Powers and Magnetization of Blazar Jets
Abstract
:1. Introduction
- –
- jet energy losses during propagation between the blazar zone and radio lobes (e.g., by the work done against the external medium by reconfinement shocks which may change their sizes following a jet power modulation by the central engine);
- –
- overestimation of jet power using the blazar models (e.g., by assuming zero pair content and/or a one zone model);
- –
- a significant fraction of blazars may be hosted by young or short lived compact double radio sources. In this case, the methods of spectral decomposition and core subtraction adopted to use radio-lobe calorimetry in blazars may lead to underestimation of the lobe radio luminosities, and therefore underestimation of the jet power.
2. Jet Powers
3. Jet Magnetization
4. Particle Acceleration and Spectral Peaks
5. Discussion and Conclusions
- the pair content: ;
- the jet production efficiency: ;
- the magnetization at entrance and exit of blazar zone is and , respectively;
- the average energies of accelerated electrons/positrons correspond to typical observed locations of synchrotron and γ-ray luminosity peaks provided the acceleration is powered by magnetic reconnection operating in a jet at a distance corresponding to spatial extension of the BLR.
Acknowledgments
Conflicts of Interest
References
- Fernandes, C.A.C.; Jarvis, M.J.; Rawlings, S.; Martinez-Sansigre, A.; Hatziminaoglou, E.; Lacy, M.; Page, M.J.; Stevens, J.A.; Vardoulaki, E. Evidence for a maximum jet efficiency for the most powerful radio galaxies. Mon. Not. R. Astron. Soc. 2011, 411, 1909–1916. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F.; Maraschi, L.; Celotti, A.; Sbarrato, T. The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 2014, 515, 376–378. [Google Scholar] [CrossRef] [PubMed]
- Punsly, B. High jet efficiency and simulations of black hole magnetospheres. Astrophys. J. 2011, 728, L17–L21. [Google Scholar] [CrossRef]
- Rawlings, S.; Saunders, R. Evidence for a common central-engine mechanism in all extragalactic radio sources. Nature 1991, 349, 138–140. [Google Scholar] [CrossRef]
- Sikora, M.; Stasińska, G.; Kozieł-Wierzbowska, D.; Madejski, G.M.; Asari, N.V. Constraining Jet Production Scenarios by Studies of Narrow-line Radio Galaxies. Astrophys. J. 2013, 765, 62–70. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Narayan, R.; Igumenshchev, I.V.; Abramowicz, M.A. Magnetically Arrested Disk: An Energetically Efficient Accretion Flow. PASJ 2003, 55, L69–L72. [Google Scholar] [CrossRef]
- McKinney, J.C.; Tchekhovskoy, A.; Blandford, R.D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc. 2012, 423, 3083–3117. [Google Scholar] [CrossRef]
- Sikora, M.; Begelman, M.C. Magnetic Flux Paradigm for Radio Loudness of Active Galactic Nuclei. Astrophys. J. 2013, 764, L24–L28. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef]
- Avara, M.J.; McKinney, J.C.; Reynolds, C.S. Efficiency of Thin Magnetically-Arrested Disks around Black Holes. Mon. Not. R. Astron. Soc. 2016, 462, 636–648. [Google Scholar] [CrossRef]
- Abramowicz, M.A. Super-Eddington black hole accretion: Polish doughnuts and slim disks. In Growing Black Holes: Accretion in a Cosmological Context; Merloni, A., Nayakshin, S., Sunyaev, R.A., Eds.; ESO Astrophysics Symposia; Springer: Berlin, Germany, 2005; pp. 257–273. [Google Scholar]
- Beloborodov, A.M. Super-Eddington accretion discs around Kerr black holes. Mon. Not. R. Astron. Soc. 1998, 297, 739–746. [Google Scholar] [CrossRef]
- Jaroszynski, M.; Abramowicz, M.A.; Paczynski, B. Supercritical accretion disks around black holes. AcA 1980, 30, 1–34. [Google Scholar]
- Ichimaru, S. Bimodal behavior of accretion disks—Theory and application to Cygnus X-1 transitions. Astrophys. J. 1977, 214, 840–855. [Google Scholar] [CrossRef]
- Narayan, R.; Yi, I. Advection-dominated accretion: A self-similar solution. Astrophys. J. 1994, 428, L13–L16. [Google Scholar] [CrossRef]
- Rees, M.J.; Begelman, M.C.; Blandford, R.D.; Phinney, E.S. Ion-supported tori and the origin of radio jets. Nature 1982, 295, 17–21. [Google Scholar] [CrossRef]
- Stern, J.; Laor, A. Type 1 AGN at low z—III. The optical narrow-line ratios. Mon. Not. R. Astron. Soc. 2013, 431, 836–857. [Google Scholar] [CrossRef]
- Rusinek, K.; Sikora, M.; Kozieł-Wierzbowska, D.; Godfrey, L.E.H. On efficiency of jet production in FRII radio galaxies and quasars. Mon. Not. R. Astron. Soc. 2016. submitted. [Google Scholar]
- Sikora, M.; Stawarz, Ł.; Lasota, J.-P. Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications. Astrophys. J. 2007, 658, 815–828. [Google Scholar] [CrossRef]
- Janiuk, A.; Czerny, B. On different types of instabilities in black hole accretion discs: implications for X-ray binaries and active galactic nuclei. Mon. Not. R. Astron. Soc. 2011, 414, 2186–2194. [Google Scholar] [CrossRef]
- Janiuk, A.; Czerny, B.; Siemiginowska, A. Radiation Pressure Instability Driven Variability in the Accreting Black Holes. Astrophys. J. 2002, 576, 908–922. [Google Scholar] [CrossRef]
- Godfrey, L.E.H.; Lovell, J.E.J.; Burke-Spolaor, S.; Ekers, R.; Bicknell, G.V.; Birkinshaw, M.; Worrall, D.M.; Jauncey, D.L.; Schwartz, D.A.; Marshall, H.L.; et al. Periodic Structure in the Megaparsec-scale Jet of PKS 0637-752. Astrophys. J. 2012, 758, L27–L31. [Google Scholar] [CrossRef]
- Van Velzen, S.; Falcke, H. The contribution of spin to jet-disk coupling in black holes. A&A 2013, 557, L7–L10. [Google Scholar]
- Sikora, M.; Begelman, M.C.; Rees, M.J. Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars? Astrophys. J. 1994, 421, 153–162. [Google Scholar] [CrossRef]
- Willott, C.J.; Rawlings, S.; Blundell, K.M.; Lacy, M. The emission line-radio correlation for radio sources using the 7C Redshift Survey. Mon. Not. R. Astron. Soc. 1999, 309, 1017–1033. [Google Scholar] [CrossRef]
- Kharb, P.; Lister, M.L.; Cooper, N.J. Extended Radio Emission in MOJAVE Blazars: Challenges to Unification. Astrophys. J. 2010, 710, 764–782. [Google Scholar] [CrossRef]
- Meyer, E.T.; Fossati, G.; Georganopoulos, M.; Lister, M.L. From the Blazar Sequence to the Blazar Envelope: Revisiting the Relativistic Jet Dichotomy in Radio-loud Active Galactic Nuclei. Astrophys. J. 2011, 740, 98–112. [Google Scholar] [CrossRef]
- Pjanka, P.; Sikora, M.; Zdziarski, A.Z. The power and production efficiency of blazar jets. 2016; arXiv:1607.08895. [Google Scholar]
- Komissarov, S.S. Magnetic acceleration of relativistic jets. Mem. S. A. It. 2011, 82, 95–103. [Google Scholar]
- Lyubarsky, Y.E. Transformation of the Poynting flux into kinetic energy in relativistic jets. Mon. Not. R. Astron. Soc. 2010, 402, 353–361. [Google Scholar] [CrossRef]
- Sikora, M.; Begelman, M.C.; Madejski, G.M.; Lasota, J.-P. Are Quasar Jets Dominated by Poynting Flux? Astrophys. J. 2005, 625, 72–77. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; McKinney, J.C.; Narayan, R. Efficiency of Magnetic to Kinetic Energy Conversion in a Monopole Magnetosphere. Astrophys. J. 2009, 699, 1789–1808. [Google Scholar] [CrossRef]
- Sironi, L.; Petropoulou, M.; Giannios, D. Relativistic jets shine through shocks or magnetic reconnection? Mon. Not. R. Astron. Soc. 2015, 450, 183–191. [Google Scholar] [CrossRef]
- Janiak, M.; Sikora, M.; Moderski, R. Magnetization of jets in luminous blazars. Mon. Not. R. Astron. Soc. 2015, 449, 431–439. [Google Scholar] [CrossRef]
- Nalewajko, K.; Sikora, M.; Begelman, M.C. Reconciling Models of Luminous Blazars with Magnetic Fluxes Determined by Radio Core-shift Measurements. Astrophys. J. 2014, 796, L5–L9. [Google Scholar] [CrossRef]
- Giommi, P.; Polenta, G.; Lähteenmäki, A.; Thompson, D.J.; Capalbi, M.; Cutini, S.; Gasparrini, D.; González-Nuevo, J.; León-Tavares, J.; López-Caniego, M.; et al. Simultaneous Planck, Swift, and Fermi observations of X-ray and γ-ray selected blazars. Astron. Astrophys. 2012, 541, 160–218. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F. Fermi/LAT broad emission line blazars. Mon. Not. R. Astron. Soc. 2015, 448, 1060–1077. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F. Compton rockets and the minimum power of relativistic jets. Mon. Not. R. Astron. Soc. 2010, 409, L79–L83. [Google Scholar] [CrossRef]
- Moderski, R.; Sikora, M.; Coppi, P.S.; Aharonian, F. Klein-Nishina effects in the spectra of non-thermal sources immersed in external radiation fields. Mon. Not. R. Astron. Soc. 2005, 363, 954–966. [Google Scholar] [CrossRef]
- Novikov, I.D.; Thorne, K.S. Astrophysics of Black Holes. In Black Holes; de Witt, C., de Witt, B., Eds.; Gordon & Breach: New York, NY, USA, 1973; pp. 343–450. [Google Scholar]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar] [CrossRef]
- Begelman, M.C.; Armitage, P.J.; Reynolds, C.S. Accretion Disk Dynamo as the Trigger for X-ray Binary State Transitions. Astrophys. J. 2015, 809, 118–127. [Google Scholar] [CrossRef]
- Begelman, M.C.; Pringle, J.E. Accretion discs with strong toroidal magnetic fields. Mon. Not. R. Astron. Soc. 2007, 375, 1070–1076. [Google Scholar] [CrossRef]
- Różańska, A.; Malzac, J.; Belmont, R.; Czerny, B.; Petrucci, P.-O. Warm and optically thick dissipative coronae above accretion disks. Astron. Astrophys. 2015, 580, A77–A85. [Google Scholar] [CrossRef]
- Linford, J.D.; Taylor, G.B.; Romani, R.W.; Healey, S.E.; Helmboldt, J.F.; Readhead, A.C.S.; Reeves, R.; Richards, J.L.; Cotter, G. Characteristics of Gamma-ray Loud Blazars in the VLBA Imaging and Polarimetry Survey. Astrophys. J. 2011, 726, 16–28. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, M. Powers and Magnetization of Blazar Jets. Galaxies 2016, 4, 12. https://doi.org/10.3390/galaxies4030012
Sikora M. Powers and Magnetization of Blazar Jets. Galaxies. 2016; 4(3):12. https://doi.org/10.3390/galaxies4030012
Chicago/Turabian StyleSikora, Marek. 2016. "Powers and Magnetization of Blazar Jets" Galaxies 4, no. 3: 12. https://doi.org/10.3390/galaxies4030012
APA StyleSikora, M. (2016). Powers and Magnetization of Blazar Jets. Galaxies, 4(3), 12. https://doi.org/10.3390/galaxies4030012