Deep Learning-Based Segmentation of Geographic Atrophy: A Multi-Center, Multi-Device Validation in a Real-World Clinical Cohort
Abstract
1. Introduction
2. Methods
2.1. Data Collection and Grading
2.2. Grading
2.3. Deep Learning Architecture
2.4. Analysis Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GA | geographic atrophy |
OCT | optical coherence tomography |
AMD | age-related macular degeneration |
DSC | Dice similarity coefficient |
FAF | Fundus autofluorescence |
AI | artificial intelligence |
RPE | retinal pigment epithelium |
RCTX | retina consultants of Texas |
RVA | retina-vitreous associates |
ART | automatic real-time tracking |
cRORA | complete RPE and outer retinal atrophy |
CAM | classification of atrophy meetings |
GPU | graphics processing unit |
LOA | limits of agreement |
FDA | Food and Drug Administration |
EZ | ellipsoid zone |
References
- Fleckenstein, M.; Mitchell, P.; Freund, K.B.; Sadda, S.; Holz, F.G.; Brittain, C.; Henry, E.C.; Ferrara, D. The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology 2018, 125, 369–390. [Google Scholar] [CrossRef]
- Riedl, S.; Schmidt-Erfurth, U.; Rivail, A.; Birner, K.; Mai, J.; Vogl, W.D.; Wu, Z.; Guymer, R.H.; Bogunovic, H.; Reiter, G.S. Sequence of Morphological Changes Preceding Atrophy in Intermediate AMD Using Deep Learning. Investig. Ophthalmol. Vis. Sci. 2024, 65, 30. [Google Scholar] [CrossRef]
- Heier, J.S.; Lad, E.M.; Holz, F.G.; Rosenfeld, P.J.; Guymer, R.H.; Boyer, D.; Grossi, F.; Baumal, C.R.; Korobelnik, J.F.; Slakter, J.S.; et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): Two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet 2023, 402, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, G.J.; Westby, K.; Csaky, K.G.; Monés, J.; Pearlman, J.A.; Patel, S.S.; Joondeph, B.C.; Randolph, J.; Masonson, H.; Rezaei, K.A. C5 Inhibitor Avacincaptad Pegol for Geographic Atrophy Due to Age-Related Macular Degeneration: A Randomized Pivotal Phase 2/3 Trial. Ophthalmology 2021, 128, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; McConville, C.; Yordi, S.; Cetin, H.; Cakir, Y.; Kalra, G.; Amine, R.; Whitney, J.; Whitmore, V.; Bonnay, M.; et al. Correlation Between Blue Fundus Autofluorescence and SD-OCT Measurements of Geographic Atrophy in Dry Age-Related Macular Degeneration. Am. J. Ophthalmol. 2024, 266, 92–101. [Google Scholar] [CrossRef]
- Huang, A.; Wu, Z.; Ansari, G.; Von Der Emde, L.; Pfau, M.; Schmitz-Valckenberg, S.; Fleckenstein, M.; Keenan, T.D.L.; Sadda, S.R.; Guymer, R.H.; et al. Geographic atrophy: Understanding the relationship between structure and function. Asia-Pac. J. Ophthalmol. 2025, 14, 100207. [Google Scholar] [CrossRef]
- Sadda, S.R.; Guymer, R.; Holz, F.G.; Schmitz-Valckenberg, S.; Curcio, C.A.; Bird, A.C.; Blodi, B.A.; Bottoni, F.; Chakravarthy, U.; Chew, E.Y.; et al. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3. Ophthalmology 2018, 125, 537–548. [Google Scholar] [CrossRef]
- Lee, E.; Hunt, D.; Cakir, Y.; Kuo, D.; Zhou, Z.; Pajic, M.; Hadziahmetovic, M. Artificial intelligence in age-related macular degeneration: Advancing diagnosis, prognosis, and treatment. Surv. Ophthalmol. 2025. [Google Scholar] [CrossRef]
- Chatzara, A.; Maliagkani, E.; Mitsopoulou, D.; Katsimpris, A.; Apostolopoulos, I.D.; Papageorgiou, E.; Georgalas, I. Artificial Intelligence Approaches for Geographic Atrophy Segmentation: A Systematic Review and Meta-Analysis. Bioengineering 2025, 12, 475. [Google Scholar] [CrossRef]
- Yehoshua, Z.; Garcia Filho, C.A.; Penha, F.M.; Gregori, G.; Stetson, P.F.; Feuer, W.J.; Rosenfeld, P.J. Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image. Ophthalmic Surg. Lasers Imaging Retin. 2013, 44, 127–132. [Google Scholar] [CrossRef]
- Derradji, Y.; Mosinska, A.; Apostolopoulos, S.; Ciller, C.; De Zanet, S.; Mantel, I. Fully-automated atrophy segmentation in dry age-related macular degeneration in optical coherence tomography. Sci. Rep. 2021, 11, 21893. [Google Scholar] [CrossRef]
- Zhang, G.; Fu, D.J.; Liefers, B.; Faes, L.; Glinton, S.; Wagner, S.; Struyven, R.; Pontikos, N.; Keane, P.A.; Balaskas, K. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: A model development and external validation study. Lancet Digit. Health 2021, 3, e665–e675. [Google Scholar] [CrossRef]
- Lachinov, D.; Seeböck, P.; Mai, J.; Goldbach, F.; Schmidt-Erfurth, U.; Bogunovic, H. Projective Skip-Connections for Segmentation Along a Subset of Dimensions in Retinal OCT. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Proceedings, Part I. pp. 431–441. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Alex, V.; Motevasseli, T.; Freeman, W.R.; Jayamon, J.A.; Bartsch, D.G.; Borooah, S. Assessing the validity of a cross-platform retinal image segmentation tool in normal and diseased retina. Sci. Rep. 2021, 11, 21784. [Google Scholar] [CrossRef]
- Safai, A.; Froines, C.; Slater, R.; Linderman, R.E.; Bogost, J.; Pacheco, C.; Voland, R.; Pak, J.; Tiwari, P.; Channa, R.; et al. Quantifying Geographic Atrophy in Age-Related Macular Degeneration: A Comparative Analysis Across 12 Deep Learning Models. Investig. Ophthalmol. Vis. Sci. 2024, 65, 42. [Google Scholar] [CrossRef] [PubMed]
- Pramil, V.; de Sisternes, L.; Omlor, L.; Lewis, W.; Sheikh, H.; Chu, Z.; Manivannan, N.; Durbin, M.; Wang, R.K.; Rosenfeld, P.J.; et al. A Deep Learning Model for Automated Segmentation of Geographic Atrophy Imaged Using Swept-Source OCT. Ophthalmol. Retin. 2023, 7, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Spaide, T.; Jiang, J.; Patil, J.; Anegondi, N.; Steffen, V.; Kawczynski, M.G.; Newton, E.M.; Rabe, C.; Gao, S.S.; Lee, A.Y.; et al. Geographic Atrophy Segmentation Using Multimodal Deep Learning. Transl. Vis. Sci. Technol. 2023, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Wu, Z.; Gao, S.S.; Guymer, R.H.; Steffen, V.; Chen, H.; Hejrati, M.; Zhang, M. Deep Learning Approaches for Detecting of Nascent Geographic Atrophy in Age-Related Macular Degeneration. Ophthalmol. Sci. 2024, 4, 100428. [Google Scholar] [CrossRef]
- Liefers, B.; Colijn, J.M.; González-Gonzalo, C.; Verzijden, T.; Wang, J.J.; Joachim, N.; Mitchell, P.; Hoyng, C.B.; van Ginneken, B.; Klaver, C.C.W.; et al. A Deep Learning Model for Segmentation of Geographic Atrophy to Study Its Long-Term Natural History. Ophthalmology 2020, 127, 1086–1096. [Google Scholar] [CrossRef]
- Wei, W.; Southern, J.; Zhu, K.; Li, Y.; Cordeiro, M.F.; Veselkov, K. Deep learning to detect macular atrophy in wet age-related macular degeneration using optical coherence tomography. Sci. Rep. 2023, 13, 8296. [Google Scholar] [CrossRef]
- Ciulla, T.A.; Boucher, N.; Aggarwal, N.; Harris, A. Geographic Atrophy is Associated with Meaningful Disease Burden: Visual Acuity Changes and Conversion to Neovascular AMD Over 3 Years in 18,712 Patient Eyes. Investig. Ophthalmol. Vis. Sci. 2023, 64, 4327. [Google Scholar]
- Spaide, R.F.; Vavvas, D.G. Complement Inhibition for Geographic Atrophy: Review of Salient Functional Outcomes and Perspective. Retina 2023, 43, 1064–1069. [Google Scholar] [CrossRef]
- Shen, M.; Berni, A.; Liu, J.; Hiya, F.; Herrera, G.; El-Mulki, O.S.; Beqiri, S.; Cheng, Y.; Kastner, J.; Trivizki, O.; et al. Real-World Experience With Intravitreal Pegcetacoplan for the Treatment of Geographic Atrophy in Age-Related Macular Degeneration. Am. J. Ophthalmol. 2026, 281, 31–41. [Google Scholar] [CrossRef]
- Liefers, B.; Taylor, P.; Alsaedi, A.; Bailey, C.; Balaskas, K.; Dhingra, N.; Egan, C.A.; Rodrigues, F.G.; Gonzalo, C.G.; Heeren, T.F.C.; et al. Quantification of Key Retinal Features in Early and Late Age-Related Macular Degeneration Using Deep Learning. Am. J. Ophthalmol. 2021, 226, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hanson, R.L.W.; Airody, A.; Sivaprasad, S.; Gale, R.P. Optical coherence tomography imaging biomarkers associated with neovascular age-related macular degeneration: A systematic review. Eye 2023, 37, 2438–2453. [Google Scholar] [CrossRef] [PubMed]
- Kalra, G.; Cetin, H.; Whitney, J.; Yordi, S.; Cakir, Y.; McConville, C.; Whitmore, V.; Bonnay, M.; Lunasco, L.; Sassine, A.; et al. Machine Learning-Based Automated Detection and Quantification of Geographic Atrophy and Hypertransmission Defects Using Spectral Domain Optical Coherence Tomography. J. Pers. Med. 2023, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Leng, T.; Niu, S.; Trucco, E. Editorial: Generalizable and explainable artificial intelligence methods for retinal disease analysis: Challenges and future trends. Front. Med. 2024, 11, 1465369. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Chandra, S.; Kwon, J.; Khalid, N.; Chong, V. Perspectives from clinical trials: Is geographic atrophy one disease? Eye 2023, 37, 402–407. [Google Scholar] [CrossRef]
- Csaky, K.G.; Miller, J.M.L.; Martin, D.F.; Johnson, M.W. Drug Approval for the Treatment of Geographic Atrophy: How We Got Here and Where We Need to Go. Am. J. Ophthalmol. 2024, 263, 231–239. [Google Scholar] [CrossRef]
- Della Vecchia, L.; Indurkar, A.; Matar, K.; Cakir, Y.; Hammoud, B.; Amine, R.; Cetin, H.; Kalra, G.; Yordi, S.; Yu, H.; et al. Association of Ellipsoid Zone Integrity with the Development of Geographic Atrophy in a Case-Control Assessment in Drusen Volume-Matched Eyes. Investig. Ophthalmol. Vis. Sci. 2024, 65, 5678. [Google Scholar]
- Stealth BioTherapeutics Enrolls First Patient in Global Phase 3 Clinical Program for Elamipretide in Patients Diagnosed with Dry AMD. 2024. Available online: https://www.ophthalmologytimes.com/view/stealth-biotherapeutics-enrolls-first-patient-in-global-phase-3-clinical-program-for-elamipretide-in-patients-diagnosed-with-dry-amd (accessed on 4 October 2025).
Cirrus | Spectralis OCT Only | Spectralis OCT + nIR | ||||
---|---|---|---|---|---|---|
GA only | GA + Treatment | GA only | GA + nAMD | GA only | GA + nAMD | |
N = 247 | N = 101 | N = 100 | N = 267 | N = 100 | N = 267 | |
Average DSC | 0.82 | 0.83 | 0.83 | |||
0.82 | 0.84 | 0.80 | 0.83 | 0.82 | 0.83 | |
p-Values | 0.18 | 0.08 | 0.77 | |||
Correlation (r2) | 0.88 | 0.91 | 0.91 | |||
0.89 | 0.87 | 0.97 | 0.85 | 0.98 | 0.84 | |
p-Values * | 0.26 | p < 0.05 | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-khersan, H.; Sodhi, S.K.; Cao, J.A.; Saju, S.M.; Pattathil, N.; Zhou, A.W.; Choudhry, N.; Russakoff, D.B.; Oakley, J.D.; Boyer, D.; et al. Deep Learning-Based Segmentation of Geographic Atrophy: A Multi-Center, Multi-Device Validation in a Real-World Clinical Cohort. Diagnostics 2025, 15, 2580. https://doi.org/10.3390/diagnostics15202580
Al-khersan H, Sodhi SK, Cao JA, Saju SM, Pattathil N, Zhou AW, Choudhry N, Russakoff DB, Oakley JD, Boyer D, et al. Deep Learning-Based Segmentation of Geographic Atrophy: A Multi-Center, Multi-Device Validation in a Real-World Clinical Cohort. Diagnostics. 2025; 15(20):2580. https://doi.org/10.3390/diagnostics15202580
Chicago/Turabian StyleAl-khersan, Hasenin, Simrat K. Sodhi, Jessica A. Cao, Stanley M. Saju, Niveditha Pattathil, Avery W. Zhou, Netan Choudhry, Daniel B. Russakoff, Jonathan D. Oakley, David Boyer, and et al. 2025. "Deep Learning-Based Segmentation of Geographic Atrophy: A Multi-Center, Multi-Device Validation in a Real-World Clinical Cohort" Diagnostics 15, no. 20: 2580. https://doi.org/10.3390/diagnostics15202580
APA StyleAl-khersan, H., Sodhi, S. K., Cao, J. A., Saju, S. M., Pattathil, N., Zhou, A. W., Choudhry, N., Russakoff, D. B., Oakley, J. D., Boyer, D., & Wykoff, C. C. (2025). Deep Learning-Based Segmentation of Geographic Atrophy: A Multi-Center, Multi-Device Validation in a Real-World Clinical Cohort. Diagnostics, 15(20), 2580. https://doi.org/10.3390/diagnostics15202580