PET/CT and MR Improve Interobserver Agreement in Primary Tumor Determination for Radiotherapy in Esophageal Squamous Cell Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. PET/CT
2.3. MR
2.4. Tumor Determination
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ESCC | Esophageal squamous cell carcinoma |
EUS | Endoscopic ultrasound |
CT | Computed tomography |
PET | Positron emission tomography |
FDG | 18-F-fluorodeoxyglucose |
EAC | Esophageal adenocarcinoma |
MR | Magnetic resonance |
T2 | T2-weighted |
DWI | Diffusion-weighted imaging |
GTV | Gross tumor volume |
SUV | Standardized uptake value |
CIgen | Generalized conformity index |
V20 | Percentage of target volume irradiated with 20 Gy |
References
- Yang, J.; Luo, G.Y.; Liang, R.B.; Zeng, T.S.; Long, H.; Fu, J.H.; Xu, G.L.; Yang, M.Z.; Li, S.; Zhang, L.J.; et al. Efficacy of Endoscopic Ultrasonography for Determining Clinical T Category for Esophageal Squamous Cell Carcinoma: Data From 1434 Surgical Cases. Ann. Surg. Oncol. 2018, 25, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Y.; Zhao, Q.Y.; Li, X.Q.; Wang, L.; Wang, N.N.; Wang, J.Z.; Wang, Q. Esophageal wall thickness on CT scans: Can it predict the T stage of primary thoracic esophageal squamous cell carcinoma? Esophagus 2022, 19, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Chen, Y.; Zhu, Y.; Xu, Y. Systematic review and meta-analysis of the accuracy of 18F-FDG PET/CT for detection of regional lymph node metastasis in esophageal squamous cell carcinoma. J. Thorac. Dis. 2018, 10, 6066–6076. [Google Scholar] [CrossRef]
- Lu, J.; Sun, X.-D.; Yang, X.; Tang, X.-Y.; Qin, Q.; Zhu, H.-C.; Cheng, H.-Y.; Sun, X.-C. Impact of PET/CT on radiation treatment in patients with esophageal cancer: A systematic review. Crit. Rev. Oncol./Hematol. 2016, 107, 128–137. [Google Scholar] [CrossRef]
- Gauthé, M.; Richard-Molard, M.; Cacheux, W.; Michel, P.; Jouve, J.L.; Mitry, E.; Alberini, J.L.; Lièvre, A.; Fédération Francophone de Cancérologie Digestive (FFCD). Role of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography in gastrointestinal cancers. Dig. Liver Dis. 2015, 47, 443–454. [Google Scholar] [CrossRef]
- Han, D.; Yu, J.; Yu, Y.; Zhang, G.; Zhong, X.; Lu, J.; Yin, Y.; Fu, Z.; Mu, D.; Zhang, B.; et al. Comparison of 18F-Fluorothymidine and 18F-Fluorodeoxyglucose PET/CT in Delineating Gross Tumor Volume by Optimal Threshold in Patients with Squamous Cell Carcinoma of Thoracic Esophagus. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 1235–1241. [Google Scholar] [CrossRef]
- Zhong, X.; Yu, J.; Zhang, B.; Mu, D.; Zhang, W.; Li, D.; Han, A.; Song, P.; Li, H.; Yang, G.; et al. Using 18F-Fluorodeoxyglucose Positron Emission Tomography to Estimate the Length of Gross Tumor in Patients with Squamous Cell Carcinoma of the Esophagus. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 136–141. [Google Scholar] [CrossRef]
- Toya, R.; Matsuyama, T.; Saito, T.; Imuta, M.; Shiraishi, S.; Fukugawa, Y.; Iyama, A.; Watakabe, T.; Sakamoto, F.; Tsuda, N.; et al. Impact of hybrid FDG-PET/CT on gross tumor volume definition of cervical esophageal cancer: Reducing interobserver variation. J. Radiat. Res. 2019, 60, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Nowee, M.E.; Voncken, F.E.M.; Kotte, A.N.T.J.; Goense, L.; van Rossum, P.S.N.; van Lier, A.L.H.M.W.; Heijmink, S.W.; Aleman, B.M.P.; Nijkamp, J.; Meijer, G.J.; et al. Gross tumour delineation on computed tomography and positron emission tomography-computed tomography in oesophageal cancer: A nationwide study. Clin. Transl. Radiat. Oncol. 2018, 14, 33–39. [Google Scholar] [CrossRef]
- Pellat, A.; Dohan, A.; Soyer, P.; Veziant, J.; Coriat, R.; Barret, M. The role of magnetic resonance imaging in the management of esophageal cancer. Cancers 2022, 14, 1141. [Google Scholar] [CrossRef]
- Van Rossum, P.S.N.; van Lier, A.L.H.M.W.; Lips, I.M.; Meijer, G.J.; Reerink, O.; van Vulpen, M.; Lam, M.G.E.H.; van Hillegersberg, R.; Ruurda, J.P. Imaging of oesophageal cancer with FDG-PET/CT and MRI. Clin. Radiol. 2015, 70, 81–95. [Google Scholar] [CrossRef]
- Metcalfe, P.; Liney, G.P.; Holloway, L.; Walker, A.; Barton, M.; Delaney, G.P.; Vinod, S.; Tomé, W. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol. Cancer Res. Treat. 2013, 12, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.-L.; Shi, G.-F.; Gao, X.-S.; Asaumi, J.; Li, X.-Y.; Liu, H.; Yao, C.; Chang, J.Y. Improved longitudinal length accuracy of gross tumor volume delineation with diffusion weighted magnetic resonance imaging for esophageal squamous cell carcinoma. Radiat. Oncol. 2013, 8, 169. [Google Scholar] [CrossRef]
- Vollenbrock, S.E.; Nowee, M.E.; Voncken, F.E.M.; Kotte, A.N.T.J.; Goense, L.; van Rossum, P.S.N.; van Lier, A.L.H.M.W.; Heijmink, S.W.; Bartels-Rutten, A.; Wessels, F.J.; et al. Gross Tumor Delineation in Esophageal Cancer on MRI Compared With 18F-FDG-PET/CT. Adv. Radiat. Oncol. 2019, 4, 596–604. [Google Scholar] [CrossRef] [PubMed]
- van Hagen, P.; Hulshof, M.C.; van Lanschot, J.J.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; Richel, D.J.; Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Eyck, B.M.; van Lanschot, J.J.B.; Hulshof, M.C.C.M.; van der Wilk, B.J.; Shapiro, J.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; et al. Ten-year outcome of neoadjuvant chemoradiotherapy plus surgery for esophageal cancer: The randomized controlled CROSS trial. J. Clin. Oncol. 2021, 39, 1995–2004. [Google Scholar] [CrossRef]
- Hulshof, M.C.C.M.; Geijsen, E.D.; Rozema, T.; Oppedijk, V.; Buijsen, J.; Neelis, K.J.; Nuyttens, J.J.M.E.; van der Sangen, M.J.C.; Jeene, P.M.; Reinders, J.G.; et al. Randomized study on dose escalation in definitive chemoradiation for patients with locally advanced esophageal cancer (ARTDECO Study). J. Clin. Oncol. 2021, 39, 2816–2824. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, B.; Zhu, W.; Li, J.; Huang, R.; Sun, Z.; Yang, X.; Liu, L.; He, H.; Liao, Z.; et al. A Phase III multicenter randomized clinical trial of 60 Gy versus 50 Gy radiation dose in concurrent chemoradiotherapy for inoperable esophageal squamous cell carcinoma. Clin. Cancer Res. 2022, 28, 1792–1799. [Google Scholar] [CrossRef]
- Hoeppner, J.; Brunner, T.; Schmoor, C.; Bronsert, P.; Kulemann, B.; Claus, R.; Utzolino, S.; Izbicki, J.R.; Gockel, I.; Gerdes, B.; et al. Perioperative chemotherapy or preoperative chemoradiotherapy in esophageal Cancer. N. Engl. J. Med. 2025, 392, 323–335. [Google Scholar] [CrossRef]
- Vinod, S.K.; Jameson, M.G.; Min, M.; Holloway, L.C. Uncertainties in volume delineation in radiation oncology: A systematic review and recommendations for future studies. Radiother. Oncol. 2016, 121, 169–179. [Google Scholar] [CrossRef]
- Segedin, B.; Petric, P. Uncertainties in target volume delineation in radiotherapy—Are they relevant and what can we do about them? Radiol. Oncol. 2016, 50, 254–262. [Google Scholar] [CrossRef]
- Weber, D.C.; Tomsej, M.; Melidis, C.; Hurkmans, C.W. QA makes a clinical trial stronger: Evidence-based medicine in radiation therapy. Radiother. Oncol. 2012, 105, 4–8. [Google Scholar] [CrossRef]
- Secerov-Ermenc, A.; Peterlin, P.; Anderluh, F.; But-Hadzic, J.; Jeromen-Peressutti, A.; Velenik, V.; Segedin, B. Inter-observer variation in gross tumour volume delineation of oesophageal cancer on MR, CT and PET/CT. Radiol. Oncol. 2024, 58, 580–587. [Google Scholar] [CrossRef]
- Kouwenhoven, E.; Giezen, M.; Struikmans, H. Measuring the similarity of target volume delineations independent of the number of observers. Phys. Med. Biol. 2009, 54, 2863–2873. [Google Scholar] [CrossRef] [PubMed]
- Machiels, M.; Jin, P.; van Hooft, J.E.; Gurney-Champion, O.J.; Jelvehgaran, P.; Geijsen, E.D.; Jeene, P.M.; Willemijn Kolff, M.; Oppedijk, V.; Rasch, C.R.N. Reduced inter-observer and intra-observer delineation variation in esophageal cancer radiotherapy by use of fiducial markers. Acta Oncol. 2019, 58, 943–950. [Google Scholar] [CrossRef]
- Schreurs, L.M.A.; Busz, D.M.; Paardekooper, G.M.R.M.; Beukema, J.C.; Jager, P.L.; Van der Jagt, E.J.; Van Dam, G.M.; Groen, H.; Plukker, J.T.M.; Langendijk, J.A. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: Reduction in geographic misses with equal inter-observer variability. Dis. Esophagus 2010, 23, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Guo, R.; Zhang, Y.; Yu, B.; Meng, X.; Kong, H.; Yang, Y.; Yang, Z.; Li, N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front. Oncol. 2022, 12, 844702. [Google Scholar] [CrossRef] [PubMed]
- Hellebust, T.P.; Tanderup, K.; Lervåg, C.; Fidarova, E.; Berger, D.; Malinen, E.; Pötter, R.; Petrič, P. Dosimetric impact of interobserver variability in MRI-based delineation for cervical cancer brachytherapy. Radiother. Oncol. 2013, 107, 13–19. [Google Scholar] [CrossRef]
- Li, X.A.; Tai, A.; Arthur, D.W.; Buchholz, T.A.; Macdonald, S.; Marks, L.B.; Moran, J.M.; Pierce, L.J.; Rabinovitch, R.; Taghian, A.; et al. Radiation therapy oncology group multi-institutional and multiobserver study. Variability of target and normal structure delineation for breast cancer radiotherapy: An RTOG multi-institutional and multiobserver Study. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 944–951. [Google Scholar] [CrossRef]
- Cai, G.; Li, C.; Li, J.; Yang, J.; Li, C.; Sun, L.; Li, J.; Yu, J.; Meng, X. Cardiac substructures dosimetric predictors for cardiac toxicity after definitive radiotherapy in esophageal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 366–381. [Google Scholar] [CrossRef]
- Beukema, J.C.; van Luijk, P.; Widder, J.; Langendijk, J.A.; Muijs, C.T. Is cardiac toxicity a relevant issue in the radiation treatment of esophageal cancer? Radiother. Oncol. 2015, 114, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Iijima, H.; Isohashi, F.; Tsujii, Y.; Fujinaga, T.; Nagai, K.; Yoshii, S.; Sakatani, A.; Hiyama, S.; Shinzaki, S.; et al. The heart’s exposure to radiation increases the risk of cardiac toxicity after chemoradiotherapy for superficial esophageal cancer: A retrospective cohort study. BMC Cancer 2019, 19, 195. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.K.; Oh, D.; Kim, H.K.; Ahn, Y.C.; Noh, J.M.; Shim, Y.M.; Zo, J.I.; Choi, Y.S.; Sun, J.M.; Lee, S.H.; et al. Dosimetric predictors for postoperative pulmonary complications in esophageal cancer following neoadjuvant chemoradiotherapy and surgery. Radiother. Oncol. 2019, 133, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Uhlenhopp, D.J.; Then, E.O.; Sunkara, T.; Gaduputi, V. Epidemiology of esophageal cancer: Update in global trends, etiology and risk factors. Clin. J. Gastroenterol. 2020, 13, 1010–1021. [Google Scholar] [CrossRef]
Case | Location—Third | Treatment | Stage |
---|---|---|---|
1 | Proximal | definitive | T3N0M0 |
2 | Proximal | definitive | T3N0M0 |
3 | Middle | definitive | T3N1M0 |
4 | Proximal | definitive | T3N2M0 |
5 | Proximal | definitive | T3N1M0 |
6 | Proximal | definitive | T3N1M0 |
7 | Proximal | definitive | T3N0M0 |
8 | Distal | preoperative | T3N1M0 |
9 | Proximal | definitive | T3N0M0 |
10 | Middle | preoperative | T3N0M0 |
11 | Middle | definitive | T3N1M0 |
12 | Proximal | definitive | T3N0M0 |
13 | Proximal | definitive | T3N0M0 |
14 | Proximal | definitive | T3N2M0 |
15 | Middle | preoperative | T3N0M0 |
16 | Middle | preoperative | T2N2M0 |
Case | CT (cm3) | MR (cm3) | PET/CT (cm3) | CT MR (cm3) | PET/CT MR (cm3) |
---|---|---|---|---|---|
1 | 20.3 | 16.0 | 17.2 | 18.5 | 17.7 |
2 | 33.2 | 33.2 | 33.4 | 35.2 | 32.5 |
3 | 113.4 | 105.0 | 114.4 | 110.9 | 115.7 |
4 | 20.2 | 18.0 | 30.3 | 17.7 | 28.2 |
5 | 29.1 | 18.1 | 35.2 | 22.1 | 31.8 |
6 | 22.8 | 13.7 | 26.6 | 23.8 | 24.8 |
7 | 117.3 | 109.7 | 123.2 | 112.5 | 114.7 |
8 | 36.9 | 24.7 | 55.0 | 30.4 | 37.7 |
9 | 36.1 | 33.7 | 49.7 | 25.5 | 50.5 |
10 | 22.6 | 17.2 | 22.7 | 20.4 | 21.9 |
11 | 2.2 | 2.6 | 3.4 | 3.0 | 3.5 |
12 | 14.9 | 16.2 | 24.0 | 17.6 | 21.6 |
13 | 20.0 | 16.7 | 25.6 | 19.0 | 24.9 |
14 | 19.4 | 16.8 | 19.4 | 18.5 | 19.0 |
15 | 8.3 | 28.5 | 17.6 | 22.2 | 23.5 |
16 | 12.2 | 12.8 | 11.6 | 13.1 | 11.5 |
AVG | 33.1 | 30.2 | 38.1 | 31.9 | 36.2 |
SD | 33.5 | 31.1 | 34.1 | 31.9 | 32.6 |
Case | CT | MR | PET/CT | CT MR | PET/CT MR |
---|---|---|---|---|---|
1 | 0.69 | 0.75 | 0.74 | 0.78 | 0.76 |
2 | 0.62 | 0.67 | 0.65 | 0.51 | 0.67 |
3 | 0.83 | 0.8 | 0.81 | 0.86 | 0.83 |
4 | 0.57 | 0.66 | 0.68 | 0.51 | 0.71 |
5 | 0.69 | 0.66 | 0.75 | 0.47 | 0.76 |
6 | 0.58 | 0.47 | 0.77 | 0.62 | 0.75 |
7 | 0.76 | 0.78 | 0.79 | 0.76 | 0.8 |
8 | 0.66 | 0.62 | 0.5 | 0.68 | 0.71 |
9 | 0.47 | 0.42 | 0.67 | 0.46 | 0.68 |
10 | 0.71 | 0.69 | 0.76 | 0.67 | 0.79 |
11 | 0.28 | 0.29 | 0.47 | 0.37 | 0.59 |
12 | 0.58 | 0.59 | 0.52 | 0.51 | 0.55 |
13 | 0.69 | 0.66 | 0.75 | 0.69 | 0.76 |
14 | 0.77 | 0.74 | 0.78 | 0.85 | 0.78 |
15 | 0.37 | 0.78 | 0.53 | 0.7 | 0.66 |
16 | 0.13 | 0.62 | 0.46 | 0.58 | 0.56 |
AVG | 0.59 | 0.64 | 0.66 | 0.63 | 0.71 |
SD | 0.19 | 0,14 | 0.13 | 0.15 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secerov-Ermenc, A.; Peterlin, P.; Velenik, V.; Jeromen-Peressutti, A.; But-Hadzic, J.; Anderluh, F.; Segedin, B. PET/CT and MR Improve Interobserver Agreement in Primary Tumor Determination for Radiotherapy in Esophageal Squamous Cell Cancer. Diagnostics 2025, 15, 690. https://doi.org/10.3390/diagnostics15060690
Secerov-Ermenc A, Peterlin P, Velenik V, Jeromen-Peressutti A, But-Hadzic J, Anderluh F, Segedin B. PET/CT and MR Improve Interobserver Agreement in Primary Tumor Determination for Radiotherapy in Esophageal Squamous Cell Cancer. Diagnostics. 2025; 15(6):690. https://doi.org/10.3390/diagnostics15060690
Chicago/Turabian StyleSecerov-Ermenc, Ajra, Primoz Peterlin, Vaneja Velenik, Ana Jeromen-Peressutti, Jasna But-Hadzic, Franc Anderluh, and Barbara Segedin. 2025. "PET/CT and MR Improve Interobserver Agreement in Primary Tumor Determination for Radiotherapy in Esophageal Squamous Cell Cancer" Diagnostics 15, no. 6: 690. https://doi.org/10.3390/diagnostics15060690
APA StyleSecerov-Ermenc, A., Peterlin, P., Velenik, V., Jeromen-Peressutti, A., But-Hadzic, J., Anderluh, F., & Segedin, B. (2025). PET/CT and MR Improve Interobserver Agreement in Primary Tumor Determination for Radiotherapy in Esophageal Squamous Cell Cancer. Diagnostics, 15(6), 690. https://doi.org/10.3390/diagnostics15060690