Evolution of Size, Mass, and Density of Galaxies Since Cosmic Dawn
Abstract
1. Introduction
- Excess of luminous galaxy density at high redshifts (e.g., [8,10,27,28]). Looser et al. [29] observed the existence of a quiescent galaxy when the Universe was only 700 Myr old (see also [10,30]). Galaxy GN-z11 with extreme properties existed just 430 Myr after the Big Bang [31,32]. Following spectroscopic confirmation of several photometric redshifts from JWST early galaxy observations, Haro et al. [33] found high space density of bright galaxies at compared to theoretical model predictions.
- Highly evolved and massive galaxies. The observation that some galaxies in the early universe, within million to a billion years after the Big Bang, were well developed, has worried astronomers (e.g., [8,10,34,35,36,37,38,39,40,41,42,43]). Eilers et al. [44] analyzed a massive quasar and reported that the quasar’s black hole has a mass of within 1 Gyr of the Universe’s age and is difficult to accommodate in the black hole formation models.
- Existence of Massive Spiral galaxies like the Milky Way with stellar mass and half-light radius 1.5 billion years after the Big Bang [45], and with and half-light radius 1 billion years after the Big Bang.
2. Background
3. Results
4. Discussion
5. Conclusions
- (1)
- Little red dots are not so little, and their stellar densities are not unreasonably high. Their dynamical mass is significantly higher than their stellar mass. Their number densities are not excessive.
- (2)
- Galaxies are much larger in size and older in age, with a lower number density and higher dynamical mass. A massive galaxy like RUBIES-UDS-QG-z7 has a life span of 7 Gyr to be born, evolve, and reach a quiescent stage rather than just 700 Myr.
- (3)
- While galaxies detected at have yet to be confirmed spectroscopically to ensure that these sources are not low-redshift interlopers, galaxies at such high redshifts, and even higher redshifts, can be expected in the CTL cosmology.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naidu, R.P.; Oesch, P.A.; van Dokkum, P.; Nelson, E.J.; Suess, K.A.; Brammer, G.; Whitaker, K.E.; Illingworth, G.; Bouwens, R.; Tacchella, S. Two Remarkably Luminous Galaxy Candidates at z ≈ 10–12 Revealed by JWST. Astrophys. J. Lett. 2022, 940, L14. [Google Scholar] [CrossRef]
- Naidu, R.P.; Oesch, P.A.; Setton, D.J.; Matthee, J.; Conroy, C.; Johnson, B.D.; Weaver, J.R.; Bouwens, R.J.; Brammer, G.B.; Dayal, P.; et al. Schrodinger’s Galaxy Candidate: Puzzlingly Luminous at z ≈ 17, or Dusty/Quenched at z ≈ 5? arXiv 2022, arXiv:2208.02794. [Google Scholar]
- Labbé, I.; van Dokkum, P.; Nelson, E.; Bezanson, R.; Suess, K.A.; Leja, J.; Brammer, G.; Whitaker, K.; Mathews, E.; Stefanon, M.; et al. A population of red candidate massive galaxies ~600 Myr after the Big Bang. Nature 2023, 616, 266. [Google Scholar] [CrossRef] [PubMed]
- Curtis-Lake, E.; Carniani, S.; Cameron, A.; Charlot, S.; Jakobsen, P.; Maiolino, R.; Bunker, A.; Witstok, J.; Smit, R.; Chevallard, J.; et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 2023, 7, 622. [Google Scholar] [CrossRef]
- Wang, B.; Fujimoto, S.; Labbé, I.; Furtak, L.J.; Miller, T.B.; Setton, D.J.; Zitrin, A.; Atek, H.; Bezanson, R.; Brammer, G. UNCOVER: Illuminating the Early Universe—JWST/NIRSpec Confirmation of z > 12 Galaxies. Astrophys. J. Lett. 2023, 957, L34. [Google Scholar] [CrossRef]
- Hainline, K.N.; D’Eugenio, F.; Jakobsen, P.; Chevallard, J.; Carniani, S.; Witstok, J.; Ji, Z.; Curtis-Lake, E.; Johnson, B.D.; Robertson, B.; et al. Searching for Emission Lines at z > 11: The Role of Damped Lyman-α and Hints About the Escape of Ionizing Photons. arXiv 2024, arXiv:2404.04325. [Google Scholar] [CrossRef]
- Carniani, S.; Hainline, K.; D’Eugenio, F.; Eisenstein, D.J.; Jakobsen, P.; Witstok, J.; Johnson, B.D.; Chevallard, J.; Maiolino, R.; Helton, J.M.; et al. Spectroscopic confirmation of two luminous galaxies at a redshift of 14. Nature 2024, 633, 318. [Google Scholar] [CrossRef]
- Xiao, M.; Oesch, P.A.; Elbaz, D.; Bing, L.; Nelson, E.J.; Weibel, A.; Illingworth, G.D.; van Dokkum, P.; Naidu, R.P.; Daddi, E.; et al. Accelerated formation of ultra-massive galaxies in the first billion years. Nature 2024, 635, 311. [Google Scholar] [CrossRef] [PubMed]
- Gottumukkala, R.; Barrufet, L.; Oesch, P.A.; Weibel, A.; Allen, N.; Pampliega, B.A.; Nelson, E.J.; Williams, C.C.; Brammer, G.; Fudamoto, Y.; et al. Unveiling the hidden Universe with JWST: The contribution of dust-obscured galaxies to the stellar mass function at z ~ 3–8. Mon. Not. R. Astron. Soc. 2024, 530, 966. [Google Scholar] [CrossRef]
- Weibel, A.; de Graaff, A.; Setton, D.J.; Miller, T.B.; Oesch, P.A.; Brammer, G.; Lagos, C.D.P.; Whitaker, K.E.; Williams, C.C.; Baggen, J.F.W.; et al. RUBIES Reveals a Massive Quiescent Galaxy at z = 7.3. Astrophys. J. 2025, 983, 11. [Google Scholar] [CrossRef]
- Harikane, Y.; Ouchi, M.; Oguri, M.; Ono, Y.; Nakajima, K.; Isobe, Y.; Umeda, H.; Mawatari, K.; Zhang, Y. A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch. Astrophys. J. Suppl. Ser. 2023, 265, 5. [Google Scholar] [CrossRef]
- Finkelstein, S.L.; Leung, G.C.K.; Bagley, M.B.; Dickinson, M.; Ferguson, H.C.; Papovich, C.; Akins, H.B.; Haro, P.A.; Davé, R.; Dekel, A.; et al. The Complete CEERS Early Universe Galaxy Sample: A Surprisingly Slow Evolution of the Space Density of Bright Galaxies at z ~ 8.5–14.5. Astrophys. J. Lett. 2024, 969, L2. [Google Scholar] [CrossRef]
- Casey, C.M.; Akins, H.B.; Shuntov, M.; Ilbert, O.; Paquereau, L.; Franco, M.; Hayward, C.C.; Finkelstein, S.L.; Boylan-Kolchin, M.; Robertson, B.E.; et al. COSMOS-Web: Intrinsically Luminous z ≳ 10 Galaxy Candidates Test Early Stellar Mass Assembly. Astrophys. J. 2024, 965, 98. [Google Scholar] [CrossRef]
- Robertson, B.E.; Johnson, B.D.; Tacchella, S.; Eisenstein, D.J.; Hainline, K.; Arribas, S.; Baker, W.M.; Bunker, A.J.; Carniani, S.; Cargile, P.A.; et al. Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic Star Formation Rate Density 300 Myr after the Big Bang. Astrophys. J. 2024, 970, 31. [Google Scholar] [CrossRef]
- Donnan, C.T.; McLure, R.J.; Dunlop, J.S.; McLeod, D.J.; Magee, D.; Arellano-Córdova, K.Z.; Barrufet, L.; Begley, R.; Bowler, R.A.A.; Carnall, A.C. JWST PRIMER: A new multi-field determination of the evolving galaxy UV luminosity function at redshifts z ≃ 9–15. arXiv 2024, arXiv:2403.03171. [Google Scholar] [CrossRef]
- Adams, N.J.; Conselice, C.J.; Ferreira, L.; Austin, D.; Trussler, J.; Juodžbalis, I.; Wilkins, S.M.; Caruana, J.; Dayal, P.; Verma, A.; et al. Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field. Mon. Not. R. Astron. Soc. 2023, 518, 4755. [Google Scholar] [CrossRef]
- Atek, H.; Shuntov, M.; Furtak, L.J.; Richard, J.; Kneib, J.-P.; Mahler, G.; Zitrin, A.; McCracken, H.J.; Charlot, S.; Chevallard, J. Revealing Galaxy Candidates out to z ~ 16 with JWST Observations of the Lensing Cluster SMACS0723. arXiv 2022, arXiv:2207.12338. [Google Scholar] [CrossRef]
- Chen, Z.; Stark, D.P.; Endsley, R.; Topping, M.; Whitler, L.; Charlot, S. JWST/NIRCam observations of stars and H ii regions in z ≃ 6–8 galaxies: Properties of star-forming complexes on 150 pc scales. arXiv 2022, arXiv:2207.12657. [Google Scholar] [CrossRef]
- Donnan, C.T.; McLeod, D.J.; Dunlop, J.S.; McLure, R.J.; Carnall, A.C.; Begley, R.; Cullen, F.; Hamadouche, M.L.; Bowler, R.A.A.; Magee, D. The evolution of the galaxy UV luminosity function at redshifts z ≃ 8–15 from deep JWST and ground-based near-infrared imaging. Mon. Not. R. Astron. Soc. 2023, 518, 6011. [Google Scholar] [CrossRef]
- Finkelstein, S.L.; Bagley, M.B.; Haro, P.A.; Dickinson, M.; Ferguson, H.C.; Kartaltepe, J.S.; Papovich, C.; Burgarella, D.; Kocevski, D.D.; Huertas-Company, M.; et al. A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ~ 12 Galaxy in Early JWST CEERS Imaging. Astrophys. J. Lett. 2022, 940, L55. [Google Scholar] [CrossRef]
- Ono, Y.; Harikane, Y.; Ouchi, M.; Yajima, H.; Abe, M.; Isobe, Y.; Shibuya, T.; Wise, J.H.; Zhang, Y.; Nakajima, K.; et al. Morphologies of Galaxies at z ≳ 9 Uncovered by JWST/NIRCam Imaging: Cosmic Size Evolution and an Identification of an Extremely Compact Bright Galaxy at z ~ 12. Astrophys. J. 2023, 951, 72. [Google Scholar] [CrossRef]
- Tacchella, S.; Johnson, B.D.; Robertson, B.E.; Carniani, S.; D’Eugenio, F.; Kumar, N.; Maiolino, R.; Nelson, E.J.; Suess, K.A.; Übler, H.; et al. JWST NIRCam+NIRSpec: Interstellar medium and stellar populations of young galaxies with rising star formation and evolving gas reservoirs. arXiv 2022, arXiv:2208.03281. [Google Scholar] [CrossRef]
- Wu, Y.; Cai, Z.; Sun, F.; Bian, F.; Lin, X.; Li, Z.; Li, M.; Bauer, F.E.; Egami, E.; Fan, X.; et al. The Identification of a Dusty Multiarm Spiral Galaxy at z = 3.06 with JWST and ALMA. arXiv 2022, arXiv:2208.08473. [Google Scholar] [CrossRef]
- Yang, L.; Morishita, T.; Leethochawalit, N.; Castellano, M.; Calabro, A.; Treu, T.; Bonchi, A.; Fontana, A.; Mason, C.; Merlin, E.; et al. Early Results from GLASS-JWST. V: The First Rest-frame Optical Size–Luminosity Relation of Galaxies at z > 7. Astrophys. J. Lett. 2022, 938, L17. [Google Scholar] [CrossRef]
- Austin, D.; Adams, N.J.; Conselice, C.J.; Harvey, T.; Ormerod, K.; Trussler, J.; Li, Q.; Ferreira, L.; Dayal, P. A Large Population of Faint 8 < z < 16 Galaxies Found in the First JWST NIRCam Observations of the NGDEEP Survey. arXiv 2023, arXiv:2302.04270. [Google Scholar]
- Baggen, J.F.W.; van Dokkum, P.; Labbé, I.; Brammer, G.; Miller, T.B.; Bezanson, R.; Leja, J.; Wang, B.; Whitaker, K.E.; Suess, K.A.; et al. Sizes and Mass Profiles of Candidate Massive Galaxies Discovered by JWST at 7 < z < 9: Evidence for Very Early Formation of the Central ~100 pc of Present-day Ellipticals. Astrophys. J. Lett. 2023, 955, L12. [Google Scholar]
- Dekel, A.; Sarkar, K.S.; Birnboim, Y.; Mandelker, N.; Li, Z. Efficient Formation of Massive Galaxies at Cosmic Dawn by Feedback-Free Starbursts. arXiv 2023, arXiv:2303.04827. [Google Scholar] [CrossRef]
- Boyett, K.; Trenti, M.; Leethochawalit, N.; Calabró, A.B.; Roberts-Borsani, G.; Dalmasso, N.; Yang, L.; Santini, P.; Treu, T.; Jores, T.; et al. A massive interacting galaxy 510 million years after the Big Bang. arXiv 2023, arXiv:2303.00306. [Google Scholar] [CrossRef]
- Looser, T.J.; D’Eugenio, F.; Maiolino, R.; Witstok, J.; Sandals, L.; Curtis-Lake, E.; Chevallard, J.; Tacchella, S.; Johnson, B.D.; Baker, W.M.; et al. A recently quenched galaxy 700 million years after the Big Bang. arXiv 2023, arXiv:2302.14155. [Google Scholar] [CrossRef] [PubMed]
- Long, A.S.; Antwi-Danso, J.; Lambrides, E.L.; Lovell, C.C.; de la Vega, A.; Valentino, F.; Zavala, J.A.; Casey, C.M.; Wilkins, S.M.; Yung, L.Y.A.; et al. Efficient NIRCam Selection of Quiescent Galaxies at 3 < z < 6 in CEERS. arXiv 2023, arXiv:2305.04662. [Google Scholar] [CrossRef]
- Bunker, A.J.; Saxena, A.; Cameron, A.J.; Willott, C.J.; Curtis-Lake, E.; Jakobsen, P.; Carniani, S.; Smit, R.; Maiolino, R.; Witstok, J.; et al. JADES NIRSpec Spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy. arXiv 2023, arXiv:2302.07256. [Google Scholar] [CrossRef]
- Tacchella, S.; Eisenstein, D.J.; Hainline, K.; Johnson, B.D.; Baker, W.M.; Helton, J.M.; Robertson, B.; Suess, K.A.; Chen, Z.; Nelson, E.; et al. JADES Imaging of GN-z11: Revealing the Morphology and Environment of a Luminous Galaxy 430 Myr After the Big Bang. arXiv 2023, arXiv:2302.07234. [Google Scholar] [CrossRef]
- Haro, P.A.; Dickinson, M.; Finkelstein, S.L.; Fujimoto, S.; Fernandez, V.; Kartaltepe, J.S.; Jung, I.; Cole, J.W.; Burgarella, D.; Chworowsky, K.; et al. Spectroscopic confirmation of CEERS NIRCam-selected galaxies at z ≃ 8–10. arXiv 2023, arXiv:2304.05378. [Google Scholar]
- Haslbauer, M.; Kroupa, P.; Zonoozi, A.H.; Haghi, H. Has JWST Already Falsified Dark-matter-driven Galaxy Formation? Astrophys. J. Lett. 2022, 939, L31. [Google Scholar] [CrossRef]
- Inayoshi, K.; Harikane, Y.; Inoue, A.K.; Li, W.; Ho, L.C. A Lower Bound of Star Formation Activity in Ultra-high-redshift Galaxies Detected with JWST: Implications for Stellar Populations and Radiation Sources. Astrophys. J. Lett. 2022, 938, L10. [Google Scholar] [CrossRef]
- Kannan, R.; Springel, V.; Hernquist, L.; Pakmor, R.; Delgado, A.M.; Hadzhiyska, B.; Hernández-Aguayo, C.; Barrera, M.; Ferlito, F.; Bose, S.; et al. The MillenniumTNG Project: The galaxy population at z ≥ 8. arXiv 2022, arXiv:2210.10066. [Google Scholar] [CrossRef]
- Keller, B.W.; Munshi, F.; Trebitsch, M.; Tremmel, M. Can Cosmological Simulations Reproduce the Spectroscopically Confirmed Galaxies Seen at z ≥ 10? arXiv 2022, arXiv:2212.12804. [Google Scholar] [CrossRef]
- Regan, J. Massive Star Formation in Overdense Regions of the Early Universe. arXiv 2022, arXiv:2210.04899. [Google Scholar] [CrossRef]
- Yajima, H.; Abe, M.; Fukushima, H.; Ono, Y.; Harikane, Y.; Ouchi, M.; Hashimoto, T.; Khochfar, S. FOREVER22: The first bright galaxies with population III stars at redshifts z ≃ 10–20 and comparisons with JWST data. arXiv 2022, arXiv:2211.12970. [Google Scholar] [CrossRef]
- Atek, H.; Chemerynska, I.; Wang, B.; Furtak, L.; Weibel, A.; Oesch, P.; Weaver, J.R.; Labbé, I.; Bezanson, R.; van Dokkum, P.; et al. JWST UNCOVER: Discovery of z > 9 Galaxy Candidates Behind the Lensing Cluster Abell 2744. arXiv 2023, arXiv:2305.01793. [Google Scholar] [CrossRef]
- Mason, C.A.; Trenti, M.; Treu, T. The brightest galaxies at cosmic dawn. Mon. Not. R. Astron. Soc. 2023, 521, 497. [Google Scholar] [CrossRef]
- Mirocha, J.; Furlanetto, S.R. Balancing the efficiency and stochasticity of star formation with dust extinction in z ≳ 10 galaxies observed by JWST. Mon. Not. R. Astron. Soc. 2023, 519, 843. [Google Scholar] [CrossRef]
- Whitler, L.; Endsley, R.; Stark, D.P.; Topping, M.; Chen, Z.; Charlot, S. On the ages of bright galaxies ~500 Myr after the big bang: Insights into star formation activity at z ≳ 15 with JWST. Mon. Not. R. Astron. Soc. 2023, 519, 157. [Google Scholar] [CrossRef]
- Eilers, A.-C.; Simcoe, R.A.; Yue, M.; Mackenzie, M.Y.R.; Matthee, J.; Durovcikova, D.; Kashino, D.; Bordoloi, R.; Lilly, S.J. EIGER. V. Characterizing the host galaxies of luminous quasars at z ≳ 6. Astrophys. J. 2023, 950, 67. [Google Scholar]
- Jain, R.; Wadadekar, Y. A grand-design spiral galaxy 1.5 billion years after the Big Bang with JWST. arXiv 2024, arXiv:2412.04834. [Google Scholar] [CrossRef]
- Ellis, R.S. When Galaxies Were Born: The Quest for Cosmic Dawn; Princeton University Press: Princeton, NJ, USA, 2022. [Google Scholar]
- Bastian, R.; Klessen, R.S.; Schleicher, D.; Glover, S.C.O.; Solar, P. Formation of supermassive stars in the first star clusters. Mon. Not. R. Astron. Soc. 2023, 521, 3553–3569. [Google Scholar] [CrossRef]
- Brummel-Smith, C.; Skinner, D.; Sethuram, S.S.; Wise, J.H.; Xia, B.; Taori, K. Inferred galaxy properties during Cosmic Dawn from early JWST photometry results. arXiv 2023, arXiv:2302.04882. [Google Scholar] [CrossRef]
- Chantavat, T.; Chongchitnan, S.; Silk, J. The most massive Population III stars. arXiv 2023, arXiv:2302.09763. [Google Scholar] [CrossRef]
- Dolgov, A.D. James Webb Space Telescope: Data, problems, and resolution. arXiv 2023, arXiv:2301.01365. [Google Scholar] [CrossRef]
- Larson, R.L.; Finkelstein, S.L.; Kocevski, D.D.; Hutchison, T.A.; Trump, J.R.; Haro, P.A.; Bromm, V.; Cleri, N.J.; Dickinson, M.; Fujimoto, S.; et al. A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big Bang: Identifying a Progenitor of Massive z > 6 Quasars. arXiv 2023, arXiv:2303.08918. [Google Scholar] [CrossRef]
- Maiolino, R.; Scholtz, J.; Witstok, J.; Carniani, S.; D’Eugenio, F.; de Graaff, A.; Uebler, H.; Tacchella, S.; Curtis-Lake, E.; Arribas, S.; et al. A small and vigorous black hole in the early Universe. arXiv 2023, arXiv:2305.12492. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M. Stress testing ΛCDM with high-redshift galaxy candidates. Nat. Astron. 2023, 7, 731. [Google Scholar] [CrossRef]
- Chworowsky, K.; Finkelstein, S.L.; Boylan-Kolchin, M.; McGrath, E.J.; Iyer, K.G.; Papovich, C.; Dickinson, M.; Taylor, A.J.; Yung, L.Y.A.; Haro, R.A.; et al. Evidence for a Shallow Evolution in the Volume Densities of Massive Galaxies at z = 4–8 from CEERS. Astron. J. 2024, 168, 113. [Google Scholar] [CrossRef]
- Harvey, T.; Conselice, C.J.; Adams, N.J.; Austin, D.; Juodžbalis, I.; Trussler, J.; Li, Q.; Ormerod, K.; Ferreira, L.; Lovell, C.C.; et al. EPOCHS. IV. SED Modeling Assumptions and Their Impact on the Stellar Mass Function at 6.5 ≤ z ≤ 13.5 Using PEARLS and Public JWST Observations. Astrophys. J. 2025, 978, 89. [Google Scholar] [CrossRef]
- Schneider, R.; Valiante, R.; Trinca, A.; Graziani, L.; Volonteri, M.; Maiolino, R. Are we surprised to find SMBHs with JWST at z > 9? arXiv 2023, arXiv:2305.12504. [Google Scholar] [CrossRef]
- Conselice, C.J. The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories. Astrophys. J. Suppl. Ser. 2003, 147, 1. [Google Scholar] [CrossRef]
- Lotz, J.M.; Primack, J.; Madau, P. A New Nonparametric Approach to Galaxy Morphological Classification. Astron. J. 2004, 128, 163. [Google Scholar] [CrossRef]
- Delgado-Serrano, R.; Hammer, F.; Yang, Y.B.; Puech, M.; Flores, H.; Rodrigues, M. How was the Hubble sequence 6 Gyr ago? Astron. Astrophys. 2010, 509, A78. [Google Scholar] [CrossRef]
- Mortlock, A.; Conselice, C.J.; Hartley, W.G.; Ownsworth, J.R.; Lani, C.; Bluck, A.F.L.; Almaini, O.; Duncan, K.; van der Wel, A.; Koekemoer, A.M. The redshift and mass dependence on the formation of the Hubble sequence at z > 1 from CANDELS/UDS Free. Mon. Not. R. Astron. Soc. 2013, 433, 1185. [Google Scholar] [CrossRef]
- Buitrago, F.; Trujillo, I.; Conselice, C.J.; Häußler, B. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ∼ 1. Mon. Not. R. Astron. Soc. 2013, 428, 1460. [Google Scholar] [CrossRef]
- Conselice, C.J. The Evolution of Galaxy Structure over Cosmic Time; Annual Reviews Inc.: San Mateo, CA, USA, 2014. [Google Scholar] [CrossRef]
- Schawinski, K.; Urry, C.M.; Simmons, B.D.; Fortson, L.; Kaviraj, S.; Keel, W.C.; Lintott, C.J.; Masters, K.L.; Nichol, R.C.; Sarzi, M.; et al. The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies. Mon. Not. R. Astron. Soc. 2014, 440, 889. [Google Scholar] [CrossRef]
- Whitney, A.; Ferreira, L.; Conselice, C.J.; Duncan, K. Galaxy Evolution in All Five CANDELS Fields and IllustrisTNG: Morphological, Structural, and the Major Merger Evolution to z ~ 3. Astrophys. J. 2021, 919, 139. [Google Scholar] [CrossRef]
- Castellano, M.; Fontana, A.; Treu, T.; Santini, P.; Merlin, E.; Leethochawalit, N.; Trenti, M.; Vanzella, E.; Mestric, U.; Bonchi, A.; et al. Early Results from GLASS-JWST. III. Galaxy Candidates at z 9-15. Astrophys. J. 2022, 938, L15. [Google Scholar] [CrossRef]
- Finkelstein, S.L.; Bagley, M.B.; Ferguson, H.C.; Wilkins, S.M.; Kartaltepe, J.S.; Papovich, C.; Yung, L.Y.A.; Haro, P.A.; Behroozi, P.; Dickinson, M.; et al. CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST. Astrophys. J. 2023, 946, L13. [Google Scholar] [CrossRef]
- Yan, H.; Ma, Z.; Ling, C.; Cheng, C.; Huang, J.-S. First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73. Astrophys. J. 2022, 942, L9. [Google Scholar] [CrossRef]
- Ferreira, L.; Conselice, C.J.; Sazonova, E.; Ferrari, F.; Caruana, J.; Tohill, C.; Lucatelli, G.; Adams, N.; Irodotou, D.; Marshall, M.A.; et al. The JWST Hubble Sequence: The Rest-Frame Optical Evolution of Galaxy Structure at 1.5 > z > 8. Astrophys. J. 2022, 955, 15. [Google Scholar] [CrossRef]
- Ferreira, L.; Adams, N.; Conselice, C.J.; Sazonova, E.; Austin, D.; Caruana, J.; Ferrari, F.; Verma, A.; Trussler, J.; Broadhurst, T.; et al. Panic! at the Disks: First Rest-frame Optical Observations of Galaxy Structure at z > 3 with JWST in the SMACS 0723 Field. Astrophys. J. 2022, 938, L2. [Google Scholar] [CrossRef]
- Jacobs, C.; Glazebrook, K.; Calabrò, A.; Treu, T.; Nannayakkara, T.; Jones, T.; Merlin, E.; Abraham, R.; Stevens, A.R.H.; Vulcani, B.; et al. Early Results from GLASS-JWST. XVIII. A First Morphological Atlas of the 1 < z < 5 Universe in the Rest-frame Optical. Astrophys. J. 2023, 948, L13. [Google Scholar] [CrossRef]
- Nelson, A.H.; Williams, P.R. Recent observations of the rotation of distant galaxies and the implication for dark matter. Astron. Astrophys. 2024, 687, A261. [Google Scholar] [CrossRef]
- Robertson, B.E.; Tacchella, S.; Johnson, B.D.; Hausen, R.; Alabi, A.B.; Boyett, K.; Bunker, A.J.; Carniani, S.; Egami, E.; Eisenstein, D.J.; et al. Morpheus Reveals Distant Disk Galaxy Morphologies with JWST: The First AI/ML Analysis of JWST Images. Astrophys. J. 2023, 942, L42. [Google Scholar] [CrossRef]
- Westcott, L.; Conselice, C.J.; Harvey, T.; Austin, D.; Adams, N.; Ferrari, F.; Ferreira, L.; Trussler, J.; Li, Q.; Rusakov, V.; et al. EPOCHS XI: The Structure and Morphology of Galaxies in the Epoch of Reionization to z ~ 12.5. arXiv 2024, arXiv:2412.14970. [Google Scholar]
- Trujillo, I.; Conselice, C.J.; Bundy, K.; Cooper, M.C.; Eisenhardt, P.; Ellis, R.S. Strong size evolution of the most massive galaxies since z ~ 2. Mon. Not. R. Astron. Soc. 2007, 382, 109. [Google Scholar] [CrossRef]
- Buitrago, F.; Trujillo, I.; Conselice, C.J.; Bouwens, R.J.; Dickinson, M.; Yan, H. Size Evolution of the Most Massive Galaxies at 1.7 < z < 3 from GOODS NICMOS Survey Imaging. Astrophys. J. 2008, 687, L61. [Google Scholar] [CrossRef]
- van der Wel, A.; Bell, E.F.; Häussler, B.; McGrath, E.J.; Chang, Y.-Y.; Guo, Y.; McIntosh, D.H.; Rix, H.-W.; Barden, M.; Cheung, E.; et al. Structural Parameters of Galaxies in Candels. Astrophys. J. Suppl. Ser. 2012, 203, 24. [Google Scholar] [CrossRef]
- Ormerod, K.; Conselice, C.J.; Adams, N.J.; Harvey, T.; Austin, D.; Trussler, J.; Ferreira, L.; Caruana, J.; Lucatelli, G.; Li, Q.; et al. EPOCHS VI: The size and shape evolution of galaxies since z ~ 8 with JWST Observations. Mon. Not. R. Astron. Soc. 2024, 527, 6110. [Google Scholar] [CrossRef]
- van Dokkum, P.G.; Whitaker, K.E.; Brammer, G.; Franx, M.; Kriek, M.; Labbé, I.; Marchesini, D.; Quadri, R.; Bezanson, R.; Illingworth, G.D.; et al. The Growth of Massive Galaxies Since z = 2. Astrophys. J. 2010, 709, 1018. [Google Scholar] [CrossRef]
- Costantin, L.; Pérez-González, P.G.; Vega-Ferrero, J.; Huertas-Company, M.; Bisigello, L.; Buitrago, F.; Bagley, M.B.; Cleri, N.J.; Cooper, M.C.; Finkelstein, S.L.; et al. Expectations of the Size Evolution of Massive Galaxies at 3 ≤ z ≤ 6 from the TNG50 Simulation: The CEERS/JWST View. Astrophys. J. 2023, 946, 71. [Google Scholar] [CrossRef]
- Varadaraj, R.G.; Bowler, R.A.A.; Jarvis, M.J.; Adams, N.J.; Choustikov, N.; Koekemoer, A.M.; Carnall, A.C.; McLeod, D.J.; Dunlop, J.S.; Donnan, C.T.; et al. The sizes of bright Lyman-break galaxies at z ≅ 3 − 5 with JWST PRIMER. arXiv 2024, arXiv:2401.15971. [Google Scholar] [CrossRef]
- Song, Q.; Liu, F.S.; Ren, J.; Zhao, P.; Cui, W.; Li, Y.; Mo, H.; Luo, Y.; Wang, G.H.; Li, N.; et al. The Size Evolution and the Size-Mass Relation of Lyman-Alpha Emitters across 3 ≤ z < 7 as Observed by JWST. arXiv 2025, arXiv:2508.05052. [Google Scholar]
- Yang, L.; Kartaltepe, J.S.; Franco, M.; Ding, X.; Achenbach, M.J.; Arango-Toro, R.C.; Casey, C.M.; Drakos, N.E.; Faisst, A.L.; Gillman, S.; et al. COSMOS-Web: Unraveling the Evolution of Galaxy Size and Related Properties at 2 < z < 10. arXiv 2025, arXiv:2504.07185. [Google Scholar]
- Ward, E.; de la Vega, A.; Mobasher, B.; McGrath, E.J.; Iyer, K.G.; Calabrò, A.; Costantin, L.; Dickinson, M.; Holwerda, B.W.; Huertas-Company, M.; et al. Evolution of the Size–Mass Relation of Star-forming Galaxies Since z = 5.5 Revealed by CEERS. Astrophys. J. 2024, 962, 176. [Google Scholar] [CrossRef]
- Gupta, R.P. Varying Coupling Constants and Their Interdependence. Mod. Phys. Lett. A 2022, 37, 2250155. [Google Scholar] [CrossRef]
- Zwicky, F. On The Red Shift of Spectral Lines Through Interatellar Space. Proc. Natl. Acad. Sci. USA 1929, 15, 773. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.P. JWST early Universe observations and ΛCDM cosmology. Mon. Not. R. Astron. Soc. 2023, 524, 3385. [Google Scholar] [CrossRef]
- Gupta, R.P. Testing CCC+TL Cosmology with Observed BAO Features. Astrophys. J. 2024, 964, 55. [Google Scholar] [CrossRef]
- Gupta, R.P. On Dark Matter and Dark Energy in CCC+TL Cosmology. Universe 2024, 10, 266. [Google Scholar] [CrossRef]
- Gupta, R.P. Testing CCC+TL Cosmology with Galaxy Rotation Curves. Galaxies 2025, 13, 108. [Google Scholar] [CrossRef]
- Plotnikova, A.; Carraro, G.; Villanova, S.; Ortolani, S. Very Metal-poor Stars in the Solar Vicinity: Age Determination. Astrophys. J. 2022, 940, 159. [Google Scholar] [CrossRef]
- de Andrés, F.L. Some Old Globular Clusters (and Stars) Inferring That the Universe Is Older Than Commonly Accepted. arXiv 2024, arXiv:2401.11549. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Cosmological Constants. Nature 1937, 139, 323. [Google Scholar] [CrossRef]
- Uzan, J.-P. Varying Constants, Gravitation and Cosmology. Living Rev. Relativ. 2011, 14, 2. [Google Scholar] [CrossRef]
- Teller, E. On the Change of Physical Constants. Phys. Rev. 1948, 73, 801. [Google Scholar] [CrossRef]
- Chin, C.-w.; Stothers, R. Limit on the Secular Change of the Gravitational Constant Based on Studies of Solar Evolution. Phys. Rev. Lett. 1976, 36, 833. [Google Scholar] [CrossRef]
- Sahini, V.; Shtanov, Y. Can a variable gravitational constant resolve the faint young Sun paradox? Int. J. Mod. Phys. D 2014, 23, 1442018. [Google Scholar] [CrossRef]
- Morrison, L.V. Rotation of the Earth from AD 1663–1972 and the Constancy of G. Nature 1973, 241, 519. [Google Scholar] [CrossRef]
- Sisterna, P.D.; Vucetich, H. Cosmology, oscillating physics, and oscillating biology. Phys. Rev. Lett. 1994, 72, 454. [Google Scholar] [CrossRef]
- Benvenuto, O.G.; Althaus, L.G.; Torres, D.F. Evolution of white dwarfs as a probe of theories of gravitation: The case of Brans—Dicke. Mon. Not. R. Astron. Soc. 1999, 305, 905. [Google Scholar] [CrossRef]
- Garcia-Berro, E.; Lorén-Aguilar, P.; Torres, S.; Althaus, L.G.; Isern, J. An upper limit to the secular variation of the gravitational constant from white dwarf stars. J. Cosmol. Astropart. Phys. 2011, 2011, 021. [Google Scholar] [CrossRef]
- Corsico, A.H.; Althaus, L.G.; García-Berro, E.; Romero, A.D. An independent constraint on the secular rate of variation of the gravitational constant from pulsating white dwarfs. J. Cosmol. Astropart. Phys. 2013, 2013, 032. [Google Scholar] [CrossRef]
- Degl’Innocenti, S.; Fiorentini, G.; Raffelt, G.G.; Ricci, B.; Weiss, A. Time-Variation of Newton’s Constant and the Age of Globular Clusters. Astron. Astrophys. 1995, 312, 345. [Google Scholar]
- Thorsett, S.E. The Gravitational Constant, the Chandrasekhar Limit, and Neutron Star Masses. Phys. Rev. Lett. 1996, 77, 1432. [Google Scholar] [CrossRef]
- Bai, Y.; Salvado, J.; Stefanek, B.A. Cosmological constraints on the gravitational interactions of matter and dark matter. J. Cosmol. Astropart. Phys. 2015, 15, 029. [Google Scholar] [CrossRef]
- Ooba, J.; Ichiki, K.; Chiba, T.; Sugiyama, N. Cosmological constraints on scalar–tensor gravity and the variation of the gravitational constant. Prog. Theor. Exp. Phys. 2017, 2017, 043E03. [Google Scholar] [CrossRef]
- Copi, C.J.; Davis, A.N.; Krauss, L.M. New Nucleosynthesis Constraint on the Variation of G. Phys. Rev. Lett. 2004, 92, 171301. [Google Scholar] [CrossRef] [PubMed]
- Alvey, J.; Sabti, N.; Escudero, M.; Fairbairn, M. Improved BBN constraints on the variation of the gravitational constant. Eur. Phys. J. C 2020, 80, 148. [Google Scholar] [CrossRef]
- Bellinger, E.P.; Christensen-Dalsgaard, J. Asteroseismic Constraints on the Cosmic-time Variation of the Gravitational Constant from an Ancient Main-sequence Star. Astrophys. J. Lett. 2019, 887, L1. [Google Scholar] [CrossRef]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Progress in Lunar Laser Ranging Tests of Relativistic Gravity. Phys. Rev. Lett. 2004, 93, 261101. [Google Scholar] [CrossRef]
- Hofmann, F.; Müller, J. Relativistic tests with lunar laser ranging. Class. Quant. Grav. 2018, 35, 035015. [Google Scholar] [CrossRef]
- Pitjeva, E.V.; Pitjev, N.P. Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. Mon. Not. R. Astron. Soc. 2013, 432, 3431. [Google Scholar] [CrossRef]
- Fienga, A.; Laskar, J.; Exertier, P.; Manche, H.; Gastineau, M. Tests of General relativity with planetary orbits and Monte Carlo simulations. arXiv 2014, arXiv:1409.4932. [Google Scholar] [CrossRef]
- Genova, A.; Mazarico, E.; Goossens, S.; Lemoine, F.G.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER misión. Nat. Commun. 2018, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Damour, T.; Gibbons, G.W.; Taylor, J.H. Limits on the Variability of G Using Binary-Pulsar Data. Phys. Rev. Lett. 1988, 61, 1151. [Google Scholar] [CrossRef]
- Kaspi, V.M.; Taylor, J.H.; Ryba, M.F. High-Precision Timing of Millisecond Pulsars. III. Long-Term Monitoring of PSRs B1855+09 and B1937+21. Astrophys. J. 1994, 428, 713. [Google Scholar] [CrossRef]
- Zhu, W.W.; Desvignes, G.; Wex, N.; Caballero, R.N.; Champion, D.J.; Demorest, P.B.; Ellis, J.A.; Janssen, G.H.; Kramer, M.; Krieger, A.; et al. Tests of gravitational symmetries with pulsar binary J1713+0747. Mon. Not. R. Astron. Soc. 2019, 482, 3249. [Google Scholar] [CrossRef]
- Gaztañaga, E.; García-Berro, E.; Isern, J.; Bravo, E.; Domínguez, I. Bounds on the possible evolution of the gravitational constant from cosmological type-Ia supernovae. Phys. Rev. D 2001, 65, 023506. [Google Scholar] [CrossRef]
- Wright, B.S.; Li, B. Type Ia supernovae, standardizable candles, and gravity. Phys. Rev. D 2018, 97, 083505. [Google Scholar] [CrossRef]
- Einstein, A. Über die vom Relativitätsprinzip geforderte Trägheit der Energie. Jahrb. Der Radioakt. Und Elektron. 1907, 4, 411–462. [Google Scholar] [CrossRef]
- Dicke, R.H. Gravitation without a Principle of Equivalence. Rev. Mod. Phys. 1957, 29, 363. [Google Scholar] [CrossRef]
- Petit, J.-P. An interpretation of cosmological model with variable light velocity. Mod. Phys. Lett. A 1988, 3, 1527. [Google Scholar] [CrossRef]
- Moffat, J.W. Superluminary Universe: A Possible Solution to the Initial Value Problem in Cosmology. Int. J. Mod. Phys. D 1993, 2, 351. [Google Scholar] [CrossRef]
- Moffat, J.W. Quantum gravity, the origin of time and time’s arrow. Found. Phys. 1993, 23, 411. [Google Scholar] [CrossRef]
- Albrecht, A.; Magueijo, J. Time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 1999, 59, 043516. [Google Scholar] [CrossRef]
- Barrow, J.D. Cosmologies with varying light speed. Phys. Rev. D 1999, 59, 043515. [Google Scholar] [CrossRef]
- Avelino, P.P.; Martins, C.J.A.P. Does a varying speed of light solve the cosmological problems? Phys. Lett. B 1999, 459, 468. [Google Scholar] [CrossRef]
- Avelino, P.P.; Martins, C.J.A.P.; Rocha, G. VSL theories and the Doppler peak. Phys. Lett. B 2000, 483, 210. [Google Scholar] [CrossRef]
- Moffat, J.W. Variable speed of light cosmology, primordial fluctuations and gravitational waves. Eur. Phys. J. C 2016, 76, 130. [Google Scholar] [CrossRef]
- Costa, R.; Cuzinatto, R.R.; Ferreira, E.G.M.; Franzmann, G. Covariant c-flation: A variational approach. Int. J. Mod. Phys. D 2019, 28, 1950119. [Google Scholar] [CrossRef]
- Gupta, R.P. Cosmology with relativistically varying physical constants. Mon. Not. R. Astron. Soc. 2020, 498, 4481. [Google Scholar] [CrossRef]
- Cuzinatto, R.R.; Gupta, R.P.; Pompeia, P.J. Dynamical Analysis of the Covarying Coupling Constants in Scalar-Tensor Gravity. Symmetry 2023, 15, 709. [Google Scholar] [CrossRef]
- Cuzinatto, R.R.; Gupta, R.P.; Pompeia, P.J. Covarying-Bi-Scalar Theory: A model with covarying G and c and a natural screening mechanism. Ann. Phys. 2025, 479, 170039. [Google Scholar] [CrossRef]
- Faraoni, V. Cosmology in Scalar-Tensor Gravity; Springer: Berlin/Heidelberg, Germany, 2004; Chapter 2. [Google Scholar]
- Visser, M. Conformally Friedmann–Lemaître–Robertson–Walker cosmologies. Class. Quant. Grav. 2015, 32, 135007. [Google Scholar] [CrossRef]
- Lombriser, L. Cosmology in Minkowski space. Class. Quant. Grav. 2023, 40, 155005. [Google Scholar] [CrossRef]
- McGaugh, S.S.; Schombert, J.M. Color-Mass-to-light-ratio Relations for Disk Galaxies. Astron. J. 2014, 148, 77. [Google Scholar] [CrossRef]
- Baggen, J.F.W.; van Dokkum, P.; Brammer, G.; de Graaff, A.; Franx, M.; Greene, J.; Labbé, I.; Leja, J.; Maseda, M.V.; Nelson, E.J.; et al. The Small Sizes and High Implied Densities of “Little Red Dots” with Balmer Breaks Could Explain Their Broad Emission Lines without an Active Galactic Nucleus. Astrophys. J. Lett. 2024, 977, L13. [Google Scholar] [CrossRef]
- Wen, X.-Q.; Wu, H.; Zhu, Y.-N.; Lam, M.I.; Wu, C.-J.; Wicker, J.; Zhao, Y.-H. The stellar masses of galaxies from the 3.4 μm band of the WISE All-Sky Survey. Mon. Not. R. Astron. Soc. 2013, 433, 2946. [Google Scholar] [CrossRef]
- Noll, S.; Burgarella, D.; Giovannoli, E.; Buat, V.; Marcillac, D.; Muñoz-Mateos, J.C. Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: Studying a SINGS test sample. Astron. Astrophys. 2009, 507, 1793. [Google Scholar] [CrossRef]
- Ciesla, L.; Boselli, A.; Elbaz, D.; Boissier, S.; Buat, V.; Charmandaris, V.; Schreiber, C.; Béthermin, M.; Baes, M.; Boquien, M.; et al. The imprint of rapid star formation quenching on the spectral energy distributions of galaxies. Astron. Astrophys. 2016, 585, A43. [Google Scholar] [CrossRef]
- Boquien, M.; Burgarella, D.; Roehlly, Y.; Buat, V.; Ciesla, L.; Corre, D.; Inoue, A.K.; Salas, H. CIGALE: A python Code Investigating GALaxy Emission. Astron. Astrophys. 2019, 622, A103. [Google Scholar] [CrossRef]
- Leung, G.C.K.; Finkelstein, S.L.; Perez-Gonzalez, P.G.; Morales, A.M.; Taylor, A.J.; Barro, G.; Kocevski, D.D.; Akins, H.B.; Carnall, A.C.; Ortiz, Ó.A.C.; et al. Exploring the Nature of Little Red Dots: Constraints on AGN and Stellar Contributions from PRIMER MIRI Imaging. arXiv 2024, arXiv:2411.12005. [Google Scholar] [CrossRef]
- Greene, J.E.; Ho, L.C. Estimating Black Hole Masses in Active Galaxies Using the Hα Emission Line. Astrophys. J. 2005, 630, 122. [Google Scholar] [CrossRef]
- Kocevski, D.D.; Finkelstein, S.L.; Barro, G.; Taylor, A.J.; Calabrò, A.; Laloux, B.; Buchner, J.; Trump, J.R.; Leung, G.C.K.; Yang, G.; et al. The Rise of Faint, Red Active Galactic Nuclei at z > 4: A Sample of Little Red Dots in the JWST Extragalactic Legacy Fields. arXiv 2024, arXiv:2404.03576. [Google Scholar] [CrossRef]
- Akins, H.B.; Casey, C.M.; Chisholm, J.; Berg, D.A.; Cooper, O.; Franco, M.; Fujimoto, S.; Lambrides, E.; Long, A.S.; McKinney, J. Tentative detection of neutral gas in a Little Red Dot at z = 4.46. arXiv 2025, arXiv:2503.00998. [Google Scholar] [CrossRef]
- Schouws, S.; Bouwens, R.J.; Algera, H.; Smit, R.; Kumari, N.; Rowland, L.E.; van Leeuwen, I.; Sommovigo, L.; Ferrara, A.; Oesch, P.A.; et al. Deep Constraints on [CII]158 µm in JADES-GS-z14-0: Further Evidence for a Galaxy with Low Gas Content at z=14.2. arXiv 2025, arXiv:2502.01610. [Google Scholar] [CrossRef]
- Schouws, S.; Bouwens, R.J.; Ormerod, K.; Smit, R.; Algera, H.; Sommovigo, L.; Hodge, J.; Ferrara, A.; Oesch, P.A.; Rowland, L.E.; et al. Detection of [OIII]88 µm in JADES-GS-z14-0 at z = 14.1793. arXiv 2024, arXiv:2409.20549. [Google Scholar] [CrossRef]
- Langeroodi, D.; Hjorth, J. Ultraviolet Compactness of High-Redshift Galaxies as a Tracer of Early-Stage Gas Infall, Bursty Star Formation, and Offset from the Fundamental Metallicity Relation. arXiv 2023, arXiv:2307.06336. [Google Scholar]
- Langeroodi, D.; Hjorth, J.; Chen, W.; Kelly, P.L.; Williams, H.; Lin, Y.; Scarlata, C.; Zitrin, A.; Broadhurst, T.; Diego, J.M.; et al. Evolution of the Mass–Metallicity Relation from Redshift z ≈ 8 to the Local Universe. Astrophys. J. 2023, 957, 39. [Google Scholar] [CrossRef]
- Westcott, L.; Conselice, C.J.; Harvey, T.; Austin, D.; Adams, N.; Ferrari, F.; Ferreira, L.; Trussler, J.; Li, Q.; Rusakov, V.; et al. EPOCHS. XI. The Structure and Morphology of Galaxies in the Epoch of Reionization to z ∼ 12.5. Astrophys. J. 2025, 983, 121. [Google Scholar] [CrossRef]
- Saldana-Lopez, A.; Chisholm, J.; Gazagnes, S.; Endsley, R.; Hayes, M.J.; Berg, D.A.; Finkelstein, S.L.; Flury, S.R.; Guseva, N.G.; Henry, A.; et al. Feedback and dynamical masses in high-z galaxies: The advent of high-resolution NIRSpec spectroscopy. arXiv 2025, arXiv:2501.17145. [Google Scholar] [CrossRef]
- Tacchella, S.; Carollo, C.M.; Faber, S.M.; Cibinel, A.; Dekel, A.; Koo, D.C.; Renzini, A.; Woo, J. On the Evolution of the Central Density of Quiescent Galaxies. Astrophys. J. Lett. 2017, 844, L1. [Google Scholar] [CrossRef]
- Zhang, Y.; de Graaff, A.; Price, D.J.S.H.; Bezanson, R.; del P. Lagos, C.; Cutler, S.E.; McConachie, I.; Cleri, N.J.; Cooper, O.R.; Gottumukkala, R.; et al. RUBIES spectroscopically confirms the high number density of quiescent galaxies From 2 < z < 5. arXiv 2025, arXiv:2508.08577. [Google Scholar]
- Pérez-González, P.G.; Östlin, G.; Costantin, L.; Melinder, J.; Finkelstein, S.L.; Somerville, R.S.; Annunziatella, M.; Álvarez-Márquez, J.; Colina, L.; Dekel, A.; et al. The rise of the galactic empire: Luminosity functions at z ~ 7and z ~ 25 estimated with the MIDIS+NGDEEP ultra-deep JWST/NIRCam dataset. arXiv 2025, arXiv:2503.15594. [Google Scholar]
- Lovell, C.; Lee, M.; Vijayan, A.; Harvey, T.; Sommovigo, L.; Long, A.; Lambrides, E.; Roper, W.; Wilkins, S.; Narayanan, D.; et al. ALMA Band 3 Selection of Ultra-high Redshift Dropouts: The final challenge to ΛCDM. arXiv 2025, arXiv:2503.24312. [Google Scholar] [CrossRef]
- Fudamoto, Y.; Helton, J.M.; Lin, X.; Sun, F.; Behroozi, P.; Hsiao, T.Y.-Y.; Egami, E.; Bunker, A.J.; Harikane, Y.; Ouchi, M.; et al. SAPPHIRES: A Galaxy Over-Density in the Heart of Cosmic Reionization at z = 8.47. arXiv 2025, arXiv:2503.15597. [Google Scholar]
- Witstok, J.; Jakobsen, P.; Maiolino, R.; Helton, J.M.; Johnson, B.D.; Robertson, B.E.; Tacchella, S.; Cameron, A.J.; Smit, R.; Bunker, A.J.; et al. Witnessing the onset of reionization through Lyman-α emission at redshift 13. Nature 2025, 639, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Chakraborty, P.; Vogelsberger, M.; McDonald, M.; Torrey, P.; Garcia, A.M.; Khullar, G.; Ferland, G.J.; Forman, W.; Wolk, S.; et al. Unveiling the Cosmic Chemistry: Revisiting the Mass–Metallicity Relation with JWST/NIRSpec at 4 < z < 10. Astrophys. J. 2025, 978, 136. [Google Scholar]
- Carniani, S.; D’Eugenio, F.; Ji, X.; Parlanti1, E.; Scholtz, J.; Sun, F. The eventful life of a luminous galaxy at z = 14: Metal enrichment, feedback, and low gas fraction? Astron. Astrophys. 2025, 696, A87. [Google Scholar] [CrossRef]
- Harikane, Y.; Zhang, Y.; Nakajima, K.; Ouchi, M.; Isobe, Y.; Ono, Y.; Hatano, S.; Xu, Y.; Umeda, H. A JWST/NIRSpec First Census of Broad-line AGNs at z = 4–7: Detection of 10 Faint AGNs with MBH ~ 106–108M⊙ and Their Host Galaxy Properties. Astrophys. J. 2023, 959, 39. [Google Scholar] [CrossRef]
- Taylor, A.J.; Finkelstein, S.L.; Kocevski, D.D.; Jeon, J.; Bromm, V.; Amorin, R.O.; Haro, P.A.; Backhaus, B.E.; Bagley, M.B.; Bañados, E.; et al. Broad-Line AGN at 3.5 < z < 6: The Black Hole Mass Function and a Connection with Little Red Dots. arXiv 2024, arXiv:2409.06772. [Google Scholar] [CrossRef]
- Matthee, J.; Naidu, R.P.; Brammer, G.; Chisholm, J.; Eilers, A.-C.; Goulding, A.; Greene, J.; Kashino, D.; Labbe, I.; Lilly, S.J.; et al. Little Red Dots: An Abundant Population of Faint Active Galactic Nuclei at z ~ 5 Revealed by the EIGER and FRESCO JWST Surveys. Astrophys. J. 2024, 963, 129. [Google Scholar] [CrossRef]
- Labbe, I.; Greene, J.E.; Bezanson, R.; Fujimoto, S.; Furtak, L.J.; Goulding, A.D.; Matthee, J.; Naidu, R.P.; Oesch, P.A.; Atek, H.; et al. UNCOVER: Candidate Red Active Galactic Nuclei at 3 < z < 7 with JWST and ALMA. arXiv 2023, arXiv:2306.07320. [Google Scholar] [CrossRef]
- Greene, J.E.; Labbé, I.; Goulding, A.D.; Furtak, L.J.; Chemerynska, I.; Kokorev, V.; Dayal, P.; Volonteri, M.; Williams, C.C.; Wang, B.; et al. UNCOVER Spectroscopy Confirms the Surprising Ubiquity of Active Galactic Nuclei in Red Sources at z > 5. Astrophys. J. 2024, 964, 39. [Google Scholar] [CrossRef]
- Kokorev, V.; Chisholm, J.; Endsley, R.; Finkelstein, S.L.; Greene, J.E.; Akins, H.B.; Bromm, V.; Casey, C.M.; Fujimoto, S.; Labbé, I.; et al. Silencing the Giant: Evidence of Active Galactic Nucleus Feedback and Quenching in a Little Red Dot at z = 4.13. Astrophys. J. 2024, 975, 178. [Google Scholar] [CrossRef]
- Akins, H.B.; Casey, C.M.; Lambrides, E.; Allen, N.; Andika, I.T.; Brinch, M.; Champagne, J.B.; Cooper, O.; Ding, X.; Drakos, N.E.; et al. COSMOS-Web: The over-abundance and physical nature of “little red dots”--Implications for early galaxy and SMBH assembly. arXiv 2024, arXiv:2406.10341. [Google Scholar] [CrossRef]
- Tanaka, T.S.; Akins, H.B.; Harikane, Y.; Silverman, J.D.; Casey, C.M.; Inayoshi, K.; Schindler, J.-T.; Shimasaku, K.; Kocevski, D.D.; Onoue, O.M.; et al. Discovery of a Little Red Dot candidate at z > 10 in COSMOS-Web based on MIRI-NIRCam selection. arXiv 2025, arXiv:2508.00057. [Google Scholar]
- Akins, H.B.; Casey, C.M.; Allen, N.; Bagley, M.B.; Dickinson, M.; Finkelstein, S.L.; Franco, M.; Harish, S.; Haro, P.A.; Ilbert; et al. Two Massive, Compact, and Dust-obscured Candidate z 8 Galaxies Discovered by JWST. Astrophys. J. 2023, 956, 61. [Google Scholar] [CrossRef]
- Baker, W.M.; Tacchella, S.; Johnson, B.D.; Nelson, E.; Suess, K.A.; D’Eugenio, F.; Curti, M.; de Graaff, A.; Ji, Z.; Maiolino, R.; et al. A core in a star-forming disc as evidence of inside-out growth in the early Universe. Nat. Astron. 2025, 9, 141–154. [Google Scholar] [CrossRef]
- Schaerer, D.; Marques-Chaves, R.; Xiao, M.; Korber, D. Discovery of a new N-emitter in the epoch of reionization. Astron. Astrophys. 2024, 687, L11. [Google Scholar] [CrossRef]
- Carnall, A.C.; McLure, R.J.; Dunlop, J.S.; McLeod, D.J.; Wild, V.; Cullen, F.; Magee, D.; Begley, R.; Cimatti, A.; Donnan, C.T.; et al. A massive quiescent galaxy at redshift 4.658. Nature 2023, 619, 716. [Google Scholar] [CrossRef] [PubMed]
- de Graaff, A.; Setton, D.J.; Brammer, G.; Cutler, S.; Suess, K.A.; Labbe, I.; Leja, J.; Weibel, A.; Maseda, M.V.; Whitaker, K.E.; et al. Efficient formation of a massive quiescent galaxy at redshift 4.9. arXiv 2024, arXiv:2404.05683. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Williams, C.C.; Suess, K.A.; Tacchella, S.; Johnson, B.D.; Robertson, B.; Alberts, S.; Baker, W.M.; Baum, S.; Bhatawdekar, R.; et al. JADES: Rest-frame UV-to-NIR Size Evolution of Massive Quiescent Galaxies from Redshift z = 5 to z = 0.5. arXiv 2024, arXiv:2401.00934. [Google Scholar]
- Setton, D.J.; Khullar, G.; Miller, T.B.; Bezanson, R.; Greene, J.E.; Suess, K.A.; Whitaker, K.E.; Antwi-Danso, J.; Atek, H.; Brammer, G.; et al. UNCOVER NIRSpec/PRISM Spectroscopy Unveils Evidence of Early Core Formation in a Massive, Centrally Dusty Quiescent Galaxy at zspec = 3.97. Astrophys. J. 2024, 974, 145. [Google Scholar] [CrossRef]
- Wright, L.; Whitaker, K.E.; Weaver, J.R.; Cutler, A.M.; Wang, B.; Carnall, A.; Suess, K.A.; Bezanson, R.; Nelson, E.; Miller, T.B.; et al. Remarkably Compact Quiescent Candidates at 3 < z < 5 in JWST-CEERS. Astrophys. J. Lett. 2024, 964, L10. [Google Scholar]
- Furtak, L.J.; Labbé, I.; Zitrin, A.; Greene, J.E.; Dayal, P.; Chemerynska, I.; Kokorev, V.; Miller, T.B.; Goulding, A.D.; de Graaff, A.; et al. A high black hole to host mass ratio in a lensed AGN in the early Universe. Nature 2024, 628, 57–61. [Google Scholar] [CrossRef]
- Bennert, V.N.; Auger, M.W.; Treu, T.; Woo, J.-H.; Malkan, M.A. The Relation between Black Hole Mass and Host Spheroid Stellar Mass Out to z ~ 2. Astrophys. J. 2011, 742, 107. [Google Scholar] [CrossRef]
- Vanzella, E.; Claeyssens, A.; Welch, B.; Adamo, A.; Coe, D.; Diego, J.M.; Mahler, G.; Khullar, G.; Kokorev, V.; Oguri, M.; et al. JWST/NIRCam Probes Young Star Clusters in the Reionization Era Sunrise Arc. Astrophys. J. 2023, 945, 53. [Google Scholar] [CrossRef]
- Maiolino, R.; Scholtz, J.; Curtis-Lake, E.; Carniani, S.; Baker, W.; de Graaff, A.; Tacchella, S.; Übler, H.; D’Eugenio, F.; Witstok, J.; et al. JADES. The diverse population of infant Black Holes at 4 < z < 11: Merging, tiny, poor, but mighty. arXiv 2023, arXiv:2308.01230. [Google Scholar]
- Pacucci, F.; Nguyen, B.; Carniani, S.; Maiolino, R.; Fan, X. JWST CEERS and JADES Active Galaxies at z = 4–7 Violate the Local M•–M* Relation at >3σ: Implications for Low-mass Black Holes and Seeding Models. Astrophys. J. Lett. 2023, 957, L3. [Google Scholar] [CrossRef]
- Durodola, E.; Pacucci, F.; Hickox, R.C. Exploring the AGN Fraction of a Sample of JWST’s Little Red Dots at 5 > z > 8: Overmassive Black Holes Are Strongly Favored. arXiv 2024, arXiv:2406.10329. [Google Scholar]
- Guia, C.A.; Pacucci, F.; Kocevski, D.D. Sizes and Stellar Masses of the Little Red Dots Imply Immense Stellar Densities. Res. Notes AAS 2024, 8, 207. [Google Scholar] [CrossRef]
- Pérez-González, P.G.; Barro, G.; Rieke, G.H.; Lyu, J.; Rieke, M.; Alberts, S.; Williams, C.C.; Hainline, K.; Sun, F.; Puskás, D.; et al. What Is the Nature of Little Red Dots and what Is Not, MIRI SMILES Edition. Astrophys. J. 2024, 968, 4. [Google Scholar] [CrossRef]
- Nandal, D.; Loeb, A. Supermassive Stars Match the Spectral Signatures of JWST’s Little Red Dots. arXiv 2025, arXiv:2507.12618. [Google Scholar]
- Lin, X.; Fan, X.; Cai, Z.; Bian, F.; Liu, H.; Sun, F.; Ma, Y.; Greene, J.E.; Strauss, M.A.; Green, R.; et al. The Discovery of Little Red Dots in the Local Universe: Signatures of Cool Gas Envelopes. arXiv 2025, arXiv:2507.10659. [Google Scholar] [CrossRef]
- Schwarzschild, M. Structure and Evolution of the Stars; Dover: New York, NY, USA, 1958. [Google Scholar]
- Kippenhahn, R.; Weigert, A. Stellar Structure and Evolution; Springer-Verlag: Heidelberg, Germany, 1990. [Google Scholar]
- Soderblom, D.R. Ages of Stars. Ann. Rev. Astron. Astrophys 2010, 48, 581. [Google Scholar] [CrossRef]
- Soderblom, D.R. Ages of Stars: Methods and Uncertainties. arXiv 2014, arXiv:1409.2266. [Google Scholar] [CrossRef]
- Lebreton, Y.; Goupil, M.J.; Montalban, J. How accurate are stellar ages based on stellar models? I. The impact of stellar models uncertainties. EAS Publ. Ser. 2014, 65, 99–176. [Google Scholar] [CrossRef]
- Bond, H.E.; Nelan, E.P.; VandenBerg, D.A.; Schaefer, G.H.; Harmer, D. HD 140283: A Star in the Solar Neighborhood that Formed Shortly after the Big Bang. Astrophys. J. Lett. 2013, 765, L12. [Google Scholar] [CrossRef]
- Guillaume, C.; Buldgen, G.; Amarsi, A.M.; Dupret, M.A.; Lundkvist, M.S.; Larsen, J.R.; Scuflaire, R.; Noels, A. The age of the Methuselah star in the light of stellar evolution models with tailored abundances. Astron. Astrophys. 2024, 692, L3. [Google Scholar] [CrossRef]
- de Andrés, F.L. Could the number of blue straggler stars help to determine the age of their parent globular cluster? arXiv 2023, arXiv:2308.09057. [Google Scholar] [CrossRef]
GN-72127 Parameter | Unit | Value LCDM | CTL/LCDM | Value CTL |
---|---|---|---|---|
4.13 | 1 | 4.13 | ||
(optical) | pc | 300 | 4.9 | 1470 |
(UV) | pc | 490 | 4.9 | 2401 |
/ | 1.18 | |||
/ | 1.35 | |||
/ | 4.9 | |||
Σ* | 0.042 | |||
erg/s | 1.35 | |||
0.97 | 1 | 0.97 | ||
0.87 | ||||
0.74 | 0.28 | 0.20 | ||
Number den. | LRD | N | 0.0086 | 0.0086N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, R.P. Evolution of Size, Mass, and Density of Galaxies Since Cosmic Dawn. Galaxies 2025, 13, 115. https://doi.org/10.3390/galaxies13050115
Gupta RP. Evolution of Size, Mass, and Density of Galaxies Since Cosmic Dawn. Galaxies. 2025; 13(5):115. https://doi.org/10.3390/galaxies13050115
Chicago/Turabian StyleGupta, Rajendra P. 2025. "Evolution of Size, Mass, and Density of Galaxies Since Cosmic Dawn" Galaxies 13, no. 5: 115. https://doi.org/10.3390/galaxies13050115
APA StyleGupta, R. P. (2025). Evolution of Size, Mass, and Density of Galaxies Since Cosmic Dawn. Galaxies, 13(5), 115. https://doi.org/10.3390/galaxies13050115