The Need for Clinical Decision Support Integrated with the Electronic Health Record for the Clinical Application of Whole Genome Sequencing Information
Abstract
:1. Introduction
- There are nearly 3,000 diseases for which individual genetic tests are available [9]. As clinicians pursue a clinical diagnosis today, they sometimes must order several single gene tests until a particular diagnosis is either confirmed or rejected. This process may take a significant amount of time and money as individual genetic tests can cost anywhere between hundreds to thousands of dollars. However, with the ability of WGS to ascertain the results for thousands of available genetic tests at once, it may become financially beneficial and more efficient for clinicians and payers to recommend WGS in lieu of single gene tests, as the diagnostic odyssey and associated costs could be reduced [10].
- Genetic tests are often ordered today as a result of a clinical indication; examples of clinical indications include particular phenotypes, family history, or preliminary diagnosis [11]. This approach is also reinforced by some health insurance providers who require clinical indication and prior authorization in order for certain genetic tests to be reimbursed [12]. However, such an approach can hinder the effective use of genetic information for decision-making, particularly for preemptive and preventative care where clear clinical indications may not always be present [13]. Indeed, if a clinical indication is not present at the time of assessment or clinicians are unaware that a particular genetic test is available, they may miss an opportunity to order the genetic test at a time that can add value to a clinical scenario. Nevertheless, with a patient’s WGS information available and readily accessible throughout a patient’s life, genetic information can be leveraged for preemptive and preventative care to a larger extent than it iscurrently.
2. Barriers to Effective Clinical Application of WGS Information
2.1. Static Laboratory Reports Intended for Human Consumption
2.2. Complexity of Genetics
2.3. Limited Physician Proficiency in Genetics
2.4. Lack of Genetics Professionals
3. CDS as a Solution
3.1. Overcoming WGS Barriers
3.2. CDS Best Practices
3.3. CDS for WGS
|
4. Potential Clinical Applications of CDS for WGS Information
4.1. Clinical Diagnosis
4.2. Disease Risk Assessment
4.3. Reproductive Carrier Screening
4.4. Pharmacogenomics
4.5. Nutritional Genomics
5. Future Direction
5.1. Challenges to Overcome
5.2. Proposed Solution
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Wetterstrand, K. DNA sequencing costs: Data from the NHGRI Genome Sequencing Program (GSP). Available online: http://www.genome.gov/sequencingcosts/ (accessed on 6 February 2013).
- Bonetta, L. Whole-genome sequencing breaks the cost barrier. Cell 2010, 141, 917–919. [Google Scholar] [CrossRef]
- Rope, A.F.; Wang, K.; Evjenth, R.; Xing, J.; Johnston, J.J.; Swensen, J.J.; Johnson, W.E.; Moore, B.; Huff, C.D.; Bird, L.M.; et al. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am. J. Hum. Genet. 2011, 89, 28–43. [Google Scholar] [CrossRef]
- Ashley, E.A.; Butte, A.J.; Wheeler, M.T.; Chen, R.; Klein, T.E.; Dewey, F.E.; Dudley, J.T.; Ormond, K.E.; Pavlovic, A.; Morgan, A.A.; et al. Clinical assessment incorporating a personal genome. Lancet 2010, 375, 1525–1535. [Google Scholar] [CrossRef]
- Lupski, J.R.; Reid, J.G.; Gonzaga-Jauregui, C.; Rio Deiros, D.; Chen, D.C.; Nazareth, L.; Bainbridge, M.; Dinh, H.; Jing, C.; Wheeler, D.A.; et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N. Engl. J. Med. 2010, 362, 1181–1191. [Google Scholar] [CrossRef]
- Talkowski, M.E.; Ordulu, Z.; Pillalamarri, V.; Benson, C.B.; Blumenthal, I.; Connolly, S.; Hanscom, C.; Hussain, N.; Pereira, S.; Picker, J.; et al. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N. Engl. J. Med. 2012, 367, 2226–2232. [Google Scholar] [CrossRef]
- Report of the President’s Council of Advisors on Science and Technology (PCAST). Priorities for Personalized Medicine. Available online: http://www.whitehouse.gov/files/documents/ostp/PCAST/ pcast_report_v2.pdf (accessed on 19 February 2013).
- Abrahams, E.; Ginsburg, G.S.; Silver, M. The Personalized medicine coalition: Goals and strategies. Am. J. Pharmacogenomics 2005, 5, 345–355. [Google Scholar]
- GeneTests Medical Genetics Information Resource (database online). Available online: http://www.genetests.org/ (accessed on 6 February 2013).
- McGowan, K. Genomic Information Wants to Be Free, Says Randy Scott at PMWC. Available online: http://nygenome.org/blog/genomic-information-wants-be-free-says-randy-scott-pmwc/ (accessed on 8 February 2013).
- Heart Rhythm UK Familial Sudden Death Syndromes Statement Development Group. Clinical indications for genetic testing in familial sudden cardiac death syndromes: An HRUK position statement. Heart 2008, 94, 502–507. [Google Scholar] [CrossRef]
- Carlson, B. Payers try new approaches to manage molecular diagnostics. Biotechnol. Healthc. 2010, 7, 26–30. [Google Scholar]
- Weldon, C.B.; Trosman, J.R.; Gradishar, W.J.; Benson, A.B.; Schink, J.C. Barriers to the use of personalized medicine in breast cancer. J. Oncol. Pract. 2012, 8, e24–e31. [Google Scholar] [CrossRef]
- Welch, B.M.; Kawamoto, K. Clinical decision support for genetically guided personalized medicine: A systematic review. J. Am. Med. Inform. Assoc. 2012, 20, 388–400. [Google Scholar] [CrossRef]
- Bon Homme, M.; Reynolds, K.K.; Valdes, R., Jr.; Linder, M.W. Dynamic pharmacogenetic models in anticoagulation therapy. Clin. Lab. Med. 2008, 28, 539–552. [Google Scholar] [CrossRef]
- Glasspool, D.W.; Oettinger, A.; Braithwaite, D.; Fox, J. Interactive decision support for risk management: A qualitative evaluation in cancer genetic counselling sessions. J. Cancer Educ. 2010, 25, 312–316. [Google Scholar] [CrossRef]
- Bell, G.C.; Crews, K.R.; Wilkinson, M.R.; Haidar, C.E.; Hicks, J.K.; Baker, D.K.; Kornegay, N.M.; Yang, W.; Cross, S.J.; Howard, S.C.; et al. Development and use of active clinical decision support for preemptive pharmacogenomics. J. Am. Med. Inform. Assoc. 2013. [Google Scholar] [CrossRef]
- Tarczy-Hornoch, P.; Amendola, L.; Aronson, S.J.; Garraway, L.; Gray, S.; Grundmeier, R.W.; Hindorff, L.A.; Jarvik, G.; Karavite, D.; Lebo, M.; et al. A survey of informatics approaches to whole-exome and whole-genome clinical reporting in the electronic health record. Genet. Med. 2013, 15, 824–832. [Google Scholar] [CrossRef]
- Kawamoto, K.; Lobach, D.F.; Willard, H.F.; Ginsburg, G.S. A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine. BMC Med. Inform. Decis. Mak. 2009, 9, e17. [Google Scholar] [CrossRef]
- Hamilton, A.B.; Oishi, S.; Yano, E.M.; Gammage, C.E.; Marshall, N.J.; Scheuner, M.T. Factors influencing organizational adoption and implementation of clinical genetic services. Genet. Med. 2013. [Google Scholar] [CrossRef]
- Green, R.C.; Rehm, H.L.; Kohane, I.S. Clinical genome sequencing. In Genomic and Personalized Medicine, 2nd ed.; Academic Press: London, UK, 2013; pp. 102–122. [Google Scholar]
- Richards, C.S.; Bale, S.; Bellissimo, D.B.; Das, S.; Grody, W.W.; Hegde, M.R.; Lyon, E.; Ward, B.E. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet. Med. 2008, 10, 294–300. [Google Scholar] [CrossRef]
- Aronson, S.J.; Clark, E.H.; Varugheese, M.; Baxter, S.; Babb, L.J.; Rehm, H.L. Communicating new knowledge on previously reported genetic variants. Genet. Med. 2012, 14, 713–719. [Google Scholar] [CrossRef]
- Masys, D.R. Effects of current and future information technologies on the health care workforce. Health Aff. 2002, 21, 33–41. [Google Scholar] [CrossRef]
- West, M.; Ginsburg, G.S.; Huang, A.T.; Nevins, J.R. Embracing the complexity of genomic data for personalized medicine. Genome Res. 2006, 16, 559–566. [Google Scholar] [CrossRef]
- Domchek, S.; Weber, B.L. Genetic variants of uncertain significance: Flies in the ointment. J. Clin. Oncol. 2008, 26, 16–17. [Google Scholar] [CrossRef]
- Jorde, L.B.; Carey, J.C.; Bamshad, M.J. Medical Genetics, 4th ed.; Mosby: Maryland Heights, MO, USA, 2009; p. 368. [Google Scholar]
- Scheuner, M.T.; Sieverding, P.; Shekelle, P.G. Delivery of genomic medicine for common chronic adult diseases: A systematic review. JAMA 2008, 299, 1320–1334. [Google Scholar] [CrossRef]
- Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav. Brain Sci. 2001, 24, 87–114. [Google Scholar] [CrossRef]
- Colon cancer gene variant databases. Adenomatous Polyposis Coli (APC). Available online: http://chromium.liacs.nl/LOVD2/colon_cancer/home.php?select_db=APC/ (accessed on 19 February 2013).
- Cystic Fibrosis Mutation Database: Statistics. Available online: http://www.genet.sickkids.on.ca/StatisticsPage.html/ (accessed on 19 February 2013).
- Shirts, B.H.; Parker, L.S. Changing interpretations, stable genes: Responsibilities of patients, professionals, and policy makers in the clinical interpretation of complex genetic information. Genet. Med. 2008, 10, 778–783. [Google Scholar] [CrossRef]
- Balas, E.A.; Boren, S.A. Managing clinical knowledge for health care improvement. In Yearbook of Medical Informatics; Bemmel, J., McCray, A.T., Eds.; Patient-Centered Systems: Stuttgart, Germany, 2000; pp. 65–70. [Google Scholar]
- Thurston, V.C.; Wales, P.S.; Bell, M.A.; Torbeck, L.; Brokaw, J.J. The current status of medical genetics instruction in US and Canadian medical schools. Acad. Med. 2007, 82, 441–445. [Google Scholar] [CrossRef]
- Secretary’s Advisory Committee on Genetics, Health and Society (SACGHS). Genetics Education and Training of Health Care Professionals, Public Health Providers, and Consumers Service; SACGHS: Bethesda, MD, USA, 2010. [Google Scholar]
- Collins, F.S.; Bochm, K. Avoiding casualties in the genetic revolution: The urgent need to educate physicians about genetics. Acad. Med. 1999, 74, 48–49. [Google Scholar]
- Greb, A.E.; Brennan, S.; McParlane, L.; Page, R.; Bridge, P.D. Retention of medical genetics knowledge and skills by medical students. Genet. Med. 2009, 11, 365–370. [Google Scholar] [CrossRef]
- McInerney, J.D.; Edelman, E.; Nissen, T.; Reed, K.; Scott, J.A. Preparing health professionals for individualized medicine. Pers. Med. 2012, 9, 529–537. [Google Scholar] [CrossRef]
- McInerney, J.D. Genetics education for health professionals: A context. J. Genet. Couns. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Hunter, A.; Wright, P.; Cappelli, M.; Kasaboski, A.; Surh, L. Physician knowledge and attitudes towards molecular genetic (DNA) testing of their patients. Clin. Genet. 1998, 53, 447–455. [Google Scholar]
- Haga, S.B.; Burke, W.; Ginsburg, G.S.; Mills, R.; Agans, R. Primary care physicians’ knowledge of and experience with pharmacogenetic testing. Clin. Genet. 2012, 82, 388–394. [Google Scholar] [CrossRef]
- Edwards, Q.T.; Maradiegue, A.; Seibert, D.; Saunders-Goldson, S.; Humphreys, S. Breast cancer risk elements and nurse practitioners’ knowledge, use, and perceived comfort level of breast cancer risk assessment. J. Am. Acad. Nurse Pract. 2009, 21, 270–277. [Google Scholar] [CrossRef]
- Bethea, J.; Qureshi, N.; Drury, N.; Guilbert, P. The impact of genetic outreach education and support to primary care on practitioner’s confidence and competence in dealing with familial cancers. Community Genet. 2008, 11, 289–294. [Google Scholar] [CrossRef]
- Clyman, J.C.; Nazir, F.; Tarolli, S.; Black, E.; Lombardi, R.Q.; Higgins, J.J. The impact of a genetics education program on physicians’ knowledge and genetic counseling referral patterns. Med. Teach. 2007, 29, e143–e150. [Google Scholar] [CrossRef]
- American Board of Medical Specialties. ABMS Guide to Physician Specialties; Elsevier: Maryland Heights, MO, USA, 2013; p. 44. [Google Scholar]
- National Society of Genetic Counselors (NSGC). Making Sense of Your Genes: A Guide to Genetic Counseling; NSGC: Chicago, IL, USA, 2008; pp. 1–21. [Google Scholar]
- American Board of Genetic Counseling Inc. about ABGC. Available online: http://www.abgc.net/About_ABGC/GeneticCounselors.asp/ (accessed on 6 February 2013).
- National Society of Genetic Counselors (NSGC). 2012 Professional Status Survey: Executive Summary; NSGC: Chicago, IL, USA, 2012; pp. 1–15. [Google Scholar]
- McPherson, E.; Zaleski, C.; Benishek, K.; McCarty, C.A.; Giampietro, P.F.; Reynolds, K.; Rasmussen, K. Clinical genetics provider real-time workflow study. Genet. Med. 2008, 10, 699–706. [Google Scholar] [CrossRef]
- The Physician Workforce: Projections and Research into Current Issues Affecting Supply and Demand. Available online: http://bhpr.hrsa.gov/healthworkforce/reports/physwfissues.pdf (accessed on 15 February 2013).
- Cooksey, J.A.; Forte, G.; Benkendorf, J.; Blitzer, M.G. The state of the medical geneticist workforce: Findings of the 2003 survey of American Board of Medical Genetics certified geneticists. Genet. Med. 2005, 7, 439–443. [Google Scholar] [CrossRef]
- Collins, F.S. Faith and the human genome. Perspect. Sci. Christian Faith 2003, 55, 142–153. [Google Scholar]
- Belmont, J.; McGuire, A.L. The futility of genomic counseling: Essential role of electronic health records. Genome Med. 2009, 1, e48. [Google Scholar] [CrossRef]
- Ullman-Cullere, M.H.; Mathew, J.P. Emerging landscape of genomics in the electronic health record for personalized medicine. Hum. Mutat. 2011, 32, 512–516. [Google Scholar] [CrossRef]
- Ginsburg, G.S.; Willard, H.F. Genomic and personalized medicine: Foundations and applications. Transl. Res. 2009, 154, 277–287. [Google Scholar] [CrossRef]
- Overby, C.L.; Kohane, I.; Kannry, J.L.; Williams, M.S.; Starren, J.; Bottinger, E.; Gottesman, O.; Denny, J.C.; Weng, C.; Tarczy-Hornoch, P.; et al. Opportunities for genomic clinical decision support interventions. Genet. Med. 2013, 15, 817–823. [Google Scholar] [CrossRef]
- Kullo, I.J.; Jarvik, G.P.; Manolio, T.A.; Williams, M.S.; Roden, D.M. Leveraging the electronic health record to implement genomic medicine. Genet. Med. 2013, 15, 270–271. [Google Scholar] [CrossRef]
- Osheroff, J.A.; Teich, J.M.; Middleton, B.; Steen, E.B.; Wright, A.; Detmer, D.E. A roadmap for national action on clinical decision support. J. Am. Med. Inform. Assoc. 2007, 14, 141–145. [Google Scholar] [CrossRef]
- Wright, A.; Sittig, D.F.; Ash, J.S.; Feblowitz, J.; Meltzer, S.; McMullen, C.; Guappone, K.; Carpenter, J.; Richardson, J.; Simonaitis, L.; et al. Development and evaluation of a comprehensive clinical decision support taxonomy: Comparison of front-end tools in commercial and internally developed electronic health record systems. J. Am. Med. Inform. Assoc. 2011, 18, 232–242. [Google Scholar] [CrossRef]
- Bright, T.J.; Wong, A.; Dhurjati, R.; Bristow, E.; Bastian, L.; Coeytaux, R.R.; Samsa, G.; Hasselblad, V.; Williams, J.W.; Musty, M.D.; et al. Effect of clinical decision-support systems: A systematic review. Ann. Intern. Med. 2012, 157, 29–43. [Google Scholar] [CrossRef]
- Jaspers, M.W.; Smeulers, M.; Vermeulen, H.; Peute, L.W. Effects of clinical decision-support systems on practitioner performance and patient outcomes: A synthesis of high-quality systematic review findings. J. Am. Med. Inform. Assoc. 2011, 18, 327–334. [Google Scholar] [CrossRef]
- Chaudhry, B.; Wang, J.; Wu, S.; Maglione, M.; Mojica, W.; Roth, E.; Morton, S.C.; Shekelle, P.G. Systematic review: Impact of health information technology on quality, efficiency, and costs of medical care. Ann. Intern. Med. 2006, 144, 742–752. [Google Scholar] [CrossRef]
- Mitchell, J.A.; Gerdin, U.; Lindberg, D.; Lovis, C.; Martin-Sanchez, F.J.; Miller, R.A.; Shortliffe, E.H.; Leong, T.-Y. 50 Years of informatics research on decision support: What’s next. Methods Inf. Med. 2011, 50, 525–535. [Google Scholar] [CrossRef]
- What is Meaningful Use? | Policy Researchers & Implementers | HealthIT.gov. Available online: http://www.healthit.gov/policy-researchers-implementers/meaningful-use (accessed on 8 November 2013).
- Hunt, D.L.; Haynes, R.B.; Hanna, S.E.; Smith, K. Effects of computer-based clinical decision support systems on physician performance and patient outcomes: A systematic review. JAMA 1998, 280, 1339–1346. [Google Scholar] [CrossRef]
- Bates, D.; Kuperman, G. Ten commandments for effective clinical decision support: Making the practice of evidence-based medicine a reality. J. Am. Med. Inform. Assoc. 2003, 10, 523–530. [Google Scholar] [CrossRef]
- Kawamoto, K.; Houlihan, C.A.; Balas, E.A.; Lobach, D.F. Improving clinical practice using clinical decision support systems: A systematic review of trials to identify features critical to success. Br. Med. J. 2005, 330, e765. [Google Scholar] [CrossRef]
- Emery, J.; Morris, H.; Goodchild, R.; Fanshawe, T.; Prevost, A.T.; Bobrow, M.; Kinmonth, A.L. The GRAIDS trial: A cluster randomised controlled trial of computer decision support for the management of familial cancer risk in primary care. Br. J. Cancer 2007, 97, 486–493. [Google Scholar] [CrossRef]
- Collins, F.S. A Brief Primer on Genetic Testing. Available online: http://www.genome.gov/10506784/ (accessed on 8 February 2013).
- NIH Office of Rare Diseases Research (ORDR). Undiagnosed Diseases Program. Available online: http://rarediseases.info.nih.gov/Resources.aspx?PageID=31/ (accessed on 20 February 2013).
- Cirulli, E.T.; Goldstein, D.B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 2010, 11, 415–425. [Google Scholar]
- Bamshad, M.J.; Ng, S.B.; Bigham, A.W.; Tabor, H.K.; Emond, M.J.; Nickerson, D.A.; Shendure, J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 2011, 12, 745–755. [Google Scholar]
- Berg, J.S.; Khoury, M.J.; Evans, J.P. Deploying whole genome sequencing in clinical practice and public health: Meeting the challenge one bin at a time. Genet. Med. 2011, 13, 499–504. [Google Scholar]
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD, USA), Online Mendelian Inheritance in Man, OMIM®. Available online: http://omim.org/ (accessed on 8 February 2013).
- Genetics Home Reference Waardenburg syndrome. Available online: http://ghr.nlm.nih.gov/condition/waardenburg-syndrome/ (accessed on 20 February 2013).
- Lalloo, F.; Evans, D.G. Familial breast cancer. Clin. Genet. 2012, 82, 105–114. [Google Scholar]
- Drohan, B.; Roche, C.A.; Cusack, J.C.; Hughes, K.S. Hereditary breast and ovarian cancer and other hereditary syndromes: Using technology to identify carriers. Ann. Surg. Oncol. 2012, 19, 1732–1737. [Google Scholar]
- Schwartz, M.D.; Valdimarsdottir, H.B.; DeMarco, T.A.; Peshkin, B.N.; Lawrence, W.; Rispoli, J.; Brown, K.; Isaacs, C.; O’Neill, S.; Shelby, R.; et al. Randomized trial of a decision aid for BRCA1/BRCA2 mutation carriers: Impact on measures of decision making and satisfaction. Health Psychol. 2009, 28, 11–19. [Google Scholar]
- Glasspool, D.W.; Oettinger, A.; Smith-Spark, J.H.; Castillo, F.C.; Monaghan, V.E.L.; Fox, J. Supporting medical planning by mitigating cognitive load. Methods Inf. Med. 2007, 46, 636–640. [Google Scholar]
- Reference, G.H. Cystic fibrosis. Available online: http://ghr.nlm.nih.gov/condition/cystic-fibrosis/ (accessed on 20 February 2013).
- Srinivasan, B.S.; Evans, E.A.; Flannick, J.; Patterson, A.S.; Chang, C.C.; Pham, T.; Young, S.; Kaushal, A.; Lee, J.; Jacobson, J.L.; et al. A universal carrier test for the long tail of Mendelian disease. Reprod. Biomed. Online 2010, 21, 537–551. [Google Scholar]
- Aithal, G.P.; Day, C.P.; Kesteven, P.J.L.; Daly, A.K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Early Rep. 1999, 353, 717–719. [Google Scholar]
- Secretary’s Advisory Committee on Genetics, Health and Society (SACGHS). Realizing the Potential of Pharmacogenomics: Opportunities and Challenges; SACGHS: Bethesda, MD, USA, 2008. [Google Scholar]
- Gage, B.; Eby, C.; Johnson, J. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin. Pharmacol. Ther. 2008, 84, 326–331. [Google Scholar]
- Pulley, J.M.; Denny, J.C.; Peterson, J.F.; Bernard, G.R.; Vnencak-Jones, C.L.; Ramirez, A.H.; Delaney, J.T.; Bowton, E.; Brothers, K.; Johnson, K.; et al. Operational implementation of prospective genotyping for personalized medicine: The design of the Vanderbilt PREDICT project. Clin. Pharmacol. Ther. 2012, 92, 87–95. [Google Scholar]
- Zeisel, S.H. Choline: Critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 2006, 26, 229–250. [Google Scholar]
- Brody, L.C.; Conley, M.; Cox, C.; Kirke, P.N.; McKeever, M.P.; Mills, J.L.; Molloy, A.M.; O’Leary, V.B.; Parle-McDermott, A.; Scott, J.M.; et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: Report of the Birth Defects Res. Am. J. Hum. Genet. 2002, 71, 1207–1215. [Google Scholar] [CrossRef]
- Masys, D.R.; Jarvik, G.P.; Abernethy, N.F.; Anderson, N.R.; Papanicolaou, G.J.; Paltoo, D.N.; Hoffman, M.A.; Kohane, I.S.; Levy, H.P. Technical desiderata for the integration of genomic data into Electronic Health Records. J. Biomed. Inform. 2012, 45, 419–422. [Google Scholar] [CrossRef]
- Hoffman, M.A. The genome-enabled electronic medical record. J. Biomed. Inform. 2007, 40, 44–46. [Google Scholar] [CrossRef]
- Gottesman, O.; Kuivaniemi, H.; Tromp, G.; Faucett, W.A.; Li, R.; Manolio, T.A.; Sanderson, S.C.; Kannry, J.; Zinberg, R.; Basford, M.A.; et al. The Electronic Medical Records and Genomics (eMERGE) Network: Past, present, and future. Genet. Med. 2013, 15, 761–771. [Google Scholar] [CrossRef]
- McCarty, C.A.; Chisholm, R.L.; Chute, C.G.; Kullo, I.J.; Jarvik, G.P.; Larson, E.B.; Li, R.; Masys, D.R.; Ritchie, M.D.; Roden, D.M.; et al. The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med. Genomics 2011, 4, e13. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information ClinVar. Available online: http://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 8 February 2013).
- New NIH-Funded Resource Focuses on Use of Genomic Variants in Medical Care. Available online: http://www.nih.gov/news/health/sep2013/nhgri-25.htm (accessed on 8 October 2013).
- Drohan, B.; Ozanne, E.M.M.; Hughes, K.S.S. Electronic health records and the management of women at high risk of hereditary breast and ovarian cancer. Breast J. 2009, 15, S46–S55. [Google Scholar] [CrossRef]
- Kawamoto, K.; Lobach, D. Proposal for fulfilling strategic objectives of the US roadmap for national action on decision support through a service-oriented architecture leveraging HL7 services. J. Am. Med. Inform. Assoc. 2007, 14, 146–155. [Google Scholar] [CrossRef]
- Standards & Interoperability (S&I) Framework—Health eDecisions Homepage. Available online: http://wiki.siframework.org/Health+eDecisions+Homepage/ (accessed on 8 November 2013).
- Kawamoto, K.; Del Fiol, G.; Orton, C.; Lobach, D.F. System-agnostic clinical decision support services: Benefits and challenges for scalable decision support. Open Med. Inform. J. 2010, 4, 245–254. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Welch, B.M.; Kawamoto, K. The Need for Clinical Decision Support Integrated with the Electronic Health Record for the Clinical Application of Whole Genome Sequencing Information. J. Pers. Med. 2013, 3, 306-325. https://doi.org/10.3390/jpm3040306
Welch BM, Kawamoto K. The Need for Clinical Decision Support Integrated with the Electronic Health Record for the Clinical Application of Whole Genome Sequencing Information. Journal of Personalized Medicine. 2013; 3(4):306-325. https://doi.org/10.3390/jpm3040306
Chicago/Turabian StyleWelch, Brandon M., and Kensaku Kawamoto. 2013. "The Need for Clinical Decision Support Integrated with the Electronic Health Record for the Clinical Application of Whole Genome Sequencing Information" Journal of Personalized Medicine 3, no. 4: 306-325. https://doi.org/10.3390/jpm3040306
APA StyleWelch, B. M., & Kawamoto, K. (2013). The Need for Clinical Decision Support Integrated with the Electronic Health Record for the Clinical Application of Whole Genome Sequencing Information. Journal of Personalized Medicine, 3(4), 306-325. https://doi.org/10.3390/jpm3040306