Intraoperative Ultrasound as a Decision-Making Tool in Modern Gynecologic Oncology
Abstract
1. Introduction
- Guiding complete resection of deep infiltrating endometriosis [22]
- Fertility preservation in borderline and early-stage malignancies
- Precise lymph node assessment and staging
- Optimization of cytoreductive surgery
- Integration with minimally invasive platforms
High-Resolution Intraoperative Ultrasound Systems in Gynecologic Oncology
2. Materials and Methods
3. Results and Discussion
- Preoperative adhesion mapping with intraoperative ultrasound for safe surgical access
- Borderline ovarian tumors; a paradigm shift
- Pelvic saline infusion (500 mL) creates an acoustic window for enhanced ultrasound transmission.
- Transvaginal or laparoscopic probes provide multiplanar tumor localization.
- Laparoscopic instruments mark lesion boundaries under dual visual-sonographic guidance.
- Diathermy delineates precise resection margins before ultrasound-monitored excision.
- IOUS in gynecological oncology lymph node assessment and staging
- Morphology (cortical thickening, spherical index, hilar integrity)
- Echostructure (heterogeneity, microcalcifications)
- Vascular dynamics (hilar vs. peripheral perfusion patterns)
- Biomechanical properties (strain elastography-derived stiffness ratios)
- Real-time confirmation of suspicious nodes before excision
- Precise needle guidance for targeted biopsy
- Immediate assessment of resection completeness
- Identification of critical vascular relationships to prevent injury
- Intraoperative Ultrasound in Cytoreductive Surgery: Advancing Optimal Tumor Debulking
3.1. Supradiaphragmatic/Cardiophrenic Lymph Node (CPLN) Disease Management
3.2. Hepatic and Retroperitoneal Resection Guidance
3.3. Precision Peritoneal Stripping
4. Challenges and Limitations of Intraoperative Ultrasound in Gynecologic Oncology
4.1. Operator Dependency and the Learning Curve Challenge
- Recognition of subtle sonographic features differentiating malignant from benign lesions
- Accurate correlation of two-dimensional ultrasound images with three-dimensional surgical anatomy
- Real-time integration of imaging findings into surgical decision-making
4.2. Technical and Physical Limitations
- Elevated body mass indices (BMI > 35)
- Extensive retroperitoneal disease
- Dense post-radiation fibrosis
4.3. Standardization Deficit and Protocol Heterogeneity
- Image acquisition parameters (frequency selection, depth adjustment, gain optimization)
- Interpretation criteria for malignancy probability assessment
- Procedural protocols for specific surgical scenarios (fertility-sparing resections, sentinel node mapping, etc.) [12].
4.4. Economic and Infrastructural Barriers
- Significant maintenance costs of delicate transducers
- Specialized sterilization requirements
- Potential need for dedicated imaging personnel
- Opportunity costs associated with prolonged operative times during the learning curve phase
- Development of structured training curricula incorporating virtual reality simulation and competency-based progression
- Establishment of evidence-based consensus guidelines through professional society collaborations
- Technological innovations in probe design (including 3D matrix arrays and elastography capabilities)
5. Future Perspectives: Advancing Intraoperative Ultrasound in Gynecologic Oncology Through Innovation and Standardization
5.1. Standardization of Imaging Protocols and Interpretation Criteria
- Malignancy risk stratification of indeterminate lesions
- Criteria for fertility-sparing resection margins
- Standardized reporting terminology for intraoperative findings
- Integration with sentinel lymph node algorithms
5.2. Technological Innovations on the Horizon
- Automated lesion detection with quantified probability scores
- Real-time differentiation between benign and malignant features
- Predictive analytics for occult metastasis risk
5.3. Educational Imperatives for the Next Generation
5.4. Health Systems Integration and Value Assessment
5.5. Telemedicine Integration and Virtual Consultation Models
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donald, I.; MacVicar, J.; Brown, T.G. Investigation of Abdominal Masses By Pulsed Ultrasound. Lancet 1958, 1, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Merz, E.; Evans, D.H.; Dong, Y.; Jenssen, C.; Dietrich, C.F. History of ultrasound in obstetrics and gynaecology from 1971 to 2021 on occasion of the 50 years anniversary of EFSUMB. Med. Ultrason. 2023, 25, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, J.U.; Diggdon, P.; Cuellar, J. The Use of Ultrasound for Localizing Renal Calculi. J. Urol. 1961, 86, 367–369. [Google Scholar] [CrossRef]
- Di Cosmo, G.; Verzotti, E.; Silvestri, T.; Lissiani, A.; Knez, R.; Pavan, N.; Rizzo, M.; Trombetta, C.; Liguori, G. Intraoperative ultrasound in robot-assisted partial nephrectomy: State of the art. Arch. Ital. Urol. Androl. 2018, 90, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Lubner, M.G.; Mankowski Gettle, L.; Kim, D.H.; Ziemlewicz, T.J.; Dahiya, N.; Pickhardt, P. Diagnostic and procedural intraoperative ultrasound: Technique, tips and tricks for optimizing results. Br. J. Radiol. 2021, 94, 20201406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khosroshahi, H.T.; Abedi, B.; Daneshvar, S.; Sarbaz, Y.; Shakeri Bavil, A. Future of the Renal Biopsy: Time to Change the Conventional Modality Using Nanotechnology. Int. J. Biomed. Imaging 2017, 2017, 6141734. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mihai, I.; Dura, H.; Teodoru, C.A.; Todor, S.B.; Ichim, C.; Grigore, N.; Mohor, C.I.; Mihetiu, A.; Oprinca, G.; Bacalbasa, N.; et al. Intraoperative Ultrasound: Bridging the Gap between Laparoscopy and Surgical Precision during 3D Laparoscopic Partial Nephrectomies. Diagnostics 2024, 14, 942. [Google Scholar] [CrossRef]
- Franchi, D.; Boveri, S.; Radice, D.; Portuesi, R.; Zanagnolo, V.; Colombo, N.; Testa, A.C. Ultrasonographic diagnosis and longitudinal follow-up of recurrences after conservative surgery for borderline ovarian tumors. Am. J. Obstet. Gynecol. 2016, 215, 756.e1–756.e9. [Google Scholar] [CrossRef]
- Mascilini, F.; Quagliozzi, L.; Bolomini, G.; Scambia, G.; Testa, A.C.; Fagotti, A. Intraoperative ultrasound through laparoscopic probe in fertility-sparing surgery for borderline ovarian tumor recurrence. Ultrasound Obs. Gynecol. 2019, 54, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.P.; Saso, S.; Farren, J.; El-Bahrawy, M.; Ghaem-Maghami, S.; Smith, J.R.; Yazbek, J. Ultrasound-Guided Laparoscopic Ovarian Wedge Resection in Recurrent Serous Borderline Ovarian Tumours. Int. J. Gynecol. Cancer 2017, 27, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- De Blasis, I.; Tortorella, L.; Macchi, C.; Arciuolo, D.; Scambia, G.; Testa, A.C. Intraoperative ultrasound diagnosis of metastatic lymph node in serous borderline ovarian tumor. Ultrasound Obstet. Gynecol. 2019, 54, 562–563. [Google Scholar] [CrossRef] [PubMed]
- Bommert, M.; Harter, P.; Heitz, F.; du Bois, A. When should Surgery be used for Recurrent Ovarian Carcinoma? Clin. Oncol. 2018, 30, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Moro, F.; Uccella, S.; Testa, A.C.; Scambia, G.; Fagotti, A. Intraoperative Ultrasound-Guided Excision of Cardiophrenic Lymph Nodes in an Advanced Ovarian Cancer Patient. Int. J. Gynecol. Cancer 2018, 28, 1672–1675. [Google Scholar] [CrossRef] [PubMed]
- Kostov, S.; Selçuk, I.; Yordanov, A.; Kornovski, Y.; Yalçın, H.; Slavchev, S.; Ivanova, Y.; Dineva, S.; Dzhenkov, D.; Watrowski, R. Paraaortic Lymphadenectomy in Gynecologic Oncology-Significance of Vessels Variations. J. Clin. Med. 2022, 11, 953. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryo, E.; Yasugi, T.; Mizutani, K.; Kita, T.; Takeshita, S.; Ayabe, T. Diagnostic usefulness of intraoperative ultrasonography in avoiding unnecessary para-aortic lymphadenectomy in women with endometrial carcinoma. Int. J. Gynecol. Cancer 2011, 21, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Ikechebelu, J.I.; Eleje, G.U.; Joe-Ikechebelu, N.N.; Okafor, C.D.; Okpala, B.C.; Ugwu, E.O.; Nwachukwu, C.E.; Okoro, C.C.; Okam, P.C. Randomized control trial on effectiveness and safety of direct trocar versus Veress needle entry techniques in obese women during diagnostic laparoscopy. Arch. Gynecol. Obstet. 2021, 304, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.; Schettini, G.; La Banca, L.; Cannoni, A.; Ginetti, A.; Colombi, I.; Habib, N.; Rovira, R.; Martire, F.; Lazzeri, L.; et al. Prevention and Treatment of Intraoperative Complications During Gynecological Laparoscopic Surgery: Practical Tips and Tricks—A Narrative Review. Adv. Ther. 2025, 42, 2089–2117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bahall, V.; De Barry, L.; Singh, K. A Practical Approach to Total Laparoscopic Hysterectomy in a Morbidly Obese Patient: A Case Report and Literature Review. Cureus 2023, 15, e34416. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solyman Ayman, E.; Ellakwa Hamed, E.; Haggag Rehab, M.; Sayyed Tarek, M.; Sanad Zakaria, F. Accuracy of ultrasonographic visceral slide test in predicting the presence of intra-abdominal adhesions. Menoufia Med. J. 2020, 33, 30. [Google Scholar]
- FIGO International Federation of Gynecology and Obstetrics. Classification and staging of malignant tumors in the female pelvis. Acta Obstet. Gynecol. Scand. 1971, 50, 1–7. [Google Scholar] [CrossRef]
- Lou, T.; Yuan, F.; Feng, Y.; Wang, S.; Bai, H.; Zhang, Z. The safety of fertility and ipsilateral ovary procedures for borderline ovarian tumors. Oncotarget 2017, 8, 115718–115729. [Google Scholar] [CrossRef] [PubMed]
- Maramai, M.; Barra, F.; Menada, M.V.; Stigliani, S.; Moioli, M.; Costantini, S.; Ferrero, S. Borderline ovarian tumours: Management in the era of fertility-sparing surgery. Ecancermedicalscience 2020, 14, 1031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leake, J.F.; Currie, J.L.; Rosenshein, N.B.; Woodruff, J. Long-term follow-up of serous ovarian tumors of low malignant potential. Gynecol. Oncol. 1992, 47, 150–158. [Google Scholar] [CrossRef]
- Mitchell, S.; Ramajayan, T.; Sayasneh, A. Borderline tumour recurrence: How quickly does the tumour grow? BMJ Case Rep. CP 2024, 17, e259501. [Google Scholar] [CrossRef] [PubMed]
- Moghazy, M.; Sayasneh, A.; Kakkar, P. VP61.17: The use of intraoperative ultrasound in laparoscopic management of recurrent serous borderline ovarian tumour. Ultrasound Obstet. Gynecol. 2020, 56, 335. [Google Scholar] [CrossRef]
- Ryo, E.; Nagasaka, T.; Yasugi, T.; Kozuma, S.; Taketani, Y. Assessment of para-aortic lymph nodes by intraoperative sonography in gynecological malignancies: A preliminary report. Ultrasound Obstet. Gynecol. 2003, 22, 622–626. [Google Scholar] [CrossRef]
- Hu, Z.; Ma, L.; Ding, Y.; Zhao, X.; Shi, X.; Lu, H.; Liu, K. Enhancing the Accuracy of Lymph-Node-Metastasis Prediction in Gynecologic Malignancies Using Multimodal Federated Learning: Integrating CT, MRI, and PET/CT. Cancers 2023, 15, 5281. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zerbe, M.J.; Bristow, R.; Grumbine, F.C.; Montz, F. Inability of preoperative computed tomography scans to accurately predict the extent of myometrial invasion and extracorporal spread in endometrial cancer. Gynecol. Oncol. 2000, 78, 67–70. [Google Scholar] [CrossRef]
- Engbersen, M.P.; Van Driel, W.; Lambregts, D.; Lahaye, M. The role of CT, PET-CT, and MRI in ovarian cancer. Br. J. Radiol. 2021, 94, 20210117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- May, K.; Bryant, A.; Dickinson, H.O.; Kehoe, S.; Morrison, J. Lymphadenectomy for the management of endometrial cancer. Cochrane Database Syst. Rev. 2010, 9, CD007585. [Google Scholar]
- Dinesh, M.; Das, C.J.; Aggarwal, A.; Gupta, A.K. Diffusion weighted imaging in gynecological malignancies—Present and future. World J. Radiol. 2016, 8, 288–297. [Google Scholar]
- Aletti, G.D.; Dowdy, S.C.; Gostout, B.S.; Jones, M.B.; Stanhope, C.R.; Wilson, T.O.; Podratz, K.C.; Cliby, W.A. Aggressive surgical effort and improved survival in advanced-stage ovarian cancer. Obstet. Gynecol. 2006, 107, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Cowan, R.A.; Tseng, J.; Murthy, V.; Srivastava, R.; Long Roche, K.C.; Zivanovic, O.; Gardner, G.J.; Chi, D.S.; Park, B.J.; Sonoda, Y. Feasibility, safety and clinical outcomes of cardiophrenic lymph node resection in advanced ovarian cancer. Gynecol. Oncol. 2017, 147, 262–266. [Google Scholar] [CrossRef]
- LaFargue, C.J.; Sawyer, B.T.; Bristow, R.E. Short-term morbidity in transdiaphragmatic cardiophrenic lymph node resection for advanced stage gynecologic cancer. Gynecol. Oncol. Rep. 2016, 17, 33–37. [Google Scholar] [CrossRef]
- Ryo, E. Diagnostic value of intraoperative ultrasonography to assess para-aortic lymph nodes in women with ovarian and uterine corpus malignancy. Ultrasound Obstet. Gynecol. 2008, 32, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Taher, D.; Sardana, S.; Stanietzky, N.; Klekers, A.R.; Bhosale, P.; Morani, A.C. Recent Imaging Updates and Advances in Gynecologic Malignancies. Cancers 2022, 14, 5528. [Google Scholar] [CrossRef]
- Ahmad, S.; Ekechi, C.; Ferrara, L.; Kaijser, J.; Stalder, C.; Sur, S.; Timmerman, D.; Bourne, T. The characteristic ultrasound features of specific types of ovarian pathology. Int. J. Oncol. 2014, 46, 445–458. [Google Scholar]
- Giada, Z.; Coppola, A.; Molinelli, V.; Angeretti, M.G.; Casarin, J.; Fontana, F.; Piacentino, F.; Carcano, G.; Ghezzi, F.; Venturini, M. Spectral CT in peritoneal carcinomatosis from ovarian cancer: A tool for differential diagnosis of small nodules? Eur. Radiol. 2022, 6, 45. [Google Scholar]
- Tsili Athina, C.; Naka, C.; Argyropoulou, M.I. Multidetector computed tomography in diagnosing peritoneal metastases in ovarian carcinoma. Acta Radiol. 2020, 62, 1696–1706. [Google Scholar] [CrossRef]
- Kandemir, H.; Sözen, H.; Kartal, M.G.; Özkan, Z.G.; Topuz, S.; Salihoğlu, M.Y. An Assessment of the Effectiveness of Preoperative İmaging Modalities (MRI, CT, and 18F-FDG PET/CT) in Determining the Extent of Disease Spread in Epithelial Ovarian–Tubal–Peritoneal Cancer (EOC). Medicina 2025, 61, 199. [Google Scholar] [CrossRef]
- Nina, S.; Vlek, R.S.L.; Wijsmuller, A.R.; Brandsma, H.T.; de Vet, H.C.W.; van Grieken, N.C.T.; Kazemier, G.; Tuynman, J.B. Narrow-Band Imaging Improves Detection of Colorectal Peritoneal Metastases: A Clinical Study Comparing Advanced Imaging Techniques. Ann. Surg. Oncol. 2018, 26, 156–164. [Google Scholar]
- Nikolaos, T.; Diakosavvas, M.; Machairiotis, N.; Fasoulakis, Z.; Zarogoulidis, P.; Rodolakis, A. Rare Distant Metastatic Disease of Ovarian and Peritoneal Carcinomatosis: A Review of the Literature. Cancers 2019, 11, 1044. [Google Scholar] [CrossRef] [PubMed]
- Dib, S.; Nasioudis, D.; Miller, K.; Chang, R.; Basaran, D.; Smith, E.S.; Ehmann, S.; Chi, D.S. Acute pericarditis after transabdominal cardiophrenic lymph node dissection and pericardotomy during ovarian cancer debulking surgery: A case report. Gynecol. Oncol. Rep. 2020, 35, 100683. [Google Scholar]
- Mario, P.; Pavone, G.; Quazzico, A.; Fersini, A.; Ambrosi, A.; Tartaglia, N. Ultrasound-guided approach to surgery for nodal recurrence following lateral neck dissection for differentiated thyroid carcinoma. A single institution experience. Front. Surg. 2024, 11, 1403741. [Google Scholar]
- Mattia, G.; Pinotti, E.; Nespoli, S.; Romano, F.; Gianotti, L.; Giardini, V. Hepatic resection beyond barcelona clinic liver cancer indication: When and how. World J. Hepatol. 2016, 8, 513–519. [Google Scholar]
- Joo, I. The role of intraoperative ultrasonography in the diagnosis and management of focal hepatic lesions. Ultrasonography 2015, 34, 246–257. [Google Scholar] [CrossRef]
- Francisco, C.N.; Ardiles, V.; de Santibañes, E.; Pekolj, J.; Goransky, J.; Mazza, O.; Claria, R.S.; de Santibañes, M. Pushing the Limits of Surgical Resection in Colorectal Liver Metastasis: How Far Can We Go? Cancers 2023, 15, 2113. [Google Scholar] [CrossRef]
- Frassanito, P.; Stifano, V.; Bianchi, F.; Tamburrini, G.; Massimi, L. Enhancing the Reliability of Intraoperative Ultrasound in Pediatric Space-Occupying Brain Lesions. Diagnostics 2023, 13, 971. [Google Scholar] [CrossRef]
- Knospe, L.; Gockel, I.; Jansen-Winkeln, B.; Thieme, R.; Niebisch, S.; Moulla, Y.; Stelzner, S.; Lyros, O.; Diana, M.; Marescaux, J.; et al. New Intraoperative Imaging Tools and Image-Guided Surgery in Gastric Cancer Surgery. Diagnostics 2022, 12, 507. [Google Scholar] [CrossRef]
- Clark, A.E.; Shaw, C.J.; Bello, F.; Chalouhi, G.E.; Lees, C.C. Quantitating skill acquisition with optical ultrasound simulation. Australas. J. Ultrasound Med. 2020, 23, 183–193. [Google Scholar] [CrossRef]
- Claudio, G.; Messina, G.; Pica, D.G.; Bove, M.; Capasso, F.; Mirra, R.; Natale, G.; Panini, D.F.; Caputo, A.; Leonardi, B.; et al. Intraoperative lung ultrasound improves subcentimetric pulmonary nodule localization during VATS: Results of a retrospective analysis. Thorac. Cancer 2023, 14, 2558–2566. [Google Scholar]
- David, R.; Dahlin, L.; Lundborg, G. Pathophysiology of nerve compression syndromes: Response of peripheral nerves to loading. J. Bone Jt. Surg. Am. 1999, 81, 1600–1610. [Google Scholar]
- Maggie, B.P.; Peter, P.; Natalia, K. Twinkle artifact in sonographic breast clip visualization. Arch. Gynecol. Obstet. 2022, 307, 2021–2022. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakany, M.; Sharif, A.; Alazzam, M.; Howell, C.; Mitchell, S.; Pappa, C.; Shibli, D.; Story, L.; Sayasneh, A. Intraoperative Ultrasound as a Decision-Making Tool in Modern Gynecologic Oncology. J. Pers. Med. 2025, 15, 296. https://doi.org/10.3390/jpm15070296
Lakany M, Sharif A, Alazzam M, Howell C, Mitchell S, Pappa C, Shibli D, Story L, Sayasneh A. Intraoperative Ultrasound as a Decision-Making Tool in Modern Gynecologic Oncology. Journal of Personalized Medicine. 2025; 15(7):296. https://doi.org/10.3390/jpm15070296
Chicago/Turabian StyleLakany, Mohamed, Amana Sharif, Moiad Alazzam, Catherine Howell, Sian Mitchell, Christina Pappa, Dana Shibli, Lisa Story, and Ahmad Sayasneh. 2025. "Intraoperative Ultrasound as a Decision-Making Tool in Modern Gynecologic Oncology" Journal of Personalized Medicine 15, no. 7: 296. https://doi.org/10.3390/jpm15070296
APA StyleLakany, M., Sharif, A., Alazzam, M., Howell, C., Mitchell, S., Pappa, C., Shibli, D., Story, L., & Sayasneh, A. (2025). Intraoperative Ultrasound as a Decision-Making Tool in Modern Gynecologic Oncology. Journal of Personalized Medicine, 15(7), 296. https://doi.org/10.3390/jpm15070296