Evaluation of Adipokine Status and Leptin Receptor Gene Polymorphism in Patients with Severe Asthma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Groups
2.2. Collection of Clinical and Laboratory Data
Leptin Receptor Gene Polymorphism Gln223Arg
2.3. Ethical Approval Details
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GINA | Global Initiative for Asthma |
MS | Metabolic syndrome |
IR | Insulin resistance |
FEV1 | Forced expiratory volume in 1 s |
FVC | Forced vital capacity |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
iGCS | Inhaled glucocorticosteroids |
SABA | Short-acting beta-agonists |
LABA | Long-acting beta-agonists |
IgE | Immunoglobulin E |
IL | Interleukin |
TNFα | Tumor necrosis factor α |
References
- Śliwiński, P.; Antczak, A.; Barczyk, A.; Białas, A.J.; Czajkowska-Malinowska, M.; Jahnz-Różyk, K.; Kulus, M.; Kuna, P.; Kupczyk, M. 2024 Update on Position Statement by Experts from the Polish Society of Allergology and the Polish Respiratory Society on the Evaluation of Efficacy and Effectiveness of Single Inhaler Triple Therapies in Asthma Treatment. Adv. Respir. Med. 2024, 92, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Gao, Y.; Fu, Y.; Lin, J.; Lei, X.; Zheng, J.; Jiang, M. Global, regional, and national burden of asthma and its attributable risk factors from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Respir. Res. 2023, 24, 169. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Hekking, P.W.; Wener, R.R.; Amelink, M.; Zwinderman, A.H.; Bouvy, M.L.; Bel, E.H. The prevalence of severe refractory asthma. J. Allergy Clin. Immunol. 2015, 135, 896–902. [Google Scholar] [CrossRef]
- Hansen, S.; von Bülow, A.; Sandin, P.; Ernstsson, O.; Janson, C.; Lehtimäki, L.; Kankaanranta, H.; Ulrik, C.; Aarli, B.B.; Fues Wahl, H.; et al. Prevalence and management of severe asthma in the Nordic countries: Findings from the NORDSTAR cohort. ERJ Open Res. 2023, 9, 00687–2022. [Google Scholar] [CrossRef]
- Gonzalez-Uribe, V.; Romero-Tapia, S.J.; Castro-Rodriguez, J.A. Asthma Phenotypes in the Era of Personalized Medicine. J. Clin. Med. 2023, 12, 6207. [Google Scholar] [CrossRef]
- Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- McLaughlin, T.; Ackerman, S.E.; Shen, L.; Engleman, E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Investig. 2017, 127, 5–13. [Google Scholar] [CrossRef]
- Reddel, H.K.; Bacharier, L.B.; Bateman, E.D.; Brightling, C.E.; Brusselle, G.G.; Buhl, R.; Cruz, A.A.; Duijts, L.; Drazen, J.M.; FitzGerald, J.M.; et al. Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. J. Allergy Clin. Immunol. Pract. 2022, 10, S1–S18. [Google Scholar] [CrossRef]
- Haselkorn, T.; Szefler, S.J.; Chipps, B.E.; Bleecker, E.R.; Harkins, M.S.; Paknis, B.; Kianifard, F.; Ortiz, B.; Zeiger, R.S. Disease Burden and Long-Term Risk of Persistent Very Poorly Controlled Asthma: TENOR II. J. Allergy Clin. Immunol. Pract. 2020, 8, 2243–2253. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.C.; Schiebler, M.L.; Cardet, J.C.; Johansson, M.W.; Sorkness, R.; DeBoer, M.D.; Bleecker, E.R.; Meyers, D.A.; Castro, M.; Sumino, K.; et al. National Heart, Lung, and Blood Institute Severe Asthma Research Program-3. The Impact of Insulin Resistance on Loss of Lung Function and Response to Treatment in Asthma. Am. J. Respir. Crit. Care Med. 2022, 206, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, R.; Shi, W.; Mao, S. Predictive and prognostic value of leptin status in asthma. NPJ Prim. Care Respir. Med. 2023, 33, 10. [Google Scholar] [CrossRef] [PubMed]
- Nasiri Kalmarzi, R.; Ataee, P.; Mansori, M.; Moradi, G.; Ahmadi, S.; Kaviani, Z.; Khalafi, B.; Kooti, W. Serum levels of adiponectin and leptin in asthmatic patients and its relation with asthma severity, lung function and BMI. Allergol. Immunopathol. 2017, 45, 258–264. [Google Scholar] [CrossRef]
- Zurita-Cruz, J.N.; Villasís-Keever, M.A.; Manuel-Apolinar, L.; Damasio-Santana, L.; Garrido-Magaña, E.; Rivera-Hernández, A.J. Leptin/adiponectin ratio as a prognostic factor for increased weight gain in girls with central precocious puberty. Front. Endocrinol. 2023, 14, 1101399. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, C. Leptin and Asthma: What Are the Interactive Correlations? Biomolecules 2022, 12, 1780. [Google Scholar] [CrossRef]
- Szczepankiewicz, D.; Sobkowiak, P.; Narożna, B.; Wojsyk-Banaszak, I.; Bręborowicz, A.; Szczepankiewicz, A. Leptin gene polymorphism affects leptin level in childhood asthma. World J. Pediatr. 2018, 14, 601–606. [Google Scholar] [CrossRef]
- Venkatesan, P. 2023 GINA report for asthma. Lancet Respir. Med. 2023, 11, 589. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Dixon, A.E.; Peters, U. The effect of obesity on lung function. Expert Rev. Respir. Med. 2018, 12, 755–767. [Google Scholar] [CrossRef]
- Burgess, J.A.; Matheson, M.C.; Diao, F.; Johns, D.P.; Erbas, B.; Lowe, A.J.; Gurrin, L.C.; Lodge, C.J.; Thomas, P.S.; Morrison, S.; et al. Bronchial hyperresponsiveness and obesity in middle age: Insights from an Australian cohort. Eur. Respir. J. 2017, 50, 1602181. [Google Scholar] [CrossRef] [PubMed]
- Shailesh, H.; Bhat, A.A.; Janahi, I.A. Obesity-Associated Non-T2 Mechanisms in Obese Asthmatic Individuals. Biomedicines 2023, 11, 2797. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, A.E.; Kuźnar-Kamińska, B. Association of Obesity and Severe Asthma in Adults. J. Clin. Med. 2024, 13, 3474. [Google Scholar] [CrossRef] [PubMed]
- Mendenhall, E.; Kohrt, B.A.; Logie, C.H.; Tsai, A.C. Syndemics and clinical science. Nat. Med. 2022, 28, 1359–1362. [Google Scholar] [CrossRef]
- Karamzad, N.; Izadi, N.; Sanaie, S.; Ahmadian, E.; Eftekhari, A.; Sullman, M.J.M.; Safiri, S. Asthma and metabolic syndrome: A comprehensive systematic review and meta-analysis of observational studies. J. Cardiovasc. Thorac. Res. 2020, 12, 120–128. [Google Scholar] [CrossRef]
- Razbekova, M.; Issanov, A.; Chan, M.Y.; Chan, R.; Yerezhepov, D.; Kozhamkulov, U.; Akilzhanova, A.; Chan, C.K. Genetic factors associated with obesity risks in a Kazakhstani population. BMJ Nutr. Prev. Health 2021, 4, 90–101. [Google Scholar] [CrossRef]
- Nie, Z.; Fryer, A.D.; Jacoby, D.B.; Drake, M.G. Mechanisms of Obesity-related Asthma: Is Insulin Getting on Your Nerves? Am. J. Respir. Crit. Care Med. 2023, 207, 109–110. [Google Scholar] [CrossRef]
- Škrgat, S.; Harlander, M.; Janić, M. Obesity and Insulin Resistance in Asthma Pathogenesis and Clinical Outcomes. Biomedicines 2024, 12, 173. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Gómez-Ambrosi, J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 2018, 7, 57–62. [Google Scholar] [CrossRef]
- Agostinis-Sobrinho, C.; Vicente, S.E.d.C.F.; Norkiene, S.; Rauckienė-Michaelsson, A.; Kievisienė, J.; Dubey, V.P.; Razbadauskas, A.; Lopes, L.; Santos, R. Is the Leptin/Adiponectin Ratio a Better Diagnostic Biomarker for Insulin Resistance than Leptin or Adiponectin Alone in Adolescents? Children 2022, 9, 1193. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gómez-Ambrosi, J. Adiponectin-leptin Ratio is a Functional Biomarker of Adipose Tissue Inflammation. Nutrients 2019, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Malendowicz, W.; Rucinski, M.; Macchi, C.; Spinazzi, R.; Ziolkowska, A.; Nussdorfer, G.G.; Kwias, Z. Leptin and leptin receptors in the prostate and seminal vesicles of the adult rat. Int. J. Mol. Med. 2006, 18, 615–618. [Google Scholar] [PubMed]
- Li, Y.Y.; Wang, H.; Yang, X.X.; Wu, J.J.; Geng, H.Y.; Kim, H.J.; Yang, Z.J.; Wang, L.S. LEPR gene Gln223Arg polymorphism and type 2 diabetes mellitus: A meta-analysis of 3367 subjects. Oncotarget 2017, 8, 61927–61934. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All Patients | Group 1 (Uncontrolled Asthma), n = 136 | Group 2 (Controlled Asthma), n = 64 | p |
---|---|---|---|---|
Age, years | 53.5 (39–59.25) | 56.0 (46.0–61.0) | 41.0 (31.0–55.0) | <0.001 b |
Women, n (%) | 80 (40%) | 77 (56.6) | 43 (67.2) | 0.155 c |
Body mass index, kg/m2 | 27.05 (23.1–28.42) | 28.01 (26.27–29.32) | 22.7 (21.3–24.5) | <0.001 b |
Waist circumference, cm | 92.5 (85.0–98.0) | 95.0 (89.75–98.0) | 85.0 (74–86) | <0.001 b |
Arterial hypertension, % | 87 (43.5) | 74 (54.4) | 13 (20.8) | <0.001 c |
Diabetes mellitus, % | 78 (39.0) | 70 (51.1) | 8 (12.5) | <0.001 c |
Eosinophils, cells/µL | 84 (52–127.5) | 107 (75.8–145) | 54 (38–82.75) | <0.001 a |
Total cholesterol, mol/L | 5.2 (3.3–5.9) | 5.65 (4.59–6.1) | 3.44 (2.6–4.83) | <0.001 b |
Triglycerids, mol/L | 2.8 (1.69–3.24) | 3.01 (2.62–3.5) | 1.78 (1.08–2.21) | <0.001 b |
HDL, mol/L | 1.2 (0.97–1.64) | 1.22 (0.97–1.97) | 1.12 (0.98–1.42) | 0.241 b |
LDL, mol/L | 3.18 (2.65–3.74) | 3.82 (2.68–3.92) | 3.01 (2.11–3.84) | 0.136 b |
Glucose, mol/L | 6.0 (5.1–6.8) | 6.4 (7.5–7.33) | 5.15 (4.38–5.5) | <0.001 b |
Adiponectin | 6.5 (5.38–14.95) | 6.0 (5.0–11.15) | 13.85 (11.1–17.35) | <0.001 b |
Leptin | 15.24 (5.42–21.67) | 18.9 (11.97–22.70) | 5.0 (3.41–14.53) | <0.001 b |
IgE, IU/mL | 107 (85.75–150.0) | 109.5 (86.5–141.25) | 97.0 (85.75–158.0) | 0.648 b |
Adiponectin/Leptin | 0.4 (0.2–2.62) | 0.3 (0.3–0.75) | 2.65 (0.75–4.2) | <0.001 b |
FEV1, % | 58.0 (55.0–65.25) | 55.0 (52.0–60.0) | 68.0 (65.0–70.0) | <0.001 b |
FVC, % | 62.0 (60.0–70.0) | 60.0 (58.0–65.0) | 70.0 (64.0–75.0) | <0.001 b |
FEV1/FVC | 60.0 (56.0–68.0) | 58.0 (55.0–62.0) | 68.0 (62.0–72.0) | <0.001 b |
Parameter | B | Standard Error | 95% CI | p |
---|---|---|---|---|
Eosinophils | −0.305 | 0.033 | −0.369–(−0.238) | <0.001 |
FEV1 | 0.121 | 0.016 | 0.089–0.152 | <0.001 |
FVC | 0.104 | 0.017 | 0.07–0.138 | <0.001 |
C-reactive protein | −0.577 | 0.472 | −1.508–0.354 | 0.223 |
IgE | 0.003 | 0.003 | −0.004–0.01 | 0.382 |
TNFα | −0.047 | 0.005 | −0.057–(−0.037) | <0.001 |
IL-8 | −0.062 | 0.007 | −0.075–(−0.049) | <0.001 |
IL-6 | −0.026 | 0.026 | −0.304–(−0.200) | <0.001 |
Model | Genotype | Severe BA | Non-Severe BA | OR (95% CI) | p-Value |
---|---|---|---|---|---|
Codominant | A/A | 57 (41.9%) | 40 (62.5%) | 1.00 | 0.024 |
A/G | 40 (29.4%) | 12 (18.8%) | 0.43 (0.20–0.92) | ||
G/G | 39 (28.7%) | 12 (18.8%) | 0.44 (0.20–0.94) | ||
Dominant | A/A | 57 (41.9%) | 40 (62.5%) | 1.00 | 0.0064 |
A/G-G/G | 79 (58.1%) | 24 (37.5%) | 0.43 (0.24–0.80) | ||
Recessive | A/A-A/G | 97 (71.3%) | 52 (81.2%) | 1.00 | 0.13 |
G/G | 39 (28.7%) | 12 (18.8%) | 0.57 (0.28–1.19) | ||
Overdominant | A/A-G/G | 96 (70.6%) | 52 (81.2%) | 1.00 | 0.1 |
A/G | 40 (29.4%) | 12 (18.8%) | 0.55 (0.27–1.15) | ||
Log-additive | - | - | - | 0.63 (0.43–0.92) | 0.014 |
SPN | Severe BA, n = 136 (68%) | non-Severe BA, n = 64 (32%) | OR | 95% CI | p | ||
---|---|---|---|---|---|---|---|
n | % | n | % | ||||
A/A | 57 | 40 | 40 | 62.5 | 2.310 | 1.255–4.251 | 0.007 |
A/G | 40 | 29.4 | 12 | 18.8 | 1.806 | 0.872–3.739 | 0.112 |
G/G | 39 | 28.7 | 12 | 18.8 | 0.574 | 0.277–1.19 | 0.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maimysheva, S.; Karazhanova, L.; Orekhov, A.; Chinybayeva, A.; Ashirov, B. Evaluation of Adipokine Status and Leptin Receptor Gene Polymorphism in Patients with Severe Asthma. Diagnostics 2025, 15, 1154. https://doi.org/10.3390/diagnostics15091154
Maimysheva S, Karazhanova L, Orekhov A, Chinybayeva A, Ashirov B. Evaluation of Adipokine Status and Leptin Receptor Gene Polymorphism in Patients with Severe Asthma. Diagnostics. 2025; 15(9):1154. https://doi.org/10.3390/diagnostics15091154
Chicago/Turabian StyleMaimysheva, Saule, Lyudmila Karazhanova, Andrey Orekhov, Assel Chinybayeva, and Bolat Ashirov. 2025. "Evaluation of Adipokine Status and Leptin Receptor Gene Polymorphism in Patients with Severe Asthma" Diagnostics 15, no. 9: 1154. https://doi.org/10.3390/diagnostics15091154
APA StyleMaimysheva, S., Karazhanova, L., Orekhov, A., Chinybayeva, A., & Ashirov, B. (2025). Evaluation of Adipokine Status and Leptin Receptor Gene Polymorphism in Patients with Severe Asthma. Diagnostics, 15(9), 1154. https://doi.org/10.3390/diagnostics15091154