KB) | HTML Full-text | XML Full-text
Abstract
In a recent paper, we constructed the spectral energy distributions (SEDs) for 1425 Fermi blazars. We classify them as low synchrotron peak sources (LSPs) if log νp(Hz) 14.0, intermediate synchrotron peak sources (ISPs) if 14.0<logν [...] Read more.
In a recent paper, we constructed the spectral energy distributions (SEDs) for 1425 Fermi blazars. We classify them as low synchrotron peak sources (LSPs) if log ν p ( Hz ) 14.0, intermediate synchrotron peak sources (ISPs) if 14.0 < log ν p ( Hz ) 15.3 , and high synchrotron peak sources (HSPs) if log ν p ( Hz ) > 15.3 . We obtain an empirical relation to estimate the synchrotron peak frequency, ν p Eq . from effective spectral indexes α o x and α r o as log ν p Eq . = 16 + 4.238 X if X < 0 , and log ν p Eq . = 16 + 4.005 Y if X > 0 , where X = 1.0 1.262 α r o 0.623 α o x and Y = 1.0 + 0.034 α r o 0.978 α o x . In the present work, we investigate the correlation between the peak frequency and the radio-to-X-ray spectral index, between peak luminosity (bolometric luminosity) and γ-ray/optical luminosity, and between peak luminosity and bolometric luminosity. Some discussion is presented. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Graphical abstract

Open AccessArticle
Multi-Frequency Blazar Micro-Variability as a Tool to Investigate Relativistic Jets
Received: 29 June 2016 / Revised: 15 August 2016 / Accepted: 17 August 2016 / Published: 29 August 2016
Cited by 4 | Viewed by 1309 | PDF Full-text (5857 KB) | HTML Full-text | XML Full-text
Abstract
For the past 12 years we have been studying optical micro-variability of a sample of 15 Blazars. We summarize the results of this study and draw some basic conclusions about the characteristics of micro-variability. The intermittency, the stochastic nature, and the similar profile [...] Read more.
For the past 12 years we have been studying optical micro-variability of a sample of 15 Blazars. We summarize the results of this study and draw some basic conclusions about the characteristics of micro-variability. The intermittency, the stochastic nature, and the similar profile shapes seen in micro-variations at different times and in different objects have led us to a possible model to explain the observed micro-variations. The model is based on a strong shock propagating down a relativistic jet and encountering turbulence which causes density or magnetic field enhancements. We use the theory of Kirk, Reiger, and Mastichiadis (1998) to describe the pulse of synchrotron emission emanating from individual density enhancements energized by the shock. By fitting these “pulses” to micro-variability observations, we obtain excellent fits to actual micro-variations. The model predicts that the spectral index changes as a function of pulse duration. This effect should be observable in multi-frequency micro-variability data. We present the theoretical model, model fits of our micro-variability light curves, and preliminary multi-frequency micro-variability observations that support this model. A further test that has yet to be carried out involves observing polarization changes in different pulses. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
Search for High-Confidence Blazar Candidates and Their MWL Counterparts in the Fermi-LAT Catalog Using Machine Learning
Received: 15 July 2016 / Revised: 18 August 2016 / Accepted: 23 August 2016 / Published: 26 August 2016
Cited by 1 | Viewed by 1020 | PDF Full-text (1022 KB) | HTML Full-text | XML Full-text
Abstract
A large fraction of the gamma-ray sources presented in the Third Fermi-LAT source catalog (3FGL) is affiliated with counterparts and source types, but 1010 sources remain unassociated and 573 sources are associated with active galaxies of uncertain type. The purpose of this [...] Read more.
A large fraction of the gamma-ray sources presented in the Third Fermi-LAT source catalog (3FGL) is affiliated with counterparts and source types, but 1010 sources remain unassociated and 573 sources are associated with active galaxies of uncertain type. The purpose of this study is to assign blazar classes to these unassociated and uncertain sources, and to link counterparts to the unassociated. A machine learning algorithm is used for the classification, based on properties extracted from the 3FGL, an infrared and an X-ray catalog. To estimate the reliability of the classification, performance measures are considered through validation techniques. The classification yielded purity values around 90% with efficiency values of roughly 50%. The prediction of high-confidence blazar candidates has been conducted successfully, and the possibility to link counterparts in the same procedure has been proven. These findings confirm the relevance of this novel multiwavelength approach. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Graphical abstract

Open AccessArticle
The Extremes in Intra-Night Blazar Variability: The S4 0954+65 Case
Received: 7 July 2016 / Revised: 18 August 2016 / Accepted: 19 August 2016 / Published: 26 August 2016
Cited by 1 | Viewed by 1016 | PDF Full-text (439 KB) | HTML Full-text | XML Full-text
Abstract
We present results of optical observations of the extremely violently variable blazar S4 0954+65 on intra-night time scales. The object showed flux changes of up to 100% within a few hours. Time delays between optical bands, color changes and “rms-flux” relations are investigated [...] Read more.
We present results of optical observations of the extremely violently variable blazar S4 0954+65 on intra-night time scales. The object showed flux changes of up to 100% within a few hours. Time delays between optical bands, color changes and “rms-flux” relations are investigated and the results are discussed in terms of existing models of blazar variability. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Graphical abstract

Open AccessArticle
Powers and Magnetization of Blazar Jets
Received: 15 July 2016 / Revised: 21 August 2016 / Accepted: 23 August 2016 / Published: 26 August 2016
Cited by 5 | Viewed by 1032 | PDF Full-text (477 KB) | HTML Full-text | XML Full-text
Abstract
In this work I review the observational constraints imposed on the energetics and magnetisation of quasar jets, in the context of theoretical expectations. The discussion is focused on issues regarding the jet production efficiency, matter content, and particle acceleration. I show that if [...] Read more.
In this work I review the observational constraints imposed on the energetics and magnetisation of quasar jets, in the context of theoretical expectations. The discussion is focused on issues regarding the jet production efficiency, matter content, and particle acceleration. I show that if the ratio of electron-positron-pairs to protons is of order 15, as is required to achieve agreement between jet powers computed using blazar spectral fits and those computed using radio-lobe calorimetry, the magnetization of blazar jets in flat-spectrum-radio-quasars (FSRQ) must be significant. This result favors the reconnection mechanism for particle acceleration and explains the large Compton-dominance of blazar spectra that is often observed, without the need to postulate very low jet magnetization. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
A Panchromatic View of Relativistic Jets in Narrow-Line Seyfert 1 Galaxies
Received: 15 July 2016 / Revised: 16 August 2016 / Accepted: 18 August 2016 / Published: 25 August 2016
Cited by 14 | Viewed by 1854 | PDF Full-text (916 KB) | HTML Full-text | XML Full-text
Abstract
The discovery by the Large Area Telescope on board Fermi of variable γ-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1) galaxies revealed the presence of a possible third class of Active Galactic Nuclei (AGN) with relativistic jets in addition to blazars and [...] Read more.
The discovery by the Large Area Telescope on board Fermi of variable γ-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1) galaxies revealed the presence of a possible third class of Active Galactic Nuclei (AGN) with relativistic jets in addition to blazars and radio galaxies. Considering that NLSy1 are usually hosted in spiral galaxies, this finding poses intriguing questions about the nature of these objects and the formation of relativistic jets. We report on a systematic investigation of the γ-ray properties of a sample of radio-loud NLSy1, including the detection of new objects, using 7 years of Fermi-LAT data with the new Pass 8 event-level analysis. In addition we discuss the radio-to-very-high-energy properties of the γ-ray emitting NLSy1, their host galaxy, and black hole mass in the context of the blazar scenario and the unification of relativistic jets at different scales. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Figure 1

Open AccessArticle
Precessing Jet in the High-Redshift Blazar J0017+8135
Received: 12 July 2016 / Revised: 17 August 2016 / Accepted: 18 August 2016 / Published: 24 August 2016
Cited by 2 | Viewed by 1291 | PDF Full-text (690 KB) | HTML Full-text | XML Full-text
Abstract
The prominent flat-spectrum radio quasar J0017+8135 (S5 0014+81) at z = 3.366 is one of the most luminous active galactic nuclei (AGN) known. Its milliarcsecond-scale radio jet structure has been studied with very long baseline interferometry (VLBI) since the 1980s. The quasar was [...] Read more.
The prominent flat-spectrum radio quasar J0017+8135 (S5 0014+81) at z = 3.366 is one of the most luminous active galactic nuclei (AGN) known. Its milliarcsecond-scale radio jet structure has been studied with very long baseline interferometry (VLBI) since the 1980s. The quasar was selected as one of the original defining objects of the International Celestial Reference Frame, but left out from its current second realization (ICRF2) because of systematic long-term positional variations. Here we analyse archival 8.6- and 2.3-GHz VLBI imaging data collected at nearly 100 different epochs during more than 20 years, to obtain information about the kinematics of jet components. Because of the cosmological time dilation, extensive VLBI monitoring data are essential to reveal changes in the jet structure of high-redshift AGN. In the case of J0017+8135, the data can be described with a simple kinematic model of jet precession with a 12-year periodicity in the observer’s frame. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Figures

Graphical abstract

Open AccessArticle
Self-Gravitating Bose-Einstein Condensates and the Thomas-Fermi Approximation
Received: 27 April 2016 / Revised: 19 July 2016 / Accepted: 8 August 2016 / Published: 15 August 2016
Viewed by 1628 | PDF Full-text (676 KB) | HTML Full-text | XML Full-text
Abstract
Self-gravitating Bose-Einstein condensates (BEC) have been proposed in various astrophysical contexts, including Bose-stars and BEC dark matter halos. These systems are described by a combination of the Gross-Pitaevskii and Poisson equations (the GPP system). In the analysis of these hypothetical objects, the Thomas-Fermi [...] Read more.
Self-gravitating Bose-Einstein condensates (BEC) have been proposed in various astrophysical contexts, including Bose-stars and BEC dark matter halos. These systems are described by a combination of the Gross-Pitaevskii and Poisson equations (the GPP system). In the analysis of these hypothetical objects, the Thomas-Fermi (TF) approximation is widely used. This approximation is based on the assumption that in the presence of a large number of particles, the kinetic term in the Gross-Pitaevskii energy functional can be neglected, yet it is well known that this assumption is violated near the condensate surface. We also show that the total energy of the self-gravitating condensate in the TF-approximation is positive. The stability of a self-gravitating system is dependent on the total energy being negative. Therefore, the TF-approximation is ill suited to formulate initial conditions in numerical simulations. As an alternative, we offer an approximate solution of the full GPP system. Full article
Figures

Figure 1

Open AccessCommunication
Status on Bidimensional Dark Energy Parameterizations Using SNe Ia JLA and BAO Datasets
Received: 31 May 2016 / Revised: 15 July 2016 / Accepted: 19 July 2016 / Published: 26 July 2016
Cited by 5 | Viewed by 1231 | PDF Full-text (541 KB) | HTML Full-text | XML Full-text
Abstract
Using current observations of forecast type Ia supernovae (SNe Ia) Joint Lightcurve Analysis (JLA) and baryon acoustic oscillations (BAO), in this paper we investigate six bidimensional dark energy parameterizations in order to explore which has more constraining power. Our results indicate that for [...] Read more.
Using current observations of forecast type Ia supernovae (SNe Ia) Joint Lightcurve Analysis (JLA) and baryon acoustic oscillations (BAO), in this paper we investigate six bidimensional dark energy parameterizations in order to explore which has more constraining power. Our results indicate that for parameterizations that contain z 2 -terms, the tension (σ-distance) between these datasets seems to be reduced and their behaviour is <1σ compatible with the concordance model (ΛCDM). Also, the results obtained by performing their Bayesian evidence show a striking evidence in favour of the ΛCDM model, but only one parameterization can be distinguished by around 1 % from the other models when the combination of datasets are considered. Full article
Figures

Graphical abstract

Galaxies EISSN 2075-4434 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top