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Abstract: The convective envelopes of solar-type stars and the convective cores of intermediate-
and high-mass stars share boundaries with stable radiative zones. Through a host of processes we
collectively refer to as “convective boundary mixing” (CBM), convection can drive efficient mixing in
these nominally stable regions. In this review, we discuss the current state of CBM research in the
context of main-sequence stars through three lenses. (1) We examine the most frequently implemented
1D prescriptions of CBM—exponential overshoot, step overshoot, and convective penetration—and
we include a discussion of implementation degeneracies and how to convert between various
prescriptions. (2) Next, we examine the literature of CBM from a fluid dynamical perspective, with
a focus on three distinct processes: convective overshoot, entrainment, and convective penetration.
(3) Finally, we discuss observational inferences regarding how much mixing should occur in the cores
of intermediate- and high-mass stars as well as the implied constraints that these observations place
on 1D CBM implementations. We conclude with a discussion of pathways forward for future studies
to place better constraints on this difficult challenge in stellar evolution modeling.

Keywords: stellar evolution (1599); stellar evolutionary models (2046); stellar convection zones
(301); stellar cores (1592); hydrodynamical simulations (767); star clusters (1567); apsidal motion (62);
asteroseismology (73); stellar oscillations (1617); binary stars (154)

1. Introduction

Convection occurs in all main-sequence stars, and there is broad agreement that widely
used prescriptions such as the mixing length theory (MLT, ref. [1], discussed in Section 1
in this series) adequately describe many properties of bulk convection in stellar interiors.
There is, however, a great deal of disagreement and uncertainty regarding how to model
the boundaries of convection zones, where the stellar stratification changes from being
convectively unstable to stable. Convective boundaries exist at radial coordinates where
the buoyant force changes sign (from acceleration to deceleration [2]), but most models
and MLT unphysically assume that the convective velocity vanishes at these locations.
The true boundary of a convection zone—the location where the convective velocity is
zero—lies beyond the traditional “convective boundary,” and some parameterization
of “convective boundary mixing” (CBM) is generally employed alongside MLT to allow
convective motions to extend outside of the MLT convection zone.

While low-mass stars are fully convective, stars such as the Sun with masses
0.35M� . M∗ . 1.2M� develop stable interiors and turbulent convective envelopes [3–5].
Convective motions can “undershoot” from the unstable envelope into the stable interior
and cause mixing, which can alter surface lithium abundances [6–8] and the sound speed
below the convection zone [9–11]. In “massive stars” with masses M∗ & 1.1M�, efficient
nuclear burning from the CNO cycle destabilizes the core to convection, while the envelope
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becomes convectively stable [5,12]; some of these stars also have opacity-driven convection
zones near the surface [13,14]. CBM from the core convection zone injects fresh hydro-
gen fuel into the high-temperature central burning region of the star, thereby extending
the stellar lifetime and increasing the size of the helium core at the end of the main se-
quence. Unfortunately, observations cannot be uniformly explained with one standard
CBM prescription [15], leading to uncertainty in how to include CBM in stellar evolution
calculations. These uncertainties are not subtle: evolving a 15 M� model using differing
mixing prescriptions can significantly alter the main sequence lifetime by ∼25% and the
helium core mass by ∼40%, with consequences that ripple beyond the main sequence,
such as in determining what type of remnant the star eventually leaves behind [16,17].
Fortunately, there seems to be a tight relationship between a star’s core mass, its envelope
mass, and its core composition if the star is to remain in equilibrium [18], which may limit
the range of feasible CBM prescriptions to characterize.

Observations of massive stars cannot be explained without CBM, which increases the
convective core size compared to “standard” stellar models. For example, radial profiles
of the Brunt-Väisälä frequency measured via asteroseismology demonstrate substantial
mixing outside the standard core boundary [19]. The population of observed eclipsing bina-
ries [20] and the width of the main sequence in the temperature–luminosity plane observed
in stellar clusters [21–24] can be partially explained by introducing a mass-dependent
CBM into stellar models. Simulations of 3D turbulent convection whose initial conditions
are based on 1D stellar evolution models consistently report significant entrainment at
convective boundaries and expansion of the convection zone (e.g., [25–31]), so the picture
from numerical simulations aligns with that inferred from observations.

In this review, we discuss CBM in stars. Our goals in writing this review are:

1. To provide context for investigators who need to employ CBM in their own studies.
2. To summarize past works and provide launching points for future studies aimed at

improving CBM prescriptions.
3. To facilitate communication between observers, 1D modelers, and 3D numericists.

In Section 2, we describe 1D parameterizations of CBM. In Section 3, we describe the
results of numerical simulations exhibiting CBM. In Section 4, we describe observations
and empirical calibrations of CBM. We conclude with a discussion in Section 5.

2. Theoretical (1D) Parametrizations
2.1. How Does CBM Modify Stellar Evolution?

In stellar evolution software instruments, the mixing caused by convection, CBM, and
other mixing processes are generally parameterized as a turbulent diffusivity [32]. That is,
for some chemical composition (e.g., hydrogen, X), time evolution is assumed to follow,

∂tX = ∇ · [(Dconv + DCBM + Dother)∇X], (1)

when changes to the composition from nuclear reactions are ignored. Here, each D is a
diffusion coefficient. In this formalism, it is impossible to distinguish between CBM and
other mixing processes which could occur in the vicinity of a convective boundary (e.g.,
shear, rotation, etc.). This formalism generally allows us to probe the shape and magnitude
of the radial profile of mixing but not the fundamental process at work. Regardless, within
this review, we will assume that excess mixing which connects to and extends beyond the
convective boundary are convection-induced CBM processes. We additionally limit the
scope of this review to purely hydrodynamical CBM processes, complicating effects of, e.g.,
magnetism or radiative transfer are not considered.

In Figure 1, we briefly demonstrate how CBM affects the evolution of stars with
convective cores. Panel a shows that increasing the radial extent of mixing beyond the con-
vective boundary (going from light to darker lines) decreases a star’s effective temperature
(panel b) and increases its luminosity (panel c) at the TAMS (terminal-age main sequence).
This increased mixing also increases the length of the main sequence (panel d) by providing
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more fuel and significantly increases the helium core mass at the end of the main sequence
(panel e); these latter changes introduce uncertainty into the star’s post-main-sequence
evolution and into the eventual remnant that the star leaves behind. While not pictured
here, vectors in the mass–luminosity plane can help disentangle the effects of mass loss
and internal mixing on the evolutionary tracks of very massive stars [22,24]. The slope of
the vector is set by the mass-loss rate, while the length of the vector is set by the age and
internal mixing; see Figure 1 in Higgins and Vink [24]. If the star’s rotational velocity is
known, the CBM parameter can be directly derived from the length of the vector.

Figure 1. Illustration of the effect of increasing the size of the CBM region assuming exponential
diffusive overshoot. (a) HR diagram showing the evolutionary tracks for a 10 M� star with different
extents of the CBM region. fov = 0.002 is a low value, whereas fov = 0.04 is considered a high
value for this parameter. (b) Percentage change in the effective temperature at the TAMS compared
to the fov = 0.002 case for three different initial masses. The fov parameter sets the extent of the
CBM region and how rapidly the mixing decreases with distance from the convective core boundary;
see Section 2.4. (c) Same as (b) but for the luminosity at the TAMS. (d) Same as (b) but for the
age at the TAMS. (e) Same as (b) but for the helium core mass obtained at the TAMS. Figure made
by the authors using MESA models. MESA inlists and data used to generate the figure are available
on Zenodo [33].

2.2. Convective Boundaries

In 1D stellar evolution software instruments, convection zone boundaries coincide with
a sign change in a determinant Y ([34], Section 2). We define regions with Y < 0 to be stable
to convection. The simplest convective stability criterion is the Schwarzschild criterion,

YS ≡ ∇rad −∇ad < 0. (2)

here, the logarithmic temperature gradient is ∇ ≡ d ln P/d ln T (pressure P and tempera-
ture T). When ∇ is evaluated at constant entropy and mean molecular weight, its value is
the adiabatic gradient ∇ad. The gradient required to radiatively transport the full stellar
luminosity is ∇rad.

In the presence of gradients in the mean molecular weight µ, a better convective
stability criterion is the Ledoux criterion,

YL ≡ YS +
χµ

χT
∇µ < 0. (3)

The Ledoux criterion includes the composition gradient ∇µ = d ln µ/d ln P, where
χT = (d ln P/d ln T)ρ,µ, χµ = (d ln P/d ln µ)ρ,T , and ρ is the density. The composition term
is generally stabilizing when the radial gradient of µ is negative.
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In this review, we are interested in cases where an unstable convection zone (CZ) with
YL ≥ 0 borders a stable radiative zone (RZ) with YL ≤ YS < 0. We therefore do not consider,
e.g., semiconvection or thermohaline mixing (see Chapters 2 and 3 of Garaud [35] as well
as Section 3 and Figure 3 of Salaris and Cassisi [36]). We note that evolutionary timescales
are much longer than the convective overturn timescale on the main sequence [37]. In this
regime, both the Ledoux criterion and the Schwarzschild criterion should retrieve the same
location for the convective boundary, as argued by Gabriel et al. [38] and shown using hy-
drodynamical simulations by Anders et al. [2]. Therefore, we will refer to the convective
boundary and the Schwarzschild boundary interchangeably. The Schwarzschild boundary
(YS = 0) generally corresponds to an interface where the entropy gradient goes from being
marginally stable (or unstable, ∇s ≤ 0) to being stable (∇s > 0). “Convective boundaries”
defined by Y therefore specify where the radial buoyancy force changes from destabilizing
(in the convection zone) to stabilizing (in the radiative zone). The location where con-
vective velocity goes to zero therefore always lies “outside” of the convective boundaries
defined by YS. The CBM prescriptions that we discuss below therefore attempt in spirit
to estimate the size of the region in which convective velocities decelerate beyond the
convective boundary.

2.3. Internal Mixing Profiles

The time evolution of the mass fraction Xi of chemical element i depends on nuclear
reactions Ri and mixing processes Mi. The 1D stellar evolution software instruments
typically treat element mixing as a diffusive process, so the time evolution equation is

∂Xi
∂t

= Ri +Mi,

= Ri +
1

ρr2
∂

∂r

[
ρr2Dmix

∂Xi
∂r

]
+Mmicro

i , (4)

where ρ is the density and r is the radius coordinate. We group extra microscopic atomic
diffusion effects such as radiative levitation or gravitational settling intoMmicro

i . The mass
fraction Xi diffuses with a diffusivity of Dmix in units of cm2 s−1.

The sum of a variety of different physical processes such as convection, rotation,
magnetic fields, and waves all contribute to Dmix(r) in different regions and at different
magnitudes. We decompose the turbulent diffusivity based on whether or not convection
is present,

Dmix(r) = Dconv(r) + DCBM(r) + Denv(r), (5)

where Dconv(r) is the contribution from convective regions, DCBM(r) characterizes convec-
tive boundary mixing regions, and Denv(r) is the mixing profile in the radiative envelope.
Parameterizing mixing into diffusion profiles in this way discards information about the
specific processes that cause mixing, which makes it difficult to disentangle the individual
mixing contributions of CBM, rotational mixing, and other processes that occur at the same
radial coordinate. Examples of four Dmix(r) profiles are illustrated in the top panels of
Figure 2. The associated stratification produced by these mixing coefficients is shown in
the bottom panels of Figure 2.

The remainder of this section will focus on the different DCBM(r) parameterizations
that are commonly used in 1D stellar evolution codes. We use the term CBM to refer to
any boundary mixing process. We adopt a terminology where convective overshoot only
mixes the chemical composition so that (∇T = ∇rad) in the CBM region, and convective
penetration mixes both chemical composition and entropy so that (∇T = ∇ad) in the
CBM region.
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Figure 2. Illustration of four different convective boundary mixing prescriptions in 1D. Internal
mixing profiles are shown in the top panels, while the corresponding temperature gradients are
given in the bottom panels. (a) Exponential diffusive overshoot, (b) step overshoot, (c) convective
penetration, and (d) extended convective penetration. Convective regions are indicated in gray.
DCBM(r) and Denv(r) are shown, respectively, in blue and green in the top panels. In the bottom
panels, the plotted curves show the adiabatic temperature gradient (green), the radiative temperature
gradient (blue), and the adopted temperature gradient (orange). Figure made by the authors using
MESA models. The data used to generate the figure are available on Zenodo [33].

2.4. Overshoot or Overmixing

Overshooting (e.g., [39]) or overmixing (e.g., [40]) occurs when fluid motions beyond
the convective boundary transport elements but not heat and thereby do not alter the
temperature gradient. Two prescriptions for convective overshooting are common in 1D
stellar evolution codes.

Exponential diffusive overshoot [41,42], see Figure 2a, is a 1D parameterization of
results from 2D hydrodynamical simulations of surface convection zones in solar-type stars,
main-sequence A-type stars, and cool DA white dwarfs. It is used by the stellar evolution
code GARSTEC [43], and it used to be the default overshoot option in MESA [34,44–47]. Ex-
ponential diffusive overshoot is a mixing efficiency which decreases exponentially with
distance from the convective boundary,

DCBM(r) = D0 exp
[−2(r− r0)

fovHp,0

]
with ∇T = ∇rad. (6)

In this formalism, the free parameter fov determines what fraction of a pressure scale
height corresponds to the the e-folding length scale of the mixing efficiency, and thereby, it
indirectly sets the extent of the CBM region; CBM models based on the scale height based
on the scale height have been used as long as CBM has been considered [48,49]. Here,
r is the radial coordinate and Hp is the pressure scale height. The convective boundary
occurs at rcc and has scale height Hp,cc, but MLT assumes that the convective velocity and
mixing are both zero at rcc. As a result, the exponential diffusive overshoot is calibrated at
r0 = rcc − f0Hp,cc, where f0 is usually fixed to a value between 0.002 and 0.005. At r0, the
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convective mixing efficiency is D0 = Dmix(r0) and the pressure scale height is Hp,0. The
mixing efficiency follows the MLT value for r < r0, and it follows Equation (6) for r ≥ r0.1

Step overshoot provides a simpler mixing profile in the CBM region (see Figure 2b),

DCBM(r) = D0 for r0 ≤ r ≤ rov, with ∇T = ∇rad. (7)

Here, the free parameter αov determines the extent rov = r0 + (αov + f0)Hp, 0 of the over-
shoot region which is characterized by a constant mixing efficiency D0. This CBM formal-
ism is adopted in the stellar evolution codes DSEP [50,51], BaSTI [52–58], TGEC [59,60], and
YREC [61], and is available in MESA.

2.5. Convective Penetration

Convective Penetration occurs when convection mixes chemicals and entropy beyond
the convective boundary [39], see Figure 2c. Convective penetration is identical to step
overshoot, except the adiabatic temperature gradient is adopted in the CBM region:

DCBM(r) = D0 for r0 ≤ r ≤ rpen, with ∇T = ∇ad. (8)

Here, rpen = r0 + (αpen + f0)Hp, 0, and αpen is the free CBM parameter. The convective
penetration formalism is adopted in the stellar evolution code GENEC [62], and a similar
option is available for the YREC code. We caution that the names “step overshoot” and
“convective penetration” are often used interchangeably in the literature. We distinguish
between the two based on the temperature gradient in the CBM region (e.g., [39,63]).

2.6. Extended Convective Penetration

Extended convective penetration [64,65] combines convective penetration and diffu-
sive exponential overshooting; see Figure 2d. In this formalism, the convective boundary
mixing region has two components. The convection zone is adjacent to a convective pene-
trative region with constant mixing and an adiabatic temperature gradient. Further from
the convective boundary, the mixing exponentially decays and the temperature gradient
gradually transitions from ∇ad to ∇rad. The exact mixing coefficients are

DCBM(r) = Dpen for r0 ≤ r ≤ rpen

DCBM(r) = Dpen exp
[−2(r− rpen)

fpenHp,pen

]
for rpen < r ≤ rCBM, (9)

where Hp,pen = Hp(rpen) and rCBM is the radius at the outer boundary of the CBM region.
The thermal stratification is [64]

∇T = ∇ad for r0 ≤ r ≤ rpen

∇T = f t(r)∇ad +
[
1− f t(r)

]
∇rad for rpen < r ≤ rCBM, (10)

There are two free parameters: αpen and fpen. f t(r) is a radial profile which varies from
one in the convection zone to zero in the stable radiative envelope. f t(r) has been prescribed
in two ways in the literature. Its first implementation was based on the amount of mass
in rpen < r ≤ rCBM [64]. Another implementation define it as f t(r) = [log Pe(r) + 2]/4
for values of 10−2 < Pe < 102, where the Péclet number Pe [65], which is the ratio
between the time scales of the radiative and advective heat transport, can be estimated from,
e.g., MLT velocities.

To our knowledge, extended convective penetration is not currently a standard option in
any stellar evolution codes, but it has been studied using a modified version of MESA [64,65].
However, the option of changing the temperature gradient within the CBM region is available
in existing codes. For example, the ASTEC code [66] uses the same mixing profile DCBM as the
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step overshoot and convective penetration schemes wherein mixing efficiency is considered
constant for a certain distance αCBMHp beyond the convective boundary, but ASTEC can
smoothly vary the temperature gradient within this region [66,67].

2.7. Limiting the Extent of the CBM Region

The diffusive overshoot, convective penetration, and extended convective penetration
prescriptions listed above all rely on a free CBM parameter multiplied by the pressure
scale height to define the extent of the CBM region. As a result, small convective cores
(with rcc → 0 and Hp → ∞) can produce unphysically large CBM regions. This problem
primarily arises in lower mass stars that start off with small convective cores on the
main sequence. To circumvent this issue, some stellar evolution codes implement a mass-
dependent CBM parameter which is zero at low stellar mass, constant at high mass, and
smoothly increases at intermediate mass. Such an approach is partially validated by
observational evidence of a relationship between CBM mixing parameters and stellar
mass, but the observational evidence is ambiguous; see Section 4. Mass-dependent CBM
parameters were used to compute the YREC Y2 isochrones [68], the YaPSI isochrones [69], a
set of isochrones computed with GARSTEC and used to fit the open cluster M67 [70], and a
grid of stellar models with derived internal structure constants computed with MESA [71].

Various alternative approaches limit the size of CBM regions based on the size of
the convection zone. The ASTEC and Cesam2k codes enforce that the size of the CBM re-
gion is βCBM ×min(rcc, Hp,cc) [66,72]. The YREC code defines the actual radius of the
CBM region as rCBM = βCBM/(H−1

p + r−1
cc ) which simplifies to rCBM = βCBMHp for

large convective cores [73]. The GARSTEC code uses a modified pressure scale height
H̃p = Hp×min

[
1,
(
rcc/Hp

)2
]

[43,70] and as a default MESA uses βCBM×min
(

Hp, rcc/αMLT
)

where αMLT is the mixing length parameter. Here, we use βCBM to collectively refer to the
free parameter assumed for a given CBM prescription, so it could be, e.g., fov or αov. A
result of these constraints is that the input βCBM parameter in the code can be different from
the effective βCBM used to set the size of the CBM region (see Ref. [73], Figures 2 and 5 for
examples of this). A further problem is that inconsistent implementations between different
codes produce CBM regions with different sizes even if the same αCBM parameter and CBM
prescription are nominally employed. These subtle differences impede direct comparisons
between results obtained using different codes when the sizes of the convective cores are
small as is the case for stars around 1.2 M� [74].

2.8. Comparing Different CBM Parameters

In order to make comparisons between results obtained using different CBM prescrip-
tions (e.g., exponential vs. step overshooting), a robust conversion between their input
parameters must be established. Such conversions can be achieved in two ways.

The first is to compare observations to models generated using different CBM prescrip-
tions and find the CBM parameters which best reproduce the observed diagnostics. Such
comparisons have previously been achieved through, e.g., the asteroseismic modeling of
the slowly pulsating B star KIC 7760680 where comparisons between results using exponen-
tial diffusive and step overshoot suggested a relation of αov/ fov = 13.33 for this 3.25 M�
star [75]; see also Section 4.4. Similarly, comparisons have been made using detached,
double-lined, eclipsing binary stars (see also Section 4.3). As an example, the study of
29 such systems with component masses between 1.2 and 4.4 M� revealed a relation of
αpen/ fov = 11.36± 0.22 between models using convective penetration and exponential
diffusive overshoot [76]. The comparison suggested that there is a slight dependence of this
ratio on surface gravity log g, metallicity Z, mass M, or effective temperature Teff. Splitting
the sample in two groups depending on either the effective temperature or surface gravity
resulted in αpen/ fov = 10.50± 0.25 for cooler giant stars and αpen/ fov = 11.71± 0.27 for
hotter dwarf stars [76]. A similar study of 12 binary systems with component masses
between 4.58 and 17.07 M� likewise suggests a conversion factor between fov and αpen

larger than 10 [77]2.
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Another method for deriving conversions between different CBM parameters is to
directly compare models which use different CBM prescriptions. Magic et al. [70] suggested
a conversion factor of αov/ fov ≈ 11 using models with masses between 2 and 6 M�.
Noels et al. [78] compared two evolutionary tracks of a 10 M� star using either step
overshoot or convective penetration, finding that an αpen = 0.175 achieved a similar result
to the step overshoot case with αov = 0.2, i.e., αov/αpen = 1.14.

Here, we provide a comparison between models computed with the stellar structure
and evolution code MESA v22.05.1 for a 2 M� and 10 M� star assuming (1) exponential
diffusive overshoot and (2) diffusive step overshoot. Using these models, we investigate
what αov parameter is required to reproduce the same luminosity and convective core
mass (mcc, the mass coordinate of the Schwarzschild boundary of the convection zone)
of the star with exponential diffusive overshoot at a fixed value of fov. These compar-
isons are carried out at fixed main-sequence age (Xc/Xini) and stellar mass. In other
words, we look for solutions to the relations log L1(Xc/Xini, fov) = log L2(Xc/Xini, αov)
and mcc,1(Xc/Xini, fov)/M = mcc,2(Xc/Xini, αov)/M. Here, Xc is the current core hydro-
gen mass fraction and Xini is the initial hydrogen mass fraction. An example of these
solutions is shown for the 10 M� star in Figure 3. Panels a and b show the derived relations
for the luminosity and convective core mass, respectively, at different main-sequence ages
indicated by the color of the lines. The black dashed curve shows the expected trend
assuming the standard “rule-of-thumb” αov ≈ 10 fov, whereas the black dotted line shows
the linear fit to the derived relations. The differences between the linear fits and relations
derived at different ages are shown in panel (c) and (d), where the gray shaded region
gives the 3σstd uncertainty regions for the relations. As seen in the figure, the relations are
not strictly linear and also show a small dependence on the chosen Xc in the current core
hydrogen mass fraction and Xini value.

In summary, we find a general relation of the form

αov = A + B fov. (11)

For the 2 M� star, we find A = (0.042± 0.004) and B = (14.11± 0.25) when fitting
for luminosity and A = (0.036± 0.01) and B = (14.05± 0.71) when fitting for core mass.
For the 10 M� star, we find A = (0.0256± 0.0008) and B = (10.75± 0.04) when fitting for
luminosity and A = (0.0256± 0.001) and B = (10.74± 0.05) when fitting for core mass.
The reported errors are the 3σstd errors.

We note three important observations for the four relations given above. The first is
that relations between αov and fov for a given mass are same within the errors independently
of whether they are derived based on the luminosity or the convective core mass. The
second observation is that the errors on the parameters for the relations for the 2 M� star
are larger than for the 10 M�, implying a stronger age dependence on the relations for the
2 M� star. Finally, the slopes (B) of the relations are steeper for the 2 M� star than the 10 M�
one and cannot be reconciled within the 3σstd errors, showing that the exact conversions
to use are also mass dependent. We emphasize that making direct comparisons between
absolute values of different CBM parameters is non-trivial. Therefore, when studying CBM
and the extent of the CBM region, carrying out an ensemble study of a group of stars using
the same stellar evolution code and the same CBM prescription is recommended.
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Figure 3. Derived correlations between αov and fov for a 10 M� star at different main-sequence
ages given as Xc/Xini. (a) The colored curves show the relation between αov and fov required to
obtain log L1(Xc/Xini, fov) = log L2(Xc/Xini, αov). The black dashed curve shows the expected trend
assuming αov = 10 fov, while the black dotted lines shows the combined linear fit to the colored
lines. (b) Same as (a) but fulfilling mcc,1(Xc/Xini, fov)/M = mcc,2(Xc/Xini, αov)/M. (c) Differences
between the derived αov versus fov relation for a given Xc/Xini and the linear fit shown by the dotted
black line in panel (a). The gray shaded region gives the 3 σstd uncertainty region of the linear fit.
(d) Same as (c) but for the comparison between the αov and fov parameters needed to obtain the same
convective core masses. Figure made by the authors using MESA models. MESA inlists and data used to
generate the figure are available on Zenodo [33].

2.9. The 1D Models Not Covered in This Review

A full discussion of physically motivated 1D models of CBM is beyond the scope of this
review. Techniques not discussed here include CBM models based on linear or fundamental
mode analysis [79–81], nonlinear modal expansion [82], models of overshooting bubbles
based on local MLT [48,83], nonlocal MLT models [84–90], non-MLT multiscale models [91],
“turbulent convection models” (e.g., [92,93]), Canuto’s stellar mixing model (e.g., [94]), and
nonlocal “turbulent kinetic energy models” (e.g., [95,96]). We briefly also note that there
exist models which aim to characterize overshooting convective motions in the optically
thin atmosphere of stars such as the Sun [79,97], reviewed briefly in Nordlund [86], but we
focus here on convection confined to optically thick portions of the star.

In this section, we have focused on the most frequently used techniques in the stellar
modeling literature; we note that these MLT-based implementations may not necessarily
be logically consistent [98], but their ease of implementation and use has made them
widespread in the stellar structure literature. Other local-MLT-based CBM prescriptions or
profiles such as diffusive Gumbel overshooting [99,100] and diffusive double exponential
overshoot [101] have been proposed, but a full discussion of them is likewise beyond the
scope of this review.
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3. 3D Hydrodynamical Perspectives of Convective Boundary Mixing

We now describe convective boundary mixing from its fluid dynamical roots. Many
simulations have examined a convective layer interacting with a stable layer in a variety of
natural contexts (e.g., stellar envelope convection, core convection, and even atmospheric
convection). In order to paint the most complete picture of convective boundary mixing, we
will discuss the results of these studies from a perspective that is impartial to the motivation
or setup.

Hydrodynamical CBM simulations often employ simplified equation sets (e.g., the
Boussinesq [102] or Anelastic [103–106] approximations3). For generality, we will use
the equation formulation most applicable to stellar interiors, the Fully Compressible
Navier–Stokes equations (ref. [107], §15 and §49), which are

∂tρ +∇ · (ρu) = 0, (12)

∂tu + u · ∇u = −1
ρ
∇P + g +

1
ρ
∇ ·Π, (13)

∂ts + u · ∇s =
1

ρT
(∇ · (k∇T) + ρε + Φ), (14)

where ρ is the density, u is the velocity, T is the temperature, s is the specific entropy, g is the
gravitational acceleration vector, k is the radiative conductivity, and ε is the specific energy
production rate (erg g−1 s−1) from nuclear burning. The viscous stress tensor, viscous
heating, and rate-of-strain tensor are, respectively, defined

Πij = 2ρν

[
eij −

1
3
∇ · uδij

]
, (15)

Φ = 2ρν

[
eijeij −

1
3
(∇ · u)2

]
= 2ρν

[
Tr(e · e)− 1

3
(∇ · u)2

]
, (16)

eij =
1
2
(∇u + [∇u]T). (17)

where ν is the viscous diffusivity (kinematic viscosity). Stars are composed of magnetized
plasmas, and thus, magnetohydrodynamic effects should in general be accounted for, but
for simplicity, we will restrict our discussion to the hydrodynamic case in this review.

Arguments about CBM processes are often rooted in energetics. The kinetic energy
equation is obtained by dotting Equation (13) with ρu and applying Equation (12) to retrieve

∂t(KE + PE) +∇ · (u(KE + PE + P) + u ·Π) = P∇ · u−Φ. (18)

Here, the kinetic energy isKE = ρ|u|2/2 and the potential energy is PE = ρφ, and we have
assumed time invariance ∂tφ = 0 of the gravitational potential φ (defined from g = −∇φ).
Equation (18) is written in conservation form, with the time derivative and divergence of
energy fluxes on the left-hand side and the sources and sinks of energy on the right-hand
side. An entropy equation is obtained by multiplying Equation (14) by ρ and applying
Equation (12),

∂t(ρs) +∇ · (uρs) =
1
T
(∇ · (k∇T) + ρε + Φ). (19)

We note that we could have instead multiplied by ρT to obtain the internal energy
equation, but that would generally return the same constraints as the kinetic energy equa-
tion, so a different thermal energy constraint is needed.

We next take a volume integral of Equations (18) and (19) over the full convection
zone and any important CBM region. We apply the divergence theorem to the flux terms
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and assume that the volume we are examining is bounded by regions where u ≈ 0, so the
integral of the fluxes can be neglected. We are left with

∂t(〈KE〉+ 〈PE〉) = 〈P∇ · u〉 − 〈Φ〉, (20)

∂t〈ρs〉 =
〈

1
T
[∇ · (k∇T) + ρε]

〉
+

〈
1
T

Φ
〉

. (21)

Equation (20) states that the evolution of the total (kinetic and potential) energy of the
convection zone is determined by the fraction of PdV work (〈P∇ · u〉) that is not consumed
by dissipative processes (〈Φ〉) on small scales.

Equation (21) forms the basis for deriving thermal scaling laws for convective re-
gions [108,109] and also serves as a basis for the integral constraint of Roxburgh [110].

We will use this energetics framework to describe three processes that can occur in
hydrodynamical CBM. These processes are depicted in Figure 4, and parallels can be drawn
between these processes and the prescriptions in Section 2. The first process is a small-scale
conversion of convective kinetic energy into potential energy beyond the boundary, which
is referred to as “convective overshoot”. The second is a process wherein either kinetic
energy or buoyant work are used to increase the potential energy of the convection zone,
which is referred to as “entrainment”. The third process occurs in a statistically stationary
state where ∂t(〈KE〉+ 〈PE〉) = 0, and a balance between work producing energy and
dissipation is achieved; this process is called “convective penetration”. We note that there
is a great deal of degeneracy in the literature studying these processes, and these terms
(in particular “overshoot” and “penetration”) are often used interchangeably; note that
when we use these terms in this review, we are referring to distinct processes. As in the
bottom panel of Figure 4, we will assume that the stellar structure consists of a convection
zone (CZ, ∇ ≈ ∇ad < ∇rad) and a radiative zone (RZ, ∇ ≈ ∇rad < ∇ad), and that the
CBM region consists of both a penetrative zone (PZ, ∇ ≈ ∇ad > ∇rad) and an overshoot
zone (OZ, ∇ ≈ ∇rad < ∇ad). We note that the convection zone itself could also have an
additional structure (e.g., “Deardorff zones”, see Ref. [111]), but we do not include that
level of detail here.
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Figure 4. Three CBM processes are shown schematically in the top row. White fluid represents
the well-mixed CZ, while purple fluid is the stable RZ. (Left) Convective overshoot (Section 3.2)
occurs when a fluid parcel from the CZ crosses into the RZ; a positive entropy gradient in the RZ
accelerates the parcel back toward the CZ. (Middle) Shear flows and overshooting motions drag
RZ fluid into the CZ in a process called entrainment (Section 3.4). (Right) Convective penetration
occurs when convection maintains a well-mixed region of fluid beyond the Schwarzschild boundary
(Section 3.5). The bottom panel shows the structure of a statistically stationary convective boundary,
which resembles the 1D “extended convective penetration” prescription (Section 2.6). This figure was
originally published online under a CC BY license in Anders et al. [112].
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3.1. Nondimensional Fluid Parameters

Many hydrodynamical studies of convective boundary mixing processes seek a de-
scription of how a CBM length scale or rate varies as a nondimensional fluid parameter is
changed. Commonly measured nondimensional numbers are the bulk Richardson number,
RiB, and the stiffness or relative stability, S . These parameters compare the buoyancy
stability of the RZ to how unstable or vigorous the convection is in the CZ.

The Richardson number was first examined in the astrophysical context by Meakin
and Arnett [25] and is typically defined

RiB =
∆bL
σ2 , with ∆b =

∫ r2

r1

N2 dr, (22)

where σ is the root-mean-square turbulent velocity in the convective region near the
interface, N2 is the Brunt-Väisälä frequency, L is a typical length scale for turbulent motions,
and the convective interface is assumed to span some radial extent ranging from r1 to r2.
There is degeneracy in how r1, r2, and L are defined in the literature.

An alternative approach is to measure the “stiffness” or “relative stability” S of the
radiative–convective interface. This has historically been defined in two ways. Early
simulations defined a structure-based S [113]4,

Sstruct ≈
|∇rad −∇ad|RZ

|∇rad −∇ad|CZ
, (23)

where the logarithmic temperature gradients are defined in Section 2.2. This definition
is useful in simulations where convection is driven by an unstable temperature gradient
which achieves ∇ = ∇rad by, e.g., an enforced boundary condition, but it is less useful in
describing convection in the cores of massive stars where ∇ ≈ ∇ad � ∇rad. Recently, a
dynamical definition of the stiffness has been favored by some authors [114–116],

Sdyn =
N2

RZ
ω2

conv
, (24)

where N2
RZ is the typical value of the Brunt-Väisälä frequency in the stable radiative zone

and ω2
conv = [2πuconv/L]2 is the square angular convective frequency, where uconv is the

average turbulent convective velocity and L is a typical convective length scale. We then
see that Sdyn ≈ RiB, aside from the length scales which are used. It is generally expected
that stiff convective interfaces (with large values of S or RiB) should have very small CBM
regions. Stellar evolution models [5] and asteroseismic inferences [117] expect the stiffness
value at the core boundaries of massive stars to be very large (Sdyn ∼ 106−8).

We also note that there is an explicit link between the Mach number Ma2 = u2
conv/c2

s
of convection and Sdyn; knowledge of Ma in a convection zone therefore provides infor-
mation about CBM. Take c2

s = P/ρ = gHP to be the sound speed in a star in hydrostatic
equilibrium, where HP is the pressure scale height and g is the gravitational acceleration.
Neglecting composition gradients, and assuming N2 = (g/HP)(∇ad −∇rad) in the RZ
(Equation (6.18); [118]) and ω2

c = [2πuconv/HP]
2 in the CZ, it can be shown that

Sdyn = Ma−2 (∇ad −∇rad)RZ

(2π)2 . (25)

Anders et al. [116] recently introduced a new “penetration parameter” P to the zoo
of parameters that describe CBM. The extent of an adiabatic penetration zone is assumed
to be determined by the magnitude of the negative buoyant work performed within this
zone [39,110]. Therefore, a luminosity (or flux) based parameter can be defined [116],

P = − (Lrad − Lad)CZ

(Lrad − Lad)RZ
, (26)
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where the numerator (CZ) is averaged over some part of the convective zone and the
denominator (RZ) is averaged over some part of the region that would be a radiative zone if
not for convective penetration. Here, Lad is the radiative luminosity that would be carried
if the stratification were adiabatic∇ = ∇ad, and Lrad is the radiative luminosity that would
be carried if the stratification were ∇ = ∇rad. Since (Lrad − Lad)RZ < 0, P > 0 always.
Large penetrative regions are expected when P is large. There is an implicit link between
the penetration parameter and the structural relative stability parameter, P ∼ S−1

struct. It
therefore makes sense that simulations (e.g., [119,120]) see negligible penetration when they
use Sstruct � 1. Note that the dependence of convective penetration on P or Sstruct is why
we distinguish between Sstruct and Sdyn. Many simulations are set up in such a manner
that Sstruct ∼ Sdyn; however, stars can have P ∼ Sstruct ∼ 1 and Sdyn � 1 simultaneously.

We finally note that studies dating back to Zahn [39] and Hurlburt et al. [113] ponder
the importance of the Péclet number on CBM (e.g., [63,119,121–124]). The Péclet number
measures the ratio of the thermal diffusion timescale to the convective overturn timescale,

Pe =
τtherm
τconv

=
uconvL

χrad
, (27)

where χrad is the radiative diffusivity of the fluid. The associated argument suggests that
CBM regions have an adiabatic penetration zone where Pe is large as well as a “thermal
adjustment layer” where Pe ∼ 1. The size of the CBM region is expected to scale like S−1

struct
for the adiabatic penetration zone and like S−1/4

struct for the thermal adjustment layer [113].
While these scalings were observed by early simulations (e.g., [125,126]), they have not
appeared in more recent simulations [119,120]. Main-sequence convection is very turbulent
with bulk Pe� 1 [5], so it is hard to imagine that a large thermal adjustment layer should
appear at the radial location where convective flows have damped to the point of becoming
laminar (Pe ∼ 1).

3.2. Convective Overshoot

Convective overshoot is a process which occurs on the scale of an individual convective
flow when the flow traverses the convective boundary. We define the convective boundary
as the location where the entropy gradient becomes positive. In the bulk convection zone,
buoyancy forces act in the expected sense (low entropy blobs accelerate upwards and high
entropy blobs accelerate downwards). Beyond the convective boundary, buoyancy forces
act in the opposite sense and motions become wave-like (low entropy blobs are accelerated
downwards and vice versa). A “hot” upflow in the convection zone therefore accelerates
downward after passing the convective boundary. This wave-like restoring motion of a
convective parcel beyond the convective boundary is convective overshoot. Convective
overshoot is visualized in Figure 5.

Convective overshoot occurs in all simulations which include a convection zone
bordered by a radiative zone. First seen by Hurlburt et al. [127], many studies have
observed overshooting and have generally sought to understand how it depends on Pe
and Sstruct (e.g., [113,119,120,128–132]). Others sought to understand how the imposed
convective flux determined the depth of overshoot [125,133,134].

Recently, an energetics-based model of convective overshoot has emerged. This model
is laid out in Korre et al. [135], Equations (30)–(35), and it is also described in Lecoanet et al. [114].
They argue that a convective blob passing the convective boundary will overshoot adiabatically
until the parcel’s kinetic energy is converted into potential energy. This argument was presented
in the context of a simplified Boussinesq model; here, we briefly recreate it in the context of the
fully compressible Equations (12)–(14). The conversion of kinetic energy into gravitational
potential energy occurs through the action of buoyant work,

1
2

ρCBu2
conv =

∫ rCB+δov

rCB

Fbuoy dr ∼ δov

〈
Fbuoy

〉
, (28)
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where ρCB is the density near the convective boundary, uconv is the bulk convective velocity,
rCB is the radial location of the convective boundary, δov is the overshoot distance, and
Fbuoy is the radial component of the buoyancy force. In the limit of low-Mach number flows
applicable to core convection or deep envelope convection on the main sequence [5], and
for an ideal gas [136], the buoyant force in this limit becomes

Fbuoy = −ρg
s

cp
, (29)

where s is the specific entropy and cp is the specific heat at constant pressure. The buoyant
force near the convective boundary for a parcel traveling adiabatically is approximately〈

Fbuoy

〉
∼
∫

ρ
g
cp

ds
dr

dr =
∫

ρN2dr. (30)

Figure 5. The vorticity (top) and temperature (bottom) are shown for simulations whose values of
Sstruct are small (left) and large (right). The black line marks the Schwarzschild boundary of the
simulations. Note that increasing S decreases the depth to which dynamics overshoot beyond the
Schwarzschild boundary. Note also that as stiffness increases, the internal gravity wave amplitude
in the stable region decreases with respect to the convection amplitude. Figure 2 of Rogers and
Glatzmaier [120]; © AAS. Reproduced with permission.

Assuming that the density is roughly the background density and does not vary
sharply near the convective boundary provides

1
2

ρCBu2
cz ∼ δovρCB

∫
N2dr. (31)
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Dividing by a characteristic length scale L, ρCB, and ∆b =
∫

N2dr provides

δov

L
∼ Ri−1

B , (32)

i.e., the overshoot depth is inversely proportional to the Richardson number or similarly
the dynamical stiffness Sdyn. Korre et al. [135] take this argument one step further for a
more direct comparison with simplified models of overshoot in convective simulations.
They derive how they expect the overshoot distance to scale with Sdyn. For a stratification
near the convective boundary such as N2 = N2

0 (r− rcb)
α (where rcb is the radial coordinate

of the convective boundary), they evaluate ∆b and rearrange Equation (31) to find

∆b =
N2

0
1 + α

δ1+α
ov
Lα

⇒ 1 + α

2
u2

cz

L2N2
0
∼
(

δov

L

)2+α

⇒
(

δov

L

)
∼ S−1/(2+α)

dyn . (33)

So, e.g., for a simulation where N2 is a constant above the convective boundary,
(δov/L) ∼ S−1/2

dyn , and for a simulation where it increases linearly, it should scale as

(δov/L) ∼ S−1/3
dyn , which is the case examined by Lecoanet et al. [114]. A stratification

which is well approximated by N2 ∼ r2 in a small region outside of the convection zone
would therefore reproduce the S1/4 observed by early simulations [113,119].

We note briefly that one fairly robust result from the literature of overshooting convec-
tion is that overshoot depths are almost universally seen to decrease as Sstruct (and Sdyn)
increases. One exception is the recent result of Cai [132], who observed that convective
exit velocities increased in the very high Sstruct regime, which in turn produced increasing
overshoot depths; the process which would drive these increased velocities is not clear.

3.3. Convective Overshoot as Turbulent Diffusion

Overshooting has been incorporated into 1D stellar evolution models by parame-
terizing convective mixing using a diffusivity profile (see Section 2.3). An exponential
diffusive profile was observed in the early simulations of Freytag et al. [41]; this profile
was adopted by Herwig [42], and this has been the standard choice in the field ever since.
More recently, Jones et al. [28] found that an exponential turbulent diffusivity described the
turbulent diffusion measured in their simulations well. Herwig et al. [137] have noted that
convective velocities start to fall off before reaching the CZ boundary, which complicates
the implementation of this exponential diffusivity. Separately, Lecoanet et al. [114] see a
fast decrease of turbulent diffusivity outside of their convection zone, but they argue that it
is better parameterized as step overshooting (Section 2.4).

We note that there are two separate questions which must be answered to robustly
describe convective overshoot as a turbulent diffusivity. First, how do the convective
velocities decrease beyond the convective boundary? Korre et al. [135] find that the kinetic
energy is well defined by a Gaussian beyond the convective boundary (e.g., their Figure 4),
while Pratt et al. [99] use extreme value statistics to characterize the maximum depth
that convective plumes overshoot to at any point in time, and they find their results best
described by a Gumbel distribution (exp(−exp(−x))). Once the velocity profile beyond
the convective boundary is understood, we must then ask how the velocity profile relates
to the mixing produced by overshooting convection.

3.4. Entrainment

Entrainment is the process by which convection “scrapes” material from an adjacent
stable layer into the convective region and then mixes that material. Entrainment is caused
by multiple processes (e.g., splashing from convective overshoot or shear instabilities
driven by horizontal convective flow [138]); for simplicity, we consider entrainment to be
any process accompanied by a measurable mixing of the mean radial entropy or chemical
profile at the convective boundary. Energetically, entrainment occurs when convection
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exerts buoyancy work on the adjacent stable fluid. This work raises the potential energy of
a portion of the adjacent fluid enough to dislodge it and drag it into the convecting region.

The earliest entrainment studies examined a stable, linear composition gradient which
was destabilized by heating from below, resulting in the emergence of a convection zone
which grows by entrainment. This simple setup has been studied both in the lab and nu-
merically for the past 60 years [139–146]. These studies proposed and observed a E ∝ Ri−1

B
relationship, where E = ue/ut is the entrainment efficiency, ue is the entraiment velocity
(the rate at which the convective boundary advances) and ut is the turbulent convective
velocity [141]. These studies measured the height of the convective boundary vs. time h(t)
and found generally h(t) ∝ t1/2 (e.g., [139,143,146]) or h(t) ∝ t1/3 [141]. Entrainment has
also been observed and studied in other simulations of Boussinesq convection bounded by
a stable region; these studies further established the dependence of the entrainment rate on
RiB or S [115,147].

More recently, Meakin and Arnett [25] introduced the concept of turbulent entrainment
into studies of stellar astrophysics. They perform 3D hydrodynamic simulations of stellar
convection using stellar structure models as initial conditions and find significant turbulent
entrainment and advancement of the convective boundary (see Figure 6). They find that the
entrainment efficiency follows a power law scaling of E = ARi−n

B , where A ∼ 10−1–10−2

and n ≈ 1, which is well in line with previous geophysical studies. These results have been
corroborated by many hydrodynamical studies over the past decade (e.g., [26,28,31,148–150]),
typically finding power laws with n ≈ 1 and A ∈ [10−2, 1] (see Figure 7). These results
have inspired Staritsin [151] and Scott et al. [152] to include power-law implementations of
turbulent entrainment into stellar models, but they find that the entrainment law calibrated to
simulations leads to the entire star being engulfed by the convection zone on evolutionary
timescales. They do find decent agreement with other forms of boundary mixing using
A ∼ 10−4, but to date, no dynamical simulations have revealed a value of A this small.

We interpret the state of the astrophysical entrainment literature as follows. Stel-
lar models underestimate the size of convection zones consistently. As a result, when
stellar models are used as initial conditions for 3D hydrodynamical simulations, signif-
icant turbulent entrainment is observed as the convecting regions expand to an equilib-
rium size. Unfortunately, most simulations are not long enough to observe the equilib-
rium sizes of convecting regions, so the saturation size of convective zones is uncertain.
Anders et al. [2] studied a simulation under the Boussinesq approximation in which the
Ledoux and Schwarzschild criteria initially disagree regarding the location of the convec-
tive boundary. Convection entrains material at the Ledoux boundary until the two criteria
agree, after which point entrainment stops. Unfortunately, we are unaware of any studies
which both employ the fully compressible equations and allow the size of the convection
zone to fully saturate through entrainment, so these findings should be confirmed in more
complex setups.

One may ask if entrainment should be included in standard stellar evolution models,
just like exponential and step overshoot prescriptions. We believe that a precise imple-
mentation of entrainment is not necessary during the main sequence or other phases of
evolution where the evolutionary timescale is very long compared to the entrainment
rate [2]. However, proper entrainment implementations will improve stellar evolution cal-
culations of short-lived phases of evolution where the size of convection zones are changing
rapidly and where time-dependent convection implementations are necessary [153].
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Figure 6. Data are from a hydrodynamical simulation of an oxygen-burning shell; radial coordinate
is on the y-axis and time coordinate is on the x-axis. Color shows the radial gradient of the oxygen
concentration profile at each time; the thick bright lines denote the top and bottom boundaries of the
convective region. Turbulent convection occurs at times t & 50, and entrainment causes measurable
movement of the convective boundary. Figure 4 of Meakin and Arnett [25]; © AAS. Reproduced with
permission.

Figure 7. Entrainment rate is plotted against the bulk Richardson number for simulations of neon
burning shells [31], oxygen burning shells [25], and carbon burning shells [150]. Entrainment laws
ARi−n

B with A ∼ (0.05, 1) and n ∼ 1 are reported. Figure 5 of Rizzuti et al. [31]; © Oxford University
Press. Reproduced with permission.

3.5. Convective Penetration

The boundary of a well-mixed convective region can advance by entrainment signif-
icantly beyond the Schwarzschild boundary. When this occurs, we refer to the process
as convective penetration, which is characterized by a nearly adiabatic and chemically
homogeneous region which is part of the convection zone but which is characterized by
∇rad < ∇ad.

Convective penetration was hypothesized by Roxburgh and Zahn [39,110,154,155], but
it has been elusive in simulations and experiments. The hallmark of penetrative convection
is mixing of the entropy gradient beyond the Schwarzschild boundary. Entropy mixing
beyond the initial convective boundary has often been reported [113,119,120,123,126,156,157],
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but it is often unclear if the reported process is convective penetration or if it is movement of
the Schwarzschild boundary by entrainment. Another hallmark of penetrative convection is
substantial negative convective flux (and excess radiative flux) beyond the Schwarzschild
boundary; this is frequently observed [99,121,127,158,159] but also often seen in studies of
non-penetrative overshooting convection.

Unfortunately, studies aimed at understanding convective penetration have found
inconsistent or contradictory results regarding how penetration depends on, e.g., S or RiB.
Early studies [113,158] suggested that penetration and Sstruct were linked at low values of
Sstruct (a regime that produces a dynamical Sdyn which is not relevant for core convection,
see Couston et al. [115]), but later studies [119,120] found no link between Sstruct and
convective penetration. However, many simulations have found that penetration lengths
can depend on the magnitude of energy fluxes [125,133,134,160,161].

Robust evidence of convective penetration in numerical simulations was observed
by Anders et al. [116] in 3D Cartesian and Baraffe et al. [162] in 2D spherical simulations.
The dynamics of penetrative convection are shown in the top two panels of Figure 8.
The thermal structure of a convective region with a penetration region is shown in the
bottom left panel of Figure 8. The extent of the penetration region scales strongly with the
penetration parameter P , as shown in the bottom right panel of Figure 8.

Convective penetration occurs in the stationary state, so Equation (21) becomes

−
〈

1
T

(
∇(̇k∇T) + ρε

)〉
=

〈
1
T

Φ
〉

. (34)

This can be rearranged into the integral constraint of Roxburgh [110,154,155],∫
V
−(Ftot − Frad)

1
T2

0

dT0

dr
dV =

∫
V

Φ
T0

dV, (35)

where Ftot is the total flux, Frad is the radiative flux, and T0 is the temperature stratification.
We follow Anders et al. [2] and break up constraint integrals into a CZ (convective zone)
and PZ (penetrative zone) portion. Noting that Fconv = Ftot − Frad, and that dT0/dr < 0,
we obtain∫

CZ
Fconv

∣∣∣∣ 1
T2

0

dT0

dr

∣∣∣∣dV =
∫

CZ

Φ
T0

dV +

[
−
∫

PZ
Fconv

∣∣∣∣ 1
T2

0

dT0

dr

∣∣∣∣dV +
∫

PZ

Φ
T0

dV

]
. (36)

The left-hand side (LHS) of Equation (36) is a buoyant “engine” which quantifies the
buoyant work completed by the convection in the bulk CZ. In a energetically stationary
state, this positive work must be balanced out by the terms on the right-hand side (RHS) of
the equation. We note that in an adiabatically mixed PZ, where ∇ ≈ ∇ad but ∇ad > ∇rad,
radiation carries too much flux Frad > Ftot, so Fconv < 0 is required for equilibrium.
Therefore, all terms on the RHS of Equation (36) are positive and contribute to consumption
of the LHS work. We therefore see that either dissipation is highly efficient in the convection
zone, or a penetrative region characterized by negative buoyant work is required to achieve
energy conservation. Zahn [39] noted that the size of a penetrative region is controlled by
how drastically ∇rad departs from ∇ad in the PZ. This intuition appears mathematically
here: a rapid departure where ∇rad � ∇ad (small P) leads to a large negative Fconv, so
only a small PZ is required for balance in Equation (36). A very gradual departure where
∇rad ∼ ∇ad (large P) leads to Fconv ∼ 0 in the PZ, and so its size is set by the turbulent
dissipative properties of the convection.
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Figure 8. A snapshot in time of a 3D hydrodynamic simulation is displayed in the upper two panels
with the velocity (left) and scaled temperature anomaly (right) shown. The Schwarzschild boundary
is shown as a dashed line, and height where ∇ departs from ∇ad is plotted as a thick horizontal line.
Note in the upper right panel that hot CZ upwellings turn cold in the penetration zone between the
dashed and solid lines. (Bottom left) The time and horizontally averaged∇ profiles from a simulation
such as the one in the top panel; a distinct convection zone (CZ), nearly adiabatic penetration zone
(PZ), overshoot zone (gray shaded region) and radiative zone (RZ) are seen. (Bottom right) The
extent of the PZ is plotted against the penetration parameter, with the expected scaling overplotted in
orange; P is found to be the most important parameter for determining the size of the PZ. Figure 1
(upper two panels), Figure 2 (bottom left panel) and part of Figure 7 (bottom right panel) are from
Anders et al. [116]; these figures were originally published online under a CC BY license.

We note that it is unintuitive for dissipation (Φ) to play an important role in astro-
physical convection, where viscosities are very small. In turbulent flows, the so-called
“zeroth law of turbulence” states that energy which is injected into a turbulent cascade at
large scales must eventually be dissipated at small scales. Therefore, the rate of turbulent
dissipation is not determined by the magnitude of viscosity but rather by the rate of energy
transfer from the largest eddies into the cascade, which scales something like U3/` ([163],
Section 6.1.1). We also note that astrophysical convection occurs in a magnetized plasma,
where additional dissipation processes (e.g., Ohmic dissipation) complicate this picture,
but a full discussion of this work is beyond the scope of this review. We simply note that
dissipation is expected to be substantial, and this has been shown in direct numerical
simulations (e.g., [158,164,165]), although a satisfying model for the magnitude of viscous
dissipation in astrophysical convection has not yet been created. This is an idea that appears
both in the literature of convective penetration and in the other fields such as gravity wave
mixing [96], and it should be examined in more detail.

3.6. Rotational Constraint and Magnetic Pumping

In this review, we focused on results from hydrodynamical (not magnetohydrodynamical),
nonrotating fluid simulations. All stars rotate, and this rotation often strongly influences
convective dynamics [5]. It is generally believed that rotation should decrease the extent of
CBM (although it may create, e.g., meridional circulations which themselves separately
increase mixing). There is evidence that rotation increases the dissipation in convective
flows [166–168], which would decrease the extent of a penetration zone; analytic work
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by Augustson and Mathis [100] also predicts that rotation should decrease the extent of
penetration zones. Brummell et al. [119] find that rotation decreases overshoot, while Dietrich
and Wicht [130] find that only S affects overshoot and not rotation. Browning et al. [121]
studied 3D rotating core convection and found prolate penetration zones aligned with the
rotation axis, which is consistent with the local box simulations of Pal et al. [169], who
found less penetration at the equator than at the poles. The effects of magnetism are even
less studied, but convection can pump magnetic fields out of the convection zone and into
CBM regions; this process was discovered by Drobyshevski and Yuferev [170] and has been
observed in simulations [171,172]; magnetic pumping has been suggested as a mechanism
for solar active region formation [173] and has been used to study the structure of the
Sun’s magnetic field below the convection zone [174]. The manner in which rotation and
magnetism affect CBM remains unclear, and future studies should explore the importance
of these effects on each of the processes discussed in this review.

4. Empirical Calibrations
4.1. Stellar Clusters

Early observational inferences on CBM dating back to 1971 come from the studies of
the old open cluster M67. Both Racine [175] and Torres-Peimbert [176] reported that the
observed gap above the main-sequence turnoff could not be reproduced by isochrones
computed with standard models [176]. A hook is seen in the isochrone at the main-sequence
turnoff and the rapid evolution caused by hydrogen exhaustion results in a gap in the
number of stars observed above the turnoff. By including CBM in the models, Prather and
Demarque [49] demonstrated that this hook and hence gap can persist to much greater ages
and thereby explain the observed gap in M67. Similar discrepancies between observations
and standard model predictions were found around the same time for the open clusters
NGC 752 [177] and NGC 2420 [178]. For the latter cluster, an update in the adopted
opacity tables remained insufficient to explain the gap, and the inclusion of CBM in the
models was required [179]. In comparison, Maeder and Mermilliod [180] considered a
sample of 34 open clusters, finding that the inclusion of CBM is required to explain the
extension of the core-hydrogen burning phase beyond the theoretical sequence predicted by
standard models.

Several additional open and globular clusters have been studied in detail to investigate
whether CBM is required to explain their morphology and distribution of stars in the
color-magnitude diagram (CMD) (e.g., NGC 3680 [181], IC 4651 [182], NGC 2164 [183],
NGC 1831 [184], NGC 1866 [185], NGC 6134 [186], NGC 2173 [187], SL 556 [187], NGC
2155 [187], NGC 1783 [188], NGC 419 [189]). Meaningful inferences on the CBM from these
types of studies requires non-cluster and binary members to be properly identified [182,190].
Isochrones including CBM improve model agreement with observations for these clusters.
The inclusion of improved opacity tables in the models generally tends to decrease the
amount of required CBM, and in some cases, it may be sufficient to explain the observations
without requiring any additional CBM [191].

Demarque et al. [68] were some of the first to consider a mass-dependent CBM in the
calculation of model isochrones. The Y2 isochrones included a gradual increase in the CBM
parameter up to a critical mass above which a constant value was assumed, finding good fits
to the observed CMDs of the seven considered open clusters including M67. However, the
need for CBM is not unambiguous. Michaud et al. [192] argued that no CBM is required to
reproduce the observed CMD of either M67 or NGC 188 if microscopic diffusion is included
in the models. A similar conclusion for M67 was later found by Viani and Basu [193].

A similar mass-dependent CBM to the one adopted by Demarque et al. [68] has since
been included in other isochrones such as the PARSEC isochrones [194], while others such
as the MIST isochrones [195,196] adopt a single value for the CBM parameter. Recently,
Johnston et al. [197] introduced the concept of an isochrone cloud, which shows what an
isochrone would look like if the internal mixing were allowed to vary on a star-by-star basis
without assuming, e.g., a mass-dependent CBM. In this case, the isochrone is no longer
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a thin line but fans out for masses with convective cores. Same age models with higher
mixing will be less evolved due to the extended main-sequence lifetime and define the blue
edge of the isochrone cloud, whereas models with less mixing will be further evolved and
therefore have lower temperatures corresponding to the red edge of the isochrone cloud; see
Figure 3 of Johnston et al. [198]. The isochrone clouds were later used to model two younger
stellar clusters showing extended main-sequence turnoffs (eMSTOs) [198]. eMSTOs are a
broadening of the main-sequence of a cluster near its turn-off for M & 1.4 M�, and they are
common in young and intermediate age clusters (e.g., [199,200]). Age spreads [201], binary
interactions [202], rotation [203], and variations in CBM [204] have been suggested as
possible explanations for the eMSTOs. Spectroscopic observations focusing on measuring
projected rotational velocities, v sin i, of stars in the eMSTO have shown in recent years that
the spread appears to coincide with a spread in v sin i amongst the stars, with faster rotating
stars being redder and cooler than those with lower projected rotational velocities [205–209].
These observations suggest that rotation is the dominant effect behind the eMSTO, and
that the eMSTO is caused by the combined effects of gravity darkening [210,211], where
rotation causes the equators of the stars to be cooler than the poles, and there is a spread
in inclination angles. Lipatov et al. [212] recently provided a tool for accounting for these
effects in the model isochrones. Note that the effects on the positions of the stars in the
CMD caused by gravity darkening and spreads in inclination angles are opposite to those
caused by internal mixing, where faster rotating stars are expected to have higher amounts
of internal mixing. Knowing the inclination angles of the stars could help disentangling
the relative importance of these different effects on the morphology of the eMSTO.

4.2. Apsidal Motion

Apsidal motion, the change in the position of the periastron of a binary orbit, provides
direct evidence of the internal density concentration of the stars in the binary system [213].
Measurements of Apsidal motion are based on the calculation of the apsidal constant k j
(j = 2, 3, 4), which is also known as the density or internal structure constant. From an
observational standpoint, only the second-order apsidal motion constant k2 is usually
important [214], and it takes on a value of k2 = 0.75 for a homogeneous density distribu-
tion [213,214]. In reality, rather than deriving the individual component apsidal constants,
one instead works with a weighted average value k2 of the two binary components [214].

Figure 9a illustrates how the size of the CBM region affects log k2 throughout the main-
sequence evolution for three different initial stellar masses. The decrease in log k2 during
the main-sequence evolution is caused by the fusion of hydrogen to helium, resulting in
the stars becoming more centrally condensed as they evolve. Aside from CBM, changing
the opacity and metallicity of the models likewise changes the predicted k2 values [215];
see panel b of Figure 9. Stellar rotation also impacts the derived k2 values by making the
stars more centrally condensed [216]. Finally, both CBM and stellar winds lead to more
centrally condensed models but impact the stellar luminosities differently by making the
models more (less) luminous when CBM (mass loss) is included [214].

The binary system Spica (α Virginis) is one of the first systems where the measured
apsidal motion constants implied a need for CBM to reconcile models with observa-
tions [217,218]. Initial studies of this system showed that the observed luminosities and
effective temperatures could be matched to the models by varying the initial mass and
helium content, but the predicted apsidal constant was a factor of two too high compared to
the observed value. Including CBM allowed L, Teff, and k2 to simultaneously be reconciled.
However, the use of different opacity tables could potentially reconcile these quantities
without CBM [216]. Further constraints could potentially be obtained by studying the
primary star, which is a known β Cep pulsator. While the oscillations of this star have
previously been studied using both photometry and spectroscopy [219–224], no detailed as-
teroseismic modeling has so far been achieved. Given that the primary β Cep star has been
selected as a priority 1A target for the future asteroseismic CubeSpec space mission [225],
this might change in the future.
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Figure 9. Evolution of the apsidal constant k2 for three different initial stellar masses. (a) Variation in
k2 resulting from varying the extent of the CBM region assuming exponential diffusive overshoot
and a fixed initial chemical composition of X = 0.71, Y = 0.276, and Z = 0.014. (b) Variation in k2

resulting from changing the initial metallicity of the stars, assuming a mass-dependent CBM [71].
Figure made by the authors using MESA models (panel a) and pre-existing model grids by Claret [71]
(panel b). MESA inlists and data used to generate panel (a) are available on Zenodo [33].

The need for CBM to reconcile the observed apsidal constants with theoretical values is
not unambiguous. Claret and Gimenez [226] studied 14 eclipsing binaries in the mass range
of 1.5–23 M� and showed that a rotation correction to k2 could reconcile the observed and
theoretical values. For the binary system PV Cas, however, the inclusion of rotation was
insufficient to reconcile the observed and theoretical k2 values [227]. Several studies which
employ a single value of the CBM parameter for all masses find good agreements between
modeled and observed apsidal motion constants within the observational errors (e.g., [228–234]),
while others find the theoretical values to be either larger (e.g., [229,234–237]) or smaller
(e.g., [230,238,239]) than observations. More recent studies rely on model grids where
a mass-dependent CBM was assumed (see Section 4.3.1 ), and they find good agreement
between theory and observations [240]. A few studies have tried to optimize the CBM
parameters of individual binary components based on the apsidal constant. One such
study of 27 double-lined eclipsing binaries found good agreement with a predetermined
mass-dependent overshooting.5 The only outlier was the moderately evolved, high mass
(M1 ≈ 14 M�, M2 ≈ 11 M�) system V453 Cyg, where more CBM was favored. This is not
the only example of systems requiring higher CBM parameters. The study of the apsidal
motion of the high mass binary system V380 Cyg indicated the need for a high overshooting
parameter of αov ≈ 0.6± 0.1 for the primary component [242], although the errors on the
estimate were later suggested to be larger [243]. Finally, a separate study of two massive,
eccentric binary systems in the open cluster NGC 6231 required enhanced internal mixing
either from CBM or turbulent diffusion to reconcile the theoretical apsidal constants with
the observed values [244].

4.3. Mass Discrepancy

The mass discrepancy problem is a disagreement between spectroscopically derived
stellar masses6 and those obtained from stellar evolution models. This disagreement
appears on the HR diagram because stars and their expected evolutionary tracks do not
overlap [245,246]. Derived spectroscopic masses are systematically lower than evolutionary



Galaxies 2023, 11, 56 23 of 45

masses (see Figure 10a), hinting toward missing or inadequate physics in the standard
stellar structure and evolution models used. In stellar binaries, the mass discrepancy is a
disagreement between dynamically derived component masses and evolutionary masses
from standard models when a common age is enforced (see Figure 10b). This problem was
first seen for the binary systems SZ Cen [182,247], BW Aqr [248], and BK Peg [248], where
the inclusion of CBM is needed in order to obtain satisfactory fits to the more massive
components of the systems. These early studies did not consider a difference in CBM
parameters between the components of the systems.

Figure 10. Examples of observed mass discrepancies. Better agreement between both MEvol-MSpec

and MEvol-MDyn is generally found for less evolved stars. (a) Observed mass discrepancy between
spectroscopic (x-axis) and evolutionary (y-axis) masses derived for a sample of 32 high-mass stars [245,246].
Similar errors to those for MSpec were assumed for MEvol for the round data points. (b) Observed mass
discrepancy between dynamical (x-axis) and evolutionary (y-axis) masses derived for a sample of 11
double-lined eclipsing binaries [77]. Errors on the measurements are typically smaller than the size of the
data points. Figure made by the authors using data from Groenewegen et al. [245], Herrero et al. [246],
and Tkachenko et al. [77].

Large CBM parameters (primary αov = 0.3–0.5; secondary αov = 0.1–0.4) derived
from vectors in the mass–luminosity plane were found for the high-mass (M1 = 39.5 M�,
M2 = 33.5 M�) detached eclipsing binary system HD166734 [22]. These stars are blue
supergiants (BSGs), and explaining the population of BSGs is a long-standing problem
for stellar structure and evolution theory. The area in the HR diagram where the BSGs
are found is expected to be scarcely populated due to rapid post-MS stellar evolution, but
the opposite is observed [249]. There are two likely explanations for this: (1) the main
sequence is extended compared to standard models and BSGs are core-hydrogen-burning
stars, or (2) BSGs are post-MS stars undergoing core helium burning. The mass–luminosity
plane inference of high CBM parameters suggests that most blue supergiants (BSGs) are on
the main sequence close to the TAMS [24]. However, the fact that BSGs are slow rotators
(v sin i ≤ 50 km s−1) compared to hotter massive stars with v sin i . 400 km s−1 seemingly
supports the core helium burning scenario, because rotational velocity should decrease
after the main sequence as the stellar envelope expands [250]. This expansion is tied to the
star’s log g value, and Brott et al. [251] used log g values to calibrate the CBM parameter
at 16 M�, finding αov = 0.335. However, the drop from v sin i ≈400 km s−1 to ≤ 50 km s−1

coincides with the effective temperature of ≈22,000 K, where rotational braking due to
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enhanced mass loss may occur [252]. Such braking requires a CBM parameter αov ≥ 0.335
to occur at masses as low as 10 M�.

Another binary system which suggests the importance of CBM is V380 Cyg. The pri-
mary component’s mass discrepancy is extreme and may be in excess of
10–30% [77,242,253,254]. One solution to this problem is to use a CBM parameter
of αpen = 0.6 ± 0.1 for the primary component, with no CBM required to reconcile
the less evolved near-ZAMS secondary component [242]. Recent updated component
parameters show that a discrepancy also exists for the secondary component, which
can be fixed by decreasing the metallicity and increasing the mass of the star within
its 3σ error [254]. For the primary component, a mass at the 3σ limit combined with a
high rotation (vZAMS = 241 km s−1) and strong level of CBM (αpen = 0.6) was required
to reconcile the evolutionary models with the observations [254]. Another complication
is that the primary has high microturbulence velocity (ξ = 15 km s−1), and neglecting
this in the spectroscopic analysis causes the effective temperature to be overestimated
by ≈1700 K (≈8%)7 [77]. This would likewise impact the derived Teff of the secondary
both from spectroscopic disentangling and photometric analysis of the light curve.
Appropriately accounting for the effect of microturbulence in the spectroscopic analysis
in combination with the inclusion of CBM could fully explain the mass discrepancy of
this system. Such an analysis has yet to be carried out.

In comparison to the four binary systems discussed above, excellent fits to the obser-
vations were found for the binary systems V792 Her [255], AI Phe [256], and UX Men [257]
using standard models without CBM. These systems cover the mass range 1.2–1.5 M�,
whereas the more massive components of SZ Cen, BW Aqr, BK Peg, and V380 Cyg have
masses between 1.43 and 11.43 M�. These seven systems provide some indication that a
mass dependence may exist for CBM.

4.3.1. A Search for Mass-Dependent CBM Using Binary Systems

Detached double-lined eclipsing binaries (DDLEB) provide great test beds for stellar
structure and evolution models. The component masses, radii, and effective temperatures
of DDLEBs can be precisely and accurately measured, and the components can reasonably
be assumed to share a common age and composition. The advantage of using DDLEBs
over single stars can clearly be seen from a comparison of the errors between panels a and
b in Figure 10.

The largest sample of DDLEBs that have been used to investigate the presence of a
mass dependence of CBM consists of 50 systems (100 stars) in the mass range of 1.2 to
4.4 M� [258]. For all of these systems, the masses and radii are known to a 3% accuracy or
better, while the effective temperatures are known to a 5% accuracy. An ensemble study
of these stars revealed that the extent of the CBM region appears to be steadily increasing
with mass from 1.2 to 2 M� and reaches a plateau that persists up the upper limit of the
mass in the sample of 4.4 M�; see gray data points in Figure 11. The associated by-eye fit
to the data [20] is shown by the solid blue line in Figure 11, while an earlier result by the
same authors for a smaller sub-sample of 33 DDLEBs and where convective penetration
was used instead of exponential diffusive overshoot is indicated by the orange dotted
line [258]. The switch from using convective penetration to exponential diffusive overshoot
was mainly a result of a change in the adopted stellar structure and evolution codes, and it
also allowed for derivation of a relation αpen/ fov = 11.36± 0.22 [76] that could be used to
perform a conversion between the two CBM parameters; see also Section 2.8. The small
offset between the orange dotted and solid blue line in Figure 11 for M > 2 M� is caused
by differences in the assumed primordial helium abundance [76].

One of the first studies of DDLEBs where a mass-dependent CBM was investigated
relied on a sample of three ζ Aurigae systems (wide eclipsing binaries where the primary
component is a late-type bright giant or supergiant) and three related non-eclipsing binaries
also containing an evolved primary component [259]. As indicated in Figure 1, the effects
of CBM on evolutionary tracks become more pronounced as stars age, so these systems
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were suggested as ideal test beds for CBM. The size of the CBM region was found to slightly
increase with mass from ≈0.24 Hp,cc at 2.5 M� to ≈0.32 Hp,cc at 6.5 M�; see the yellow
dotted curve in Figure 11. Ribas et al. [260] relied on a sample of eight DDLEBs with
masses between 2 and 12 M�, and they likewise found an increase in the extent of the CBM
region with mass but with a steeper slope for the increase toward higher masses; see the
black dashed line in Figure 11. This latter result was largely guided by V380 Cyg, which
was one out of only two systems in the sample with masses above 3.4 M�. Like the studies
mentioned above, a large CBM parameter αov ≈ 0.6 was found for this system, whereas a
lower αov ∼ 0.2–0.5 was needed for the similar mass system HV 2274. An age dependence
of the CBM parameter was suggested as a possible solution to this difference in αov.
Ribas et al. [260] also used data from prior studies of lower mass stars for the construction
of their mass versus CBM relation partly shown by the black dashed line in Figure 11.
A similar study with a significant overlap (eight out of 13) in the considered sample of
DDLEBs with masses between 1.35 and 27.27 M� also arrived at a mass-dependent CBM
but with a much shallower slope for stars with masses above ≈2 M� [261]; see the green
dashed–dotted curve in Figure 11. In this case, the errors on the derived CBM parameters
are large, and the CBM–mass relation is therefore ambiguous.

If BSGs are core-hydrogen-burning stars, their distribution in the HR diagram provides
some evidence for a mass-dependent CBM. Castro et al. [21] provided the first observational
spectroscopic HR diagram8 of massive stars in the Milky Way, and they compared the
main-sequence density distributions to non-rotating model grids with two values of the
CBM parameter. They find evidence of the CBM increasing from αov = 0.1 at 8 M� to
αov = 0.335 at ≈15 M�, and a larger αov is needed for higher masses. The inclusion
of rotation in their models still showed that CBM is required, but mass dependence is
not unambiguous.

Figure 11. Inferred mass versus CBM obtained for a sample of 50 DDLEBs (gray points with errors) [262]
compared to different empirical relations available in the literature obtained from modeling different
samples of DDLEBs. Conversion factors of αpen/ fov = 11.36 [76] and αpen/αov = 1 were assumed for the
inclusion of the individual curves in the figure. The plotted range is limited to the mass range of the 50
DDLEBs. Errors of σfov = 0.006 were assumed for main-sequence stars, while σfov = 0.004 were used for
giants [262]. Figure made by the authors using data from Claret and Torres [262], Claret and Torres [20],
Claret and Torres [76], Claret and Torres [258], Claret [261], Ribas et al. [260], and Schroder et al. [259].
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4.3.2. Evidence against Mass-Dependent CBM and Complications

The detection of a mass-dependent CBM relying on ensembles of DDLEBs is not unam-
biguous, and the reliability of the result has been questioned in several cases. Costa et al. [263]
studied an earlier sample of 38 out of the 50 DDLEBs mentioned above, using stellar models
including both CBM and rotational mixing and applied a Bayesian analysis to investigate the
mass dependence of CBM [263]. Due to the wide scatter and large errors on the derived
CBM parameters, the authors do not find a clear mass dependence on the CBM but rather
identify a wide distribution of valid CBM parameters between ≈0.15 and 0.4 Hp,cc for
M > 1.9 M�, which is contrary to the constant value shown for the solid blue and dotted
orange curves in Figure 11. They suggest that the distribution could be explained using
models with a constant CBM parameter αov = 0.2 and initial rotational velocities between
0 and 80% break-up velocity. Constantino and Baraffe [264] analyzed a different subset of
eight representative systems out of the 50 DDLEBs to determine whether or not the derived
CBM parameters for each system are unique. They found that the uncertainties on the
derived fov values are high and a single value of the CBM parameter could be used for
the entire mass range of 1.3–3.7 M�. No mass dependence on the CBM was found, but the
results did indicate that CBM was needed for M > 2 M�. The derived uncertainties may be
too pessimistic, as this work did not take into account additional constraints available from
including the effective temperatures in the analysis [262]. Uncertainties could be further
reduced if more precise effective temperatures and metallicities were obtained [264].

Meng and Zhang [265] considered a sample of four eclipsing binary systems relying
on a CBM formalism that did not use the pressure scale height to determine the extent
of the CBM region, and they found no CBM dependence on the mass in the range 1.2
to 2.5 M�. Stancliffe et al. [266] also found no CBM dependence on mass or metallicity
for their sample of nine eclipsing binaries with M = 1.3–6.2 M� using both exponential
diffusive overshoot and a non-traditional CBM formalism where an adjustment was made
directly to the Schwarzschield criterion based on the ratio between the radiation and gas
pressure and a free CBM parameter [266]. A more recent study relied on a sample of
11 DDLEBs with M= 4.6–17.1 M� where the fundamental and atmospheric parameters
were all derived using the same methodology in contrast to the ensemble studies mentioned
above [77]. No mass dependence on the CBM parameter was found for this sample, but the
observed mass discrepancy could be explained by a combination of a need for higher core
masses and the lack of proper treatment of microturbulent velocities in the spectroscopic
analysis of the stars.

Discussions dating back more than 30 years argue that in order to constrain helium
abundances, opacity tables, mixing length and/or CBM parameters, the binary star param-
eters must be known to accuracies of at least 1% (for radii), 2% (for mass and temperature),
and 25% (for metallicity) [267]. These numbers have been backed up by more recent sta-
tistical studies on using binary systems to constrain CBM. Valle et al. [268] argue that
systems with masses between 1.1 and 1.6 M� where both components are on the main
sequence cannot be used to calibrate CBM when the errors on the component masses are
appropriately accounted for. The only exception is when the primary is in the last 5%
of its main-sequence evolution. This study assumed errors on the effective temperature,
metallicity, component masses, and radii of 100 K, 0.1 dex, 1%, and 0.5% respectively. The
observed biases and uncertainties are reduced when the errors on observed parameters
are reduced. In comparison, a similar statistical analysis using the more evolved binary
system TZ Fornacis (Mprimary = 2.057± 0.001 M�, Msecondary = 1.958± 0.001 M�) found
that good constraints on CBM could be obtained, owing to the low errors on the component
masses [269]. Biases were also found from a subsequent statistical analysis assuming a
M = 2.50 M� primary star in three different post-main-sequence evolutionary stages and
a M = 2.38 M� secondary [270]. However, differentiating between cases of no and mild
CBM is generally possible, unless the primary is undergoing central helium burning. For
the 50 DDLEBs in Figure 11, 59% of the component masses are known to better than a
1% accuracy, while for 20% and 2% of the stars, the masses are known to a 0.5% and 0.1%
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accuracy, respectively. The errors on the component masses were not taken into account
when deriving the CBM parameters for the 50 DDLEBs in Figure 11, but the metallicity was
allowed to vary within the observed errors [20,76,262].

The results of the statistical analyses mentioned above seem backed up by earlier
attempts at studying CBM using 49 DDLEBs, which found that both models with and
without CBM provide satisfactory fits to the observations of 80% of the systems, but models
with CBM provide better fits for systems with components in the post-main-sequence stage
of stellar evolution [271]. This once again points toward the complications arising from
using main-sequence DDLEBs to constrain CBM.

Finally, all of the studies discussed above have been conducted under the same
assumption that the evolution of the binary systems can be treated as the evolution of
two single stars without accounting for impacts from binary interactions on the stellar
models. Such an assumption has been shown to be reasonable for the evolution of well-
detached preinteraction binary systems at least when rotational mixing in single versus
binary stars is considered (e.g., [272]). For detached, short-period (Porb < 2 d) binaries with
strong tidal interactions, the conclusions appear to be mixed. Some studies suggest an
enhanced rotation mixing in the presence of strong dynamical tides [273]. Others suggest
that the effects of tides are limited in detached systems [272,274], while another recent
study indicates that internal mixing is less efficient in detached binary systems than for single
stars ([275], Porb = 1.46–6.32 d for 10 of the considered binary systems, and Porb = 12.43–33 d
for the remaining three). For the sample of 50 DDLEBs shown in Figure 11, 21% and 31%
have orbital periods below 5 and 10 d, respectively, while 52%, 23%, and 9.6% have Porb in
excess of 100 d, 200 d, and 500 d [276–287].

4.4. Asteroseismology

Asteroseismology is the study and interpretation of stellar pulsations, and it provides a
powerful tool for studying stellar interiors. The pulsations are observed as variations in the
surface brightness of the stars and extend deep into the stellar interiors, thereby carrying
information about the conditions within. Modifications to the interior structure result
in changes to the expected oscillation frequencies, and confronting predicted oscillation
frequencies with observations in a process known as asteroseismic modeling provides
important constraints on stellar structure and evolution theory. Such constraints have
especially been made possible in the past couple of decades since the advent of space
telescopes including WIRE (e.g., [288]), MOST [289], CoRoT [290,291], Kepler [292,293],
K2 [294], BRITE [295], and TESS [296], which provide high-precision, high-cadence, and
long-time baseline photometric light curves. These high-quality data resulted in a drastic
increase in the number of detected oscillation frequencies in stars all across the HR diagram
and provided the high-frequency resolution needed for mode identification required for
asteroseismic modeling. Several review papers and books on asteroseismology already
exist (e.g., [297–305], and references therein). Therefore, we refer to these papers for details
on different types of pulsators, analysis methods, new discoveries, and procedures for
asteroseismic modeling, and we focus here on the inferences made on the CBM from
asteroseismic studies of both single and binary stars.

4.4.1. Onset of the Convective Core

One avenue to place constraints on CBM is studying stars in the mass regime where
the transition between radiative to convective cores is expected to occur (≈1.1 M�). In
this regime, we find the solar-like oscillators that oscillate in pressure (p) modes. These
oscillations are an excellent probe of the convective core size, because they are modified by
the presence of acoustic glitches in the sound speed profile caused by the sharp chemical
gradient at the convective boundary [306–309]. As an example, a convective core with
either little or a moderate amount of overshooting was found for the 1.18± 0.04 M� star
KIC 12009504, whereas no convective core could unambiguously be found for KIC 6106415
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(1.11± 0.04 M�) [310]. Another example is HD 203608 (0.94± 0.09 M�), for which models
with convective cores agree better with the observations than models without [311].

Stars such as the Sun arrive at the zero-age main-sequence (ZAMS) with a small
convective core, which quickly disappears during the main-sequence evolution. The
presence of the convective core is caused by an excess of 3He and 12C at the ZAMS, which
are transformed to 4He and 14N through highly exothermic nuclear burning capable of
sustaining a convective core [312]. The inclusion of CBM extends the lifetime of the
convective cores [312], possibly even until the end of the main sequence if sufficiently high
CBM parameters are considered [313] (see also Roxburgh [312] for a detailed discussion).
For HD 203608, such overshooting (αov = 0.17± 0.03) allows the convective core to survive
until the present age of the star [311]. For this particular star, the convective core would
have disappeared at an age of 200 Myr without CBM, whereas it is expected to survive until
≈7 Gyr with overshooting. Stars of similar masses where no convective cores are found are
of equal interest as they provide an upper limit for the extent of the CBM region.

4.4.2. Extent of the CBM Region across the Main-Sequence

To compare asteroseismic inferences on CBM to the results presented in Figure 11
for the study of binary stars, we compiled a sample of pulsating main-sequence stars for
which a mass and CBM parameter has been derived asteroseismically. This full sample
is shown in panel a of Figure 12, including also three of the CBM–mass relations from
Figure 11 for reference. The asteroseismic CBM parameters were all converted to αpen
assuming αpen ≈ αov and αpen ≈ 11.36 fov. The lack of measurements between ≈2 and
≈3 M� corresponds to the gap between the δ Sct and SPB instability strips. For 13 stars in
this sample, only a lower (upright triangle) and upper (inverted triangle) limit on the CBM
are available. Nine of the 13 stars are located in the open cluster NGC 6910 [314]. As seen in
panel a, there is a general trend of increasing CBM parameters with increasing stellar mass
for stars with M . 2.5 M�9; however, the scatter is larger and the CBM parameters are
generally higher than the values found for the sample of 50 DDLEB in Figure 11. For the
higher mass stars, a wide range in CBM paramaters are found with no clear dependence
on stellar mass and inconsistent with a single value of the CBM parameter as previously
found for the DDLEBs. We note that for a few of the stars, no CBM was needed to match
the models to the observations.

The CBM parameters shown in Figure 12 were derived using a variety of different
stellar structure and evolution codes and different 1D prescriptions for the CBM. As
discussed in Sections 2.7 and 2.8, making direct comparisons and conversions between
CBM parameters obtained from different sources is non-trivial. For this reason, we show
in panels b–e four different sub-samples of the stars in panel a where a consistent stellar
structure and evolution code and modeling methodology was applied to each sample.
The data are color-coded according to the age of the stars either measured in Gyrs or
taken as the ratio between the current and initial core hydrogen mass fraction Xc/Xini. In
panel f, we show all stars with M ≥ 3 M� for which an estimate of Xc/Xini is available
irrespective of the adopted code and modeling procedure. As the main-sequence lifetime is
largely dependent on both the initial stellar mass and internal mixing properties of the stars,
Xc/Xini provides a much better age indicator when conducting comparison studies [341].
For this high-mass sample, we expect the differences in CBM prescription to be largely
insignificant (cf. Section 2.7).

Panels b and c of Figure 12 show two different ensemble studies of solar-like oscillating
stars, which both indicate an increase in the CBM parameter with mass albeit at different
levels. For both samples, the derived CBM parameters are higher than the relation derived
by Claret and Torres [20] from DDLEBs. The sample in panel b was modeled using the
Cesam2k code both with (open squares) and without (filled circles) microscopic diffusion,
indicating that less CBM is needed to explain the observations if microscopic diffusion
is taken into account [315]. This is in line with previous results from the open cluster
M67 [192,193]. In comparison, the sample in panel c was modeled using the YREC code,
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using the concept of an effective overshoot parameter which accounts for the automatic
adjustment of the size of the CBM region to avoid nonsensical core sizes [73]. A similar
study also derived the effective overshoot parameters for a sample of solar-like oscillators,
finding the current effective overshoot parameter to be zero up to ≈1.1 M� above which a
scatter in the effective αov values appears and increases toward higher masses [342].

Figure 12. Asteroseismically derived CBM parameters available in the literature for 154 pulsating
main-sequence stars. To combine the data from all sources in panel (a–f), we assumed αov ≈ αpen

and 11.36 fov ≈ αpen. Panels (b–d) show sub-samples of the stars from panel (a), where an ensemble
study was carried out using the same stellar structure and evolution code and modeling method-
ology [73,315–317]. In panel (f), only M ≥ 3 M� stars from panel (a) with a known Xc/Xini value
are shown. For stars without estimated errors on the initial mass and CBM parameter, we adopt the
average fractional errors from the sample with error estimates. Figure made by the authors using
data from the following sources: [19,20,65,73,75,259,260,310,311,314–340].

Both of the samples of pulsating stars in panels d and e were modeled using different
versions of the MESA code and using machine learning algorithms to derive the stellar
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parameters from the observed oscillation properties of the stars. For the sample of solar-
like stars in panel d, the majority of the stars show an increase in CBM parameter with
mass and generally higher CBM parameters than the relation predicted by Claret and
Torres [20]. For the sample of γ Dor stars in panel (e), no clear mass dependence is found.
However, the errors on the CBM parameter are large and span the entire parameter range
considered [317]. This is likely caused by the inability of the neural network to capture the
fine details of the pulsation properties of the models, which are important for constraining
this parameter.

The final panel f of Figure 12 focuses on the M ≥ 3 M� stars in the sample where a
common Xc/Xini age indicator is available. For 26 of the stars shown here, an ensemble
study was carried out, whereas the remaining stars were studied individually. As already
mentioned earlier, a much larger scatter in the CBM parameter is seen here with no
indication that a single parameter fits all of the stars. No clear dependence on age is seen,
either. One possible explanation for the observed scatter is that additional interior physical
processes are influencing the measured and required CBM. As an example, envelope mixing
arising from, e.g., internal rotation has a similar effect in bringing additional hydrogen to the
core and can therefore enhance the effective core size. This gives rise to some degeneracies
between the CBM and envelope mixing, which can be difficult to disentangle. On the
other hand, internal magnetic fields can inhibit CBM. As an example, the low amount of
overshooting ( fov = 0.004+0.012

−0.002) found for the pulsating magnetic B-type star HD 43317
suggests that the magnetic fields of the star might be suppressing the mixing near the core
boundary [331]. The lack of observed high-radial order gravity (g) modes suggests that a
near-core magnetic field of at least 500 kG is suppressing these modes in the star [343]. Prior
to these results, the asteroseismic modeling of the magnetic β Cep star V2052 Ophiuchi
revealed a lower overshoot parameter (αov = 0.070.08

0.07, [325]) compared to its similar mass
β Cep counterpart θ Ophiuchi (αov = 0.44± 0.07, [321]), indicating that magnetic fields are
likely inhibiting the CBM for this star as well. For the lower mass (M = 2.4 M�) magnetic
pulsating Ap star, a CBM parameter of fov = 0.014 was found [333] with no clear indication
of inhibition of the CBM by the magnetic fields of the star.

4.4.3. Differentiating between Different CBM Prescriptions

Gravity mode oscillators are of particular interest for studying CBM, as g modes have
their main probing power in the near core regions of the stars. SPB stars (3–10 M�, g-modes)
have been shown to be capable of distinguishing not only between different shapes of
DCBM(r) profiles [64,344] but also between different choices of temperature gradients in
the CBM region [64]. A higher-frequency precision corresponding to longer light curves
(>1 yr) is needed to distinguish between different shapes of the mixing profiles compared
to between radiative and adiabatic temperature gradients (>90 d) [64]. Oscillations in
β Cep variables (10–25 M�, p- and g-modes) can also distinguish between different CBM
profiles and temperature gradients, but they require the mass of the star to be known to
at least 1 % precision. Similar theoretical studies have not yet been carried out for γ Dor
(g-modes) or δ Sct (p-modes) stars, while it was found for solar-like oscillators that their
p-modes could not be used to differentiate between exponential diffusive overshoot and
step overshoot [315].

So far, asteroseismic inferences on the shape of DCBM(r) and choice of ∇T have only
been attempted in a few cases, with the majority of studies focusing on estimating “just”
the extent of the CBM region as discussed in the previous section. KIC 10526294 and
KIC 7760680 are the first two SPB stars where a comparison between results assuming a
step and exponential diffusive overshoot prescription was made [75,327]. For both stars,
it was found that models with exponential diffusive overshoot provide better matches
to the observed period spacing pattern compared to models with step overshoot. In
a subsequent study of KIC 7760680, the CBM profile was fixed to that of an extended
convective penetration, while the temperature gradient was varied between a purely
radiative gradient and one gradually changing from adiabatic to radiative based on the
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Peclet number (see Section 2.6) [65]. For this star, a radiative temperature gradient in the
CBM region was preferred. However, it was also found that models without CBM were
statistically preferred over models including CBM when the number of additional free
parameters was taken into account. A comparison between step and exponential overshoot
was briefly made for the SPB star KIC 8264293. The difference between the two was found
to be minor, which was likely because the star is near the ZAMS and thereby lacks a
significant chemical gradient at the core boundary, and the more extensive asteroseismic
modeling of the star focused only on the exponential diffusive overshoot [340]. Finally,
an ensemble asteroseismic study of 26 SPB stars revealed that 54.9% of the stars preferred
convective penetration, whereas for 45.1%, the exponential diffusive overshoot prescription
did better at reproducing the observed period spacing pattern [19,338].

5. Discussion and Future Work

In this review, we provided an overview of convective boundary mixing (CBM) in the
main sequence stars. We discussed the most frequently used prescriptions for including
CBM in 1D stellar evolution models. We described CBM from a hydrodynamics perspective
with an emphasis on lessons learned from simulations. We provided an overview of the
observations that are at odds with “standard” 1D models and showed how excess (often
mass-dependent) mixing can better align models and observations.

Despite great progress in recent years, there remains plenty of work to do before a
complete understanding of CBM will be achieved. In particular, most CBM processes
described hydrodynamically and in simulations still lack robust parameterizations in 1D
models. We encourage 1D modelers and 3D numericists to forge partnerships to derive, test,
and apply new simulation-based prescriptions. We note in particular that there is a great
deal of degeneracy in the language which is used to describe CBM processes in the literature
(e.g., “overshoot” and “penetration” are often used interchangeably), and our community
must adopt language which clearly differentiates between the various physical mechanisms
at work. Below, we enumerate suggestions for future work and recommendations for future
experiments which we believe will help to sort out the decades-old problem of CBM in
stellar evolution.

From the perspective of 1D modeling and applying those models to observations, we
have the following suggestions:

1. First and foremost, it is valuable to “grow the catalogue” of CBM observations. More
observational constraints will allow us to not only test and verify new models but
also may allow us to understand how complications such as, e.g., rotation affect CBM.

2. A uniform analysis of past observations using a consistent stellar structure and
boundary mixing scheme should be performed.

3. To ease comparisons in future work, authors should clearly state which quantities
their CBM prescriptions mix. Specifically, does CBM adjust ∇T or not?

4. Evidence for extended convective penetration (Section 2.6) is seen in hydrodynamical
simulations, and this prescription should be included in more stellar structure codes
and models.

5. In main sequence intermediate- to high-mass stars, the mass and radius of the convec-
tive core should be clearly reported along with the mass and size of the CBM region.
Whether the reported convective core mass does or does not include the mass in the
CBM region should also be specified. This circumvents difficulties associated with
making comparisons between codes using different CBM prescriptions and methods
of limiting the size of the CBM region.

6. When reporting ages of stars on the main sequence, also report a quantity such as the
core hydrogen fraction Xc/Xinit for easier comparison across works.

We also recommend that the following experiments be performed and prescriptions
be derived from 3D hydrodynamical simulations:
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1. Whenever possible, 3D hydrodynamical simulations should strive to provide pre-
scriptions that do not have free parameters but instead rely on stellar structure.

2. For example, overshoot depth and turbulent diffusive mixing profiles should be
carefully calibrated and parameterized so that overshoot can be evaluated as a function
of stellar structure rather than a specified fov.

3. The 1D prescriptions derived from 3D simulation data should be validated using
the same initial conditions employed in the 3D simulations. If the 1D prescription
produces a different result from the 3D data, this should be explored in detail.

4. Simulations probing the thermal structure near a convective boundary should be
evolved until thermal equilibrium is achieved. Performing short simulations which
are initialized with CBM regions of various sizes can however qualitatively answer
the question, “Which way does the convective boundary move?”

5. It is not clear how to properly parameterize dissipation, but dissipation sets the size
of a convective penetration region. Future studies should answer the following: what
sets the magnitude of the viscous dissipation? How does rotation affect it? How does
magnetism and the presence of Ohmic dissipation affect it?

6. Entrainment is important when convective regions are first forming or when the
convective luminosity or nuclear burning change rapidly compared to the convective
overturn timescale. These evolutionary stages should be modeled by time-dependent
convection (TDC) prescriptions [153]. Future work should test whether TDC models
reproduce the entrainment rates at convective boundaries observed in simulations,
and TDC models should be improved where they disagree with simulations.

A long-standing problem for stellar modelers and observers is the uncertainty that
convective boundary mixing introduces into 1D stellar models. The uncertainties asso-
ciated with CBM not only affect studies focused on stars but also ripple through other
astrophysical disciplines which depend on state-of-the-art stellar models. Great strides
have been made in the past few decades in understanding CBM both from observations,
1D, and 3D simulations. By combining the efforts of these often disparate lines of work, we
can create and validate new mixing prescriptions and solve this long-lived problem.

Author Contributions: E.H.A. and M.G.P. contributed equally to all aspects to this manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: E.H.A. was supported by a CIERA Postdoctoral Fellowship. This research was supported
in part by the National Science Foundation under Grant No. NSF PHY-1748958 as well as through
the TESS Guest Investigator program Cycle 4 under Grant No. 80NSSC22K0743 from NASA and
by the Professor Harry Messel Research Fellowship in Physics Endowment, at the University of
Sydney (M.G.P.).

Data Availability Statement: Inlists used to generate MESA stellar models in this work and data
plotted in original figures are available online in the supplementary materials Zenodo [33].

Acknowledgments: E.H.A. thanks Adam Jermyn, Daniel Lecoanet, Benjamin Brown, Jeffrey Oishi,
Adrian Fraser, and Rafa Fuentes for years of discussions on topics related to CBM. We thank
Raphael Hirschi, Casey Meakin, Federico Rizzuti, and Tami Rogers for allowing us to reproduce
figures from their past work. We also thank Jorick Vink, Dominic Bowman, and Jennifer van Saders
for inviting and organizing us in writing this review. We are grateful to the participants of KITP’s
“Probes of Transport in Stars” program from Fall 2021, where we had many useful discussions
regarding CBM.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Galaxies 2023, 11, 56 33 of 45

Abbreviations
The following abbreviations are used in this manuscript:

BSG Blue supergiant
CBM Convective boundary mixing
CZ Convection zone
DDLEB Detached double-lined eclipsing binary
eMSTO Extended main-sequence turnoff
LHS Left-hand side
RHS Right-hand side
RZ Radiative zone
PZ Penetrative zone
TAMS Terminal age main sequence
ZAMS Zero-age main sequence

Notes
1 To account for the step f0Hp,cc taken inside of the convective core, one would usually add f0 to the overshooting parameter. As

an example, in MESA one would use overshoot_f= fov + f0, where overshoot_f is the name of the overshoot parameter in MESA.
2 We note that the authors of both of these studies of detached double-lined eclipsing binary systems [76,77] use αov in their

notation, but they are actually assuming an adiabatic temperature gradient in the CBM region. In other words, while they talk
about a step-based overshooting using the free parameter αov, they are in fact referring to convective penetration.

3 The Anelastic approximation models low Mach number flows and assumes that Equation (12) reduces to ∇ · (ρ0u) = 0 where ρ0
is the “background” density. The Boussinesq approximation goes one step further and assumes incompressibility, or that ρ0 is
constant everywhere so that Equation (12) becomes ∇ · u = 0; under the Boussinesq approximation, small-density perturbations
are allowed to exist in the buoyancy term in the momentum equation.

4 Sstruct was often defined in terms of polytropic indices; thus, we use ≈ instead of = in our definition here.
5 Similar to Equation 2 of Claret & Torres [20], which is discussed in our Section 4.3.1 [241].
6 The spectroscopic masses MSpec are obtained from the spectroscopic log g values in combination with radius estimates from, e.g.,

relations between Teff values, bolometric corrections, and spectral types (see [245]).
7 log g can be derived from the component masses and radii and was therefore held fixed for this comparison.
8 In the spectroscopic HR diagram, the luminosity is calculated as L =

T4
eff
g , thereby becoming independent of distance and

extinction measurements.
9 The Spearman’s rank correlation coefficient for this sub-sample is 0.324 with a p-value of 0.0011, corresponding to strong evidence

for a positive correlation between the CBM parameter and stellar mass.
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128. Kiraga, M.; Jahn, K.; Muthsam, H.J.; Stȩpień, K. 2D Computer Simulations of Stellar Convection Using a Three-Layer Model.

Acta Astron. 1995, 45, 685–704.
129. Bazán, G.; Arnett, D. Two-dimensional Hydrodynamics of Pre–Core Collapse: Oxygen Shell Burning. Astrophys. J. 1998,

496, 316–332.
130. Dietrich, W.; Wicht, J. Penetrative Convection in Partly Stratified Rapidly Rotating Spherical Shells. Front. Earth Sci. 2018, 6, 189,
131. Cai, T. Upward Overshooting in Turbulent Compressible Convection. I. Effects of the Relative Stability Parameter, the Prandtl

Number, and the Péclet Number. Astrophys. J. 2020, 888, 46. [CrossRef]
132. Cai, T. Upward Overshooting in Turbulent Compressible Convection. II. Simulations at Large Relative Stability Parameters.

Astrophys. J. 2020, 891, 49. [CrossRef]
133. Tian, C.L.; Deng, L.C.; Chan, K.L. Numerical simulations of downward convective overshooting in giants. Mon. Not. R. Astron.

Soc. 2009, 398, 1011–1022.
134. Käpylä, P.J. Overshooting in simulations of compressible convection. Astron. Astrophys. 2019, 631, A122.
135. Korre, L.; Garaud, P.; Brummell, N.H. Convective overshooting and penetration in a Boussinesq spherical shell. Mon. Not. R.

Astron. Soc. 2019, 484, 1220–1237.
136. Brown, B.P.; Vasil, G.M.; Zweibel, E.G. Energy Conservation and Gravity Waves in Sound-proof Treatments of Stellar Interiors.

Part I. Anelastic Approximations. Astrophys. J. 2012, 756, 109.
137. Herwig, F.; Freytag, B.; Hueckstaedt, R.M.; Timmes, F.X. Hydrodynamic Simulations of He Shell Flash Convection. Astrophys. J.

2006, 642, 1057–1074.
138. Woodward, P.R.; Herwig, F.; Lin, P.H. Hydrodynamic Simulations of H Entrainment at the Top of He-shell Flash Convection.

Astrophys. J. 2015, 798, 49. [CrossRef]
139. Turner, J.S. The behaviour of a stable salinity gradient heated from below. J. Fluid Mech. 1968, 33, 183–200. [CrossRef]

http://dx.doi.org/10.1017/jfm.2021.905
http://dx.doi.org/10.3847/2515-5172/ac5892
http://dx.doi.org/10.1086/173642
http://dx.doi.org/10.1007/978-3-642-30304-3
http://dx.doi.org/10.1086/339626
http://dx.doi.org/10.1086/423415
http://dx.doi.org/10.1086/383605
http://dx.doi.org/10.1088/0004-637X/742/2/79
http://dx.doi.org/10.1086/308249
http://dx.doi.org/10.1086/164796
http://dx.doi.org/10.3847/1538-4357/ab58c5
http://dx.doi.org/10.3847/1538-4357/ab711c
http://dx.doi.org/10.1088/0004-637X/798/1/49
http://dx.doi.org/10.1017/S0022112068002442


Galaxies 2023, 11, 56 38 of 45

140. Deardorff, J.W.; Willis, G.E.; Lilly, D.K. Laboratory investigation of non-steady penetrative convection. J. Fluid Mech. 1969,
35, 7–31. [CrossRef]

141. Kato, H.; Phillips, O.M. On the penetration of a turbulent layer into stratified fluid. J. Fluid Mech. 1969, 37, 643–655. [CrossRef]
142. Linden, P.F. The deepening of a mixed layer in a stratified fluid. J. Fluid Mech. 1975, 71, 385–405. [CrossRef]
143. Fernando, H.J.S. The formation of a layered structure when a stable salinity gradient is heated from below. J. Fluid Mech. 1987,

182, 525–541. [CrossRef]
144. Molemaker, M.J.; Dijkstra, H.A. The formation and evolution of a diffusive interface. J. Fluid Mech. 1997, 331, 199–229. [CrossRef]
145. Leppinen, D.M. The erosion of a salinity step by distributed and localized heat sources. Numer. Heat Transf. Part A Appl. 2003,

44, 625–644.
146. Fuentes, J.R.; Cumming, A. Penetration of a cooling convective layer into a stably-stratified composition gradient: Entrainment at

low Prandtl number. Phys. Rev. Fluids 2020, 5, 124501.
147. Toppaladoddi, S.; Wettlaufer, J.S. Penetrative convection at high Rayleigh numbers. Phys. Rev. Fluids 2018, 3, 043501.
148. Arnett, D.; Meakin, C.; Young, P.A. Turbulent Convection in Stellar Interiors. II. The Velocity Field. Astrophys. J. 2009,

690, 1715–1729.
149. Mocák, M.; Müller, E.; Weiss, A.; Kifonidis, K. The core helium flash revisited. II. Two and three-dimensional hydrodynamic

simulations. Astron. Astrophys. 2009, 501, 659–677.
150. Cristini, A.; Hirschi, R.; Meakin, C.; Arnett, D.; Georgy, C.; Walkington, I. Dependence of convective boundary mixing on

boundary properties and turbulence strength. Mon. Not. R. Astron. Soc. 2019, 484, 4645–4664.
151. Staritsin, E.I. Turbulent entrainment at the boundaries of the convective cores of main-sequence stars. Astron. Rep. 2013,

57, 380–390. [CrossRef]
152. Scott, L.J.A.; Hirschi, R.; Georgy, C.; Arnett, W.D.; Meakin, C.; Kaiser, E.A.; Ekström, S.; Yusof, N. Convective core entrainment in

1D main-sequence stellar models. Mon. Not. R. Astron. Soc. 2021, 503, 4208–4220.
153. Jermyn, A.S.; Bauer, E.B.; Schwab, J.; Farmer, R.; Ball, W.H.; Bellinger, E.P.; Dotter, A.; Joyce, M.; Marchant, P.; Mombarg, J.S.G.; et al.

Modules for Experiments in Stellar Astrophysics (MESA): Time-Dependent Convection, Energy Conservation, Automatic
Differentiation, and Infrastructure. arXiv 2022, arXiv:2208.03651.

154. Roxburgh, I.W. Convection and stellar structure. Astron. Astrophys. 1978, 65, 281–285.
155. Roxburgh, I.W. Limits on convective penetration from stellar cores. Astron. Astrophys. 1992, 266, 291–293.
156. Kitiashvili, I.N.; Kosovichev, A.G.; Mansour, N.N.; Wray, A.A. Dynamics of Turbulent Convection and Convective Overshoot in

a Moderate-mass Star. Astrophys. J. Lett. 2016, 821, L17.
157. Baraffe, I.; Pratt, J.; Vlaykov, D.G.; Guillet, T.; Goffrey, T.; Le Saux, A.; Constantino, T. Two-dimensional simulations of solar-like

models with artificially enhanced luminosity. I. Impact on convective penetration. Astron. Astrophys. 2021, 654, A126.
158. Singh, H.P.; Roxburgh, I.W.; Chan, K.L. Three-dimensional simulation of penetrative convection: Penetration below a convection

zone. Astron. Astrophys. 1995, 295, 703.
159. Brun, A.S.; Strugarek, A.; Varela, J.; Matt, S.P.; Augustson, K.C.; Emeriau, C.; DoCao, O.L.; Brown, B.; Toomre, J. On Differential

Rotation and Overshooting in Solar-like Stars. Astrophys. J. 2017, 836, 192.
160. Käpylä, P.J.; Korpi, M.J.; Stix, M.; Tuominen, I. Effects of rotation and input energy flux on convective overshooting. In Convection

in Astrophysics; Kupka, F., Roxburgh, I., Chan, K.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; Volume 239,
pp. 437–442.

161. Hotta, H. Solar Overshoot Region and Small-scale Dynamo with Realistic Energy Flux. Astrophys. J. 2017, 843, 52.
162. Baraffe, I.; Clarke, J.; Morison, A.; Vlaykov, D.G.; Constantino, T.; Goffrey, T.; Guillet, T.; Le Saux, A.; Pratt, J. A study of convective

core overshooting as a function of stellar mass based on two-dimensional hydrodynamical simulations. Mon. Not. R. Astron. Soc.
2023, 519, stad009. [CrossRef]

163. Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000.
164. Viallet, M.; Meakin, C.; Arnett, D.; Mocák, M. Turbulent Convection in Stellar Interiors. III. Mean-field Analysis and Stratification

Effects. Astrophys. J. 2013, 769, 1.
165. Currie, L.K.; Browning, M.K. The Magnitude of Viscous Dissipation in Strongly Stratified Two-dimensional Convection.

Astrophys. J. Lett. 2017, 845, L17.
166. Julien, K.; Legg, S.; McWilliams, J.; Werne, J. Penetrative convection in rapidly rotating flows: Preliminary results from numerical

simulation. Dyn. Atmos. Ocean. 1996, 24, 237–249. [CrossRef]
167. Julien, K.; Knobloch, E.; Rubio, A.M.; Vasil, G.M. Heat Transport in Low-Rossby-Number Rayleigh-Bénard Convection. Phys.

Rev. Lett. 2012, 109, 254503. [CrossRef]
168. Aurnou, J.M.; Horn, S.; Julien, K. Connections between nonrotating, slowly rotating, and rapidly rotating turbulent convection

transport scalings. Phys. Rev. Res. 2020, 2, 043115.
169. Pal, P.S.; Singh, H.P.; Chan, K.L.; Srivastava, M.P. Turbulent compressible convection with rotation—penetration above a

convection zone. Astrophys. Space Sci. 2008, 314, 231–239.
170. Drobyshevski, E.M.; Yuferev, V.S. Topological pumping of magnetic flux by three-dimensional convection. J. Fluid Mech. 1974,

65, 33–44. [CrossRef]
171. Tobias, S.M.; Brummell, N.H.; Clune, T.L.; Toomre, J. Transport and Storage of Magnetic Field by Overshooting Turbulent

Compressible Convection. Astrophys. J. 2001, 549, 1183–1203. [CrossRef]

http://dx.doi.org/10.1017/S0022112069000942
http://dx.doi.org/10.1017/S0022112069000784
http://dx.doi.org/10.1017/S0022112075002637
http://dx.doi.org/10.1017/S0022112087002441
http://dx.doi.org/10.1017/S0022112096003862
http://dx.doi.org/10.1134/S1063772913050089
http://dx.doi.org/10.1093/mnras/stad009
http://dx.doi.org/10.1016/0377-0265(95)00449-1
http://dx.doi.org/10.1103/PhysRevLett.109.254503
http://dx.doi.org/10.1017/S0022112074001236
http://dx.doi.org/10.1086/319448


Galaxies 2023, 11, 56 39 of 45

172. Ziegler, U.; Rüdiger, G. Box simulations of rotating magnetoconvection. Effects of penetration and turbulent pumping. Astron.
Astrophys. 2003, 401, 433–442. [CrossRef]

173. Fisher, G.H.; McClymont, A.N.; Chou, D.Y. The Stretching of Magnetic Flux Tubes in the Convective Overshoot Region. Astrophys.
J. 1991, 374, 766. [CrossRef]

174. van Ballegooijen, A.A. The overshoot layer at the base of the solar convective zone and the problem of magnetic flux storage.
Astron. Astrophys. 1982, 113, 99–112.

175. Racine, R. Photometry of M67 to M_{v} = +12. Astrophys. J. 1971, 168, 393. [CrossRef]
176. Torres-Peimbert, S. On the Ages of the Galactic Clusters NGC 188, M67 AND NGC 6791. Bol. Obs. Tonantzintla Tacubaya 1971,

6, 3–14.
177. Bell, R.A. The reddening, distance modulus, chemical composition and age of the galactic cluster NGC 752. Mon. Not. R. Astron.

Soc. 1972, 157, 147–156. [CrossRef]
178. McClure, R.D.; Newell, B.; Barnes, J.V. PDS Photometry of the Open Cluster NGC 2420. Publ. Astron. Soc. Pac. 1978, 90, 170.

[CrossRef]
179. Demarque, P.; Sarajedini, A.; Guo, X.J. The Gap in the Color-Magnitude Diagram of NGC 2420: A Test of Convective Overshoot

and Cluster Age. Astrophys. J. 1994, 426, 165. [CrossRef]
180. Maeder, A.; Mermilliod, J.C. The extent of mixing in stellar interiors: Evolutionary models and tests based on the HR diagrams of

34 open clusters. Astron. Astrophys. 1981, 93, 136–149.
181. Kozhurina-Platais, V.; Demarque, P.; Platais, I.; Orosz, J.A.; Barnes, S. The Age of NGC 3680 and a Test of Convective Overshoot.

Astron. J. 1997, 113, 1045–1056. [CrossRef]
182. Andersen, J.; Clausen, J.V.; Nordstrom, B. New Strong Evidence for the Importance of Convective Overshooting in Intermediate-

Mass Stars. Astrophys. J. Lett. 1990, 363, L33. [CrossRef]
183. Vallenari, A.; Chiosi, C.; Bertelli, G.; Meylan, G.; Ortolani, S. Star clusters of the large magellanic cloud. III. CCD-photometry of

NGC 2164. Astron. Astrophys. Suppl. Ser. 1991, 87, 517–540.
184. Vallenari, A.; Chiosi, C.; Bertelli, G.; Meylan, G.; Ortolani, S. Stars Clusters of the Large Magellanic Cloud: CCD Photometry of

NGC 1831. Astron. J. 1992, 104, 1100. [CrossRef]
185. Chiosi, C.; Bertelli, G.; Meylan, G.; Ortolani, S. Globular clusters in the Large Magellanic Cloud: NGC 1866, a test for convective

overshoot. Astron. Astrophys. 1989, 219, 167–191.
186. Bruntt, H.; Frandsen, S.; Kjeldsen, H.; Andersen, M.I. Strömgren photometry of the open clusters NGC 6134 and NGC 3680.

Astron. Astrophys. Suppl. Ser. 1999, 140, 135–143. [CrossRef]
187. Woo, J.H.; Gallart, C.; Demarque, P.; Yi, S.; Zoccali, M. Testing Intermediate-Age Stellar Evolution Models with VLT Photometry

of Large Magellanic Cloud Clusters. II. Analysis with the Yale Models. Astron. J. 2003, 125, 754–769.
188. Mucciarelli, A.; Origlia, L.; Ferraro, F.R. The Intermediate-Age Globular Cluster NGC 1783 in the Large Magellanic Cloud. Astron.

J. 2007, 134, 1813.
189. Girardi, L.; Rubele, S.; Kerber, L. Discovery of two distinct red clumps in NGC 419: A rare snapshot of a cluster at the onset of

degeneracy. Mon. Not. R. Astron. Soc. 2009, 394, L74–L78.
190. Nordstrom, B.; Andersen, J. Open clusters under the microscope. Messenger 1991, 63, 34–37.
191. Dinescu, D.I.; Demarque, P.; Guenther, D.B.; Pinsonneault, M.H. The Ages of the Disk Clusters NGC 188, M67, and NGC 752,

Using Improved Opacities and Cluster Membership Data. Astron. J. 1995, 109, 2090. [CrossRef]
192. Michaud, G.; Richard, O.; Richer, J.; VandenBerg, D.A. Models for Solar Abundance Stars with Gravitational Settling and

Radiative Accelerations: Application to M67 and NGC 188. Astrophys. J. 2004, 606, 452–465.
193. Viani, L.; Basu, S. Isochrones of M67 with an Expanded Set of Parameters. Eur. Phys. J. Web Conf. 2017, 160, 05005.
194. Bressan, A.; Marigo, P.; Girardi, L.; Salasnich, B.; Dal Cero, C.; Rubele, S.; Nanni, A. PARSEC: Stellar tracks and isochrones with

the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 2012, 427, 127–145.
195. Dotter, A. MESA Isochrones and Stellar Tracks (MIST) 0: Methods for the Construction of Stellar Isochrones. Astrophys. J. Suppl.

Ser. 2016, 222, 8.
196. Choi, J.; Dotter, A.; Conroy, C.; Cantiello, M.; Paxton, B.; Johnson, B.D. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled

Models. Astrophys. J. 2016, 823, 102.
197. Johnston, C.; Tkachenko, A.; Aerts, C.; Molenberghs, G.; Bowman, D.M.; Pedersen, M.G.; Buysschaert, B.; Pápics, P.I. Binary

asteroseismic modelling: Isochrone-cloud methodology and application to Kepler gravity mode pulsators. Mon. Not. R. Astron.
Soc. 2019, 482, 1231–1246.

198. Johnston, C.; Aerts, C.; Pedersen, M.G.; Bastian, N. Isochrone-cloud fitting of the extended main-sequence turn-off of young
clusters. Astron. Astrophys. 2019, 632, A74.

199. Milone, A.P.; Marino, A.F.; Di Criscienzo, M.; D’Antona, F.; Bedin, L.R.; Da Costa, G.; Piotto, G.; Tailo, M.; Dotter, A.;
Angeloni, R.; et al. Multiple stellar populations in Magellanic Cloud clusters - VI. A survey of multiple sequences and
Be stars in young clusters. Mon. Not. R. Astron. Soc. 2018, 477, 2640–2663.

200. Goudfrooij, P.; Girardi, L.; Bellini, A.; Bressan, A.; Correnti, M.; Costa, G. The Minimum Mass of Rotating Main-sequence Stars
and its Impact on the Nature of Extended Main-sequence Turnoffs in Intermediate-age Star Clusters in the Magellanic Clouds.
Astrophys. J. Lett. 2018, 864, L3.

http://dx.doi.org/10.1051/0004-6361:20030207
http://dx.doi.org/10.1086/170161
http://dx.doi.org/10.1086/151095
http://dx.doi.org/10.1093/mnras/157.2.147
http://dx.doi.org/10.1086/130302
http://dx.doi.org/10.1086/174052
http://dx.doi.org/10.1086/118321
http://dx.doi.org/10.1086/185858
http://dx.doi.org/10.1086/116300
http://dx.doi.org/10.1051/aas:1999412
http://dx.doi.org/10.1086/117434


Galaxies 2023, 11, 56 40 of 45

201. Milone, A.P.; Bedin, L.R.; Piotto, G.; Anderson, J. Multiple stellar populations in Magellanic Cloud clusters. I. An ordinary feature
for intermediate age globulars in the LMC? Astron. Astrophys. 2009, 497, 755–771.

202. Yang, W.; Meng, X.; Bi, S.; Tian, Z.; Li, T.; Liu, K. The Contributions of Interactive Binary Stars to Double Main-sequence Turnoffs
and Dual Red Clump of Intermediate-age Star Clusters. Astrophys. J. Lett. 2011, 731, L37.

203. Bastian, N.; de Mink, S.E. The effect of stellar rotation on colour-magnitude diagrams: On the apparent presence of multiple
populations in intermediate age stellar clusters. Mon. Not. R. Astron. Soc. 2009, 398, L11–L15.

204. Yang, W.; Tian, Z. The Effects of the Overshooting of the Convective Core on Main-sequence Turnoffs of Young- and Intermediate-
age Star Clusters. Astrophys. J. 2017, 836, 102.

205. Bastian, N.; Kamann, S.; Cabrera-Ziri, I.; Georgy, C.; Ekström, S.; Charbonnel, C.; de Juan Ovelar, M.; Usher, C. Extended main
sequence turnoffs in open clusters as seen by Gaia - I. NGC 2818 and the role of stellar rotation. Mon. Not. R. Astron. Soc. 2018,
480, 3739–3746.

206. Marino, A.F.; Przybilla, N.; Milone, A.P.; Da Costa, G.; D’Antona, F.; Dotter, A.; Dupree, A. Different Stellar Rotations in the Two
Main Sequences of the Young Globular Cluster NGC 1818: The First Direct Spectroscopic Evidence. Astron. J. 2018, 156, 116.

207. Sun, W.; de Grijs, R.; Deng, L.; Albrow, M.D. Stellar Rotation and the Extended Main-sequence Turnoff in the Open Cluster NGC
5822. Astrophys. J. 2019, 876, 113.

208. Kamann, S.; Bastian, N.; Gossage, S.; Baade, D.; Cabrera-Ziri, I.; Da Costa, G.; de Mink, S.E.; Georgy, C.; Giesers, B.; Göttgens, F.; et al.
How stellar rotation shapes the colour-magnitude diagram of the massive intermediate-age star cluster NGC 1846. Mon. Not. R.
Astron. Soc. 2020, 492, 2177–2192.

209. Kamann, S.; Saracino, S.; Bastian, N.; Gossage, S.; Usher, C.; Baade, D.; Cabrera-Ziri, I.; de Mink, S.E.; Ekstrom, S.; Georgy, C.; et al. The
effects of stellar rotation along the main sequence of the 100-Myr-old massive cluster NGC 1850. Mon. Not. R. Astron. Soc. 2023,
518, 1505–1521.

210. von Zeipel, H. The radiative equilibrium of a rotating system of gaseous masses. Mon. Not. R. Astron. Soc. 1924, 84, 665–683.
[CrossRef]

211. Espinosa Lara, F.; Rieutord, M. Gravity darkening in rotating stars. Astron. Astrophys. 2011, 533, A43.
212. Lipatov, M.; Brandt, T.D.; Gossage, S. Rotational Variation Allows for Narrow Age Spread in the Extended Main-sequence

Turnoff of Massive Cluster NGC 1846. Astrophys. J. 2022, 934, 105.
213. Russell, H.N. On the advance of periastron in eclipsing binaries. Mon. Not. R. Astron. Soc. 1928, 88, 641–643. [CrossRef]
214. Claret, A.; Gimenez, A. The effect of core overshooting and mass loss on the internal density concentration of main sequence

stars. Astron. Astrophys. 1991, 244, 319.
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asteroseismic study of the O9V star HD 46202 from CoRoT space-based photometry. Astron. Astrophys. 2011, 527, A112.

325. Briquet, M.; Neiner, C.; Aerts, C.; Morel, T.; Mathis, S.; Reese, D.R.; Lehmann, H.; Costero, R.; Echevarria, J.; Handler, G.; et al.
Multisite spectroscopic seismic study of the β Cep star V2052 Ophiuchi: Inhibition of mixing by its magnetic field. Mon. Not. R.
Astron. Soc. 2012, 427, 483–493.
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