Fecal Metabolomics for the Diagnosis of Clostridioides difficile Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Classification
2.3. Ethics Statement
2.4. Sample Size
2.5. Clinical Data Collection
2.6. Sample Handling and Metabolomic Processing
2.6.1. Sample Preparation
2.6.2. Bile Acids
2.6.3. Short-Chain Fatty Acids and Branched-Chain Amino Acids
2.6.4. Amino Acids
2.7. Metabolomics and Statistical Analysis
3. Results
3.1. Study Population and Sample Processing
3.2. Global Metabolomic Trends
3.3. Differential Metabolites and Diagnostic Stratification
3.4. Recurrent Infection and Group-Specific Trends
3.5. Influence of Comorbidities and Risk Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAA | Aminoadipic acid |
AABA | Alpha-aminobutyric acid |
ANOVA | Analysis of variance |
BEH | Ethylene-bridged hybrid (chromatography column technology) |
CDI | Clostridioides difficile infection |
CKD | Chronic kidney disease |
COPD | Chronic obstructive pulmonary disease |
CVD | Cardiovascular disease |
DA | Discriminant analysis |
DM | Diabetes mellitus |
ESI | Electrospray ionization |
FDA | Food and Drug Administration |
FDR | False discovery rate |
GC-MS | Gas chromatography–mass spectrometry |
GCDCA | Glycochenodeoxycholic acid |
GDPR | General Data Protection Regulation |
GEIH | Grupo de Estudio de Infección Hospitalaria (Spanish Hospital Infection Study Group) |
IBD | Inflammatory bowel disease |
IDSA | Infectious Diseases Society of America |
LC-MS | Liquid chromatography–mass spectrometry |
MCCV | Monte Carlo cross-validation |
MPA | Methylpentanoic acid |
MRM | Multiple reaction monitoring |
MS | Mass spectrometry |
NAAT | Nucleic acid amplification tests |
PBS | Phosphate-buffered saline |
PCA | Principal component analysis |
PCR | Polymerase chain reaction |
PLS-DA | Partial least squares–discriminant analysis |
PPI | Proton pump inhibitors |
Appendix A
Recurrence | Infection | Colonization | Control | p-Value | |
---|---|---|---|---|---|
Temperature (°C) | 36.6 (IQR 36.3–37.8) | 36.2 (IQR 36–37.4) | 36.3 (IQR 36.0–36.8) | 36.0 (IQR 36.0–38.0) | 0.544 |
WBC (cels/μL) | 14,015 (IQR 7080–17,562) | 11,000 (IQR 7265–24,970) | 7765 (IQR 2630–9520) | 7170 (IQR 5660–10,080 | 0.069 |
Albumin (g/dL) | 3.2 (±0.6) | 3.03 (±0.7) | 3.39 (±0.7) | 2.9 (±0.7) | 0.280 |
Creatinine (mg/dL) | 0.79 (IQR 0.59–1.14) | 1.60 (IQR 0.61–2.37) | 0.96 (IQR 0.59–1.26) | 0.83 (IQR 0.54–1.46) | 0.586 |
Test | Infection | Colonization | Control | |
---|---|---|---|---|
Ct PCR DNAtoxB | ≤25 | 22 (88.0%) | 2 (16.7%) | – |
>25 | 3 (12.0%) | 10 (83.4%) | – | |
GDH antigen | Positive | 21 (84.0%) | 5 (41.7%) | 0 (0.0%) |
Negative | 0 (0.0%) | 5 (41.7%) | 10 (90.9%) | |
Not performed | 4 (16.0%) | 2 (16.7%) | 1 (9.1%) | |
Toxin B IC | Positive | 25 (100%) | 0 (0.0%) | 0 (0.0%) |
Negative | 0 (0.0%) | 12 (100%) | 11 (100%) |
References
- Gerding, D.N.; Johnson, S.; Peterson, L.R.; Mulligan, M.E.; Silva, J. Clostridium Difficile-Associated Diarrhea and Colitis. Infect. Control. Hosp. Epidemiol. 1995, 16, 459–477. [Google Scholar] [CrossRef]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium Difficile Infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium Difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef]
- Clabots, C.R.; Johnson, S.; Olson, M.M.; Peterson, L.R.; Gerding, D.N. Acquisition of Clostridium Difficile by Hospitalized Patients: Evidence for Colonized New Admissions as a Source of Infection. J. Infect. Dis. 1992, 166, 561–567. [Google Scholar] [CrossRef]
- Alasmari, F.; Seiler, S.M.; Hink, T.; Burnham, C.-A.D.; Dubberke, E.R. Prevalence and Risk Factors for Asymptomatic Clostridium Difficile Carriage. Clin. Infect. Dis. 2014, 59, 216–222. [Google Scholar] [CrossRef]
- Abt, M.C.; McKenney, P.T.; Pamer, E.G. Clostridium Difficile Colitis: Pathogenesis and Host Defence. Nat. Rev. Microbiol. 2016, 14, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Francis, M.B.; Allen, C.A.; Shrestha, R.; Sorg, J.A. Bile Acid Recognition by the Clostridium Difficile Germinant Receptor, CspC, Is Important for Establishing Infection. PLoS Pathog. 2013, 9, e1003356. [Google Scholar] [CrossRef]
- Ross, C.L.; Spinler, J.K.; Savidge, T.C. Structural and Functional Changes within the Gut Microbiota and Susceptibility to Clostridium Difficile Infection. Anaerobe 2016, 41, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Thanissery, R.; Winston, J.A.; Theriot, C.M. Inhibition of Spore Germination, Growth, and Toxin Activity of Clinically Relevant C. Difficile Strains by Gut Microbiota Derived Secondary Bile Acids. Anaerobe 2017, 45, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Theriot, C.M.; Young, V.B. Microbial and Metabolic Interactions between the Gastrointestinal Tract and Clostridium Difficile Infection. Gut Microbes 2013, 5, 86–95. [Google Scholar] [CrossRef]
- Palmieri, L.-J.; Rainteau, D.; Sokol, H.; Beaugerie, L.; Dior, M.; Coffin, B.; Humbert, L.; Eguether, T.; Bado, A.; Hoys, S.; et al. Inhibitory Effect of Ursodeoxycholic Acid on Clostridium Difficilegermination Is Insufficient to Prevent Colitis: A Study in Hamsters and Humans. Front. Microbiol. 2018, 9, 2849. [Google Scholar] [CrossRef]
- Brown, J.R.-M.; Flemer, B.; Joyce, S.A.; Zulquernain, A.; Sheehan, D.; Shanahan, F.; O’Toole, P.W. Changes in Microbiota Composition, Bile and Fatty Acid Metabolism, in Successful Faecal Microbiota Transplantation for Clostridioides Difficile Infection. BMC Gastroenterol. 2018, 18, 131. [Google Scholar] [CrossRef]
- Rolfe, R.D. Role of Volatile Fatty Acids in Colonization Resistance to Clostridium Difficile. Infect. Immun. 1984, 45, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Ferreyra, J.A.; Wu, K.J.; Hryckowian, A.J.; Bouley, D.M.; Weimer, B.C.; Sonnenburg, J.L. Gut Microbiota-Produced Succinate Promotes C. Difficile Infection after Antibiotic Treatment or Motility Disturbance. Cell Host Microbe 2014, 16, 770–777. [Google Scholar] [CrossRef]
- Robinson, J.I.; Weir, W.H.; Crowley, J.R.; Hink, T.; Reske, K.A.; Kwon, J.H.; Burnham, C.-A.D.; Dubberke, E.R.; Mucha, P.J.; Henderson, J.P. Metabolomic Networks Connect Host-Microbiome Processes to Human Clostridioides Difficile Infections. J. Clin. Investig. 2019, 129, 3792–3806. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhou, N.; Shao, L.; Li, J.; Liu, S.; Meng, X.; Duan, J.; Xiong, X.; Huang, X.; Chen, Y.; et al. Diagnosis of Clostridium Difficile Infection Using an UPLC-MS Based Metabolomics Method. Metabolomics 2018, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Fowler, D.; Sizer, J.; Walton, C. Faecal Volatile Biomarkers of Clostridium Difficile Infection. PLoS ONE 2019, 14, e0215256. [Google Scholar] [CrossRef]
- Ramos-Garcia, V.; Ten-Doménech, I.; Vento, M.; Bullich-Vilarrubias, C.; Romaní-Pérez, M.; Sanz, Y.; Nobili, A.; Falcone, M.; Di Stefano, M.; Quintás, G.; et al. Fast Profiling of Primary, Secondary, Conjugated, and Sulfated Bile Acids in Human Urine and Murine Feces Samples. Anal. Bioanal. Chem. 2023, 415, 4961–4971. [Google Scholar] [CrossRef]
- Office of Clinical Pharmacology in the Center for Drug Evaluation and Research and the Center for Veterinary Medicine at the Food and Drug Administration Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Contains Nonbinding Recommendations. 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 15 July 2025).
- Ramos-Garcia, V.; Ten-Doménech, I.; Moreno-Giménez, A.; Campos-Berga, L.; Parra-Llorca, A.; Solaz-García, Á.; Lara-Cantón, I.; Pinilla-Gonzalez, A.; Gormaz, M.; Vento, M.; et al. GC-MS Analysis of Short Chain Fatty Acids and Branched Chain Amino Acids in Urine and Faeces Samples from Newborns and Lactating Mothers. Clin. Chim. Acta 2022, 532, 172–180. [Google Scholar] [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; Macdonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Inter-pretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Seekatz, A.M.; Rao, K.; Santhosh, K.; Young, V.B. Dynamics of the Fecal Microbiome in Patients with Recurrent and Nonrecurrent Clostridium Difficile Infection. Genome Med. 2016, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, J.J.; Allegretti, J.R.; Gibson, T.E.; McClure, E.; Delaney, M.; Bry, L.; Gerber, G.K. Gut Metabolites Predict Clostridioides Difficile Recurrence. Microbiome 2022, 10, 87. [Google Scholar] [CrossRef]
- Khanna, S.; Montassier, E.; Schmidt, B.; Patel, R.; Knights, D.; Pardi, D.S.; Kashyap, P.C. Gut Microbiome Predictors of Treatment Response and Recurrence in Primary Clostridium Difficile Infection. Aliment. Pharmacol. Ther. 2016, 44, 715–727. [Google Scholar] [CrossRef]
- Guh, A.Y.; Mu, Y.; Winston, L.G.; Johnston, H.; Olson, D.; Farley, M.M.; Wilson, L.E.; Holzbauer, S.M.; Phipps, E.C.; Dumyati, G.K.; et al. Trends in U.S. Burden of Clostridioides Difficile Infection and Outcomes. N. Engl. J. Med. 2020, 382, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Bosnjak, M.; Karpe, A.V.; Van, T.T.H.; Kotsanas, D.; Jenkin, G.A.; Costello, S.P.; Johanesen, P.; Moore, R.J.; Beale, D.J.; Srikhanta, Y.N.; et al. Multi-Omics Analysis of Hospital-Acquired Diarrhoeal Patients Reveals Biomarkers of Enterococcal Proliferation and Clostridioides Difficile Infection. Nat. Commun. 2023, 14, 7737. [Google Scholar] [CrossRef]
- Theriot, C.M.; Bowman, A.A.; Young, V.B. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium Difficile Spore Germination and Outgrowth in the Large Intestine. mSphere 2016, 1, e00045-15. [Google Scholar] [CrossRef]
- Neumann-Schaal, M.; Hofmann, J.D.; Will, S.E.; Schomburg, D. Time-Resolved Amino Acid Uptake of Clostridium Difficile 630Δerm and Concomitant Fermentation Product and Toxin Formation. BMC Microbiol. 2015, 15, 281. [Google Scholar] [CrossRef]
- Seekatz, A.M.; Theriot, C.M.; Rao, K.; Chang, Y.-M.; Freeman, A.E.; Kao, J.Y.; Young, V.B. Restoration of Short Chain Fatty Acid and Bile Acid Metabolism Following Fecal Microbiota Transplantation in Patients with Recurrent Clostridium Difficile Infection. Anaerobe 2018, 53, 64–73. [Google Scholar] [CrossRef]
- Weingarden, A.R.; Chen, C.; Bobr, A.; Yao, D.; Lu, Y.; Nelson, V.M.; Sadowsky, M.J.; Khoruts, A. Microbiota Transplantation Restores Normal Fecal Bile Acid Composition in Recurrent Clostridium Difficile Infection. Am. J. Physiol. Gastrointest Liver Physiol. 2014, 306, G310–G319. [Google Scholar] [CrossRef]
- Hurley, B.W.; Nguyen, C.C. The Spectrum of Pseudomembranous Enterocolitis and Antibiotic-Associated Diarrhea. Arch. Intern. Med. 2002, 162, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
Infection (n = 25) | Colonization (n = 12) | Control (n = 11) | p-Value | ||
---|---|---|---|---|---|
Female sex | 13 (52%) | 7 (58.3%) | 3 (27.3%) | 0.266 | |
Neoplasia | Located | 3 (12.0%) | 0 (0.0%) | 1 (9.1%) | 0.560 |
Metastatic | 6 (24.0%) | 4 (33.3%) | 2 (18.2%) | ||
Leukemia | 1 (4.0%) | 2 (16.7%) | 1 (9.1%) | 0.444 | |
Lymphoma | 2 (8.0%) | 2 (16.7%) | 1 (9.1%) | 0.732 | |
Liver | Mild to moderate | 2 (8.0%) | 2 (16.7%) | 0 (0.0%) | 0.392 |
Severe/cirrhosis | 1 (4.0%) | 0 (0.0%) | 0 (0.0%) | ||
Moderate–severe CKD | 8 (32.0%) | 0 (0.0%) | 2 (18.2%) | 0.025 | |
Hemodialysis | 1 (4.0%) | 0 (0.0%) | 1 (9.1%) | 0.466 | |
IBD | 1 (4.0%) | 0 (0.0%) | 2 (18.2%) | 0.164 | |
Diabetes mellitus | No TO damage | 1 (4.0%) | 1 (8.3%) | 4 (36.4%) | 0.024 |
With TO damage | 4 (16.0%) | 0 (0.0%) | 0 (0.0%) | ||
Dementia | 2 (8.0%) | 1 (8.3%) | 2 (18.2%) | 0.662 | |
CVD | 1 (4.0%) | 1 (8.3%) | 1 (9.1%) | 0.794 | |
Heart failure | 10 (40.0%) | 0 (0.0%) | 1 (9.1%) | 0.003 | |
Ischemic heart disease | 3 (12.0%) | 0 (0.0%) | 1 (9.1%) | 0.288 | |
Peripheral artery disease | 1 (4.0%) | 0 (0.0%) | 1 (9.1%) | 0.466 | |
COPD | 1 (4.0%) | 1 (8.3%) | 0 (0.0%) | 0.510 | |
Connective tissue disease | 1 (4.0%) | 2 (16.7%) | 0 (0.0%) | 0.199 | |
Peptic ulcer | 2 (8.0%) | 1 (8.3%) | 1 (9.1%) | 0.994 | |
Immunocompromised | 9 (36.0%) | 5 (41.7%) | 5 (45.5%) | 0.854 | |
Charlson | ≤5 | 11 (44.0%) | 6 (50.0%) | 7 (63.6%) | 0.552 |
6 o+ | 14 (56.0%) | 6 (50.0%) | 5 (36.4%) |
Risk Factor | Infection (n = 25) | Colonization (n = 12) | Control (n = 11) | p-Value | |
---|---|---|---|---|---|
Previous ATB use | 25 (100%) | 9 (75.0%) | 7 (63.6%) | 0.009 | |
Number of previous ATB | 0–2 | 14 (56.0%) | 9 (75.0%) | 6 (54.5%) | 0.435 |
>2 | 11 (44.0%) | 3 (25.0%) | 5 (45.5%) | 0.489 | |
Type of previous ATB | Quinolones | 12 (48.0%) | 4 (33.3%) | 4 (36.4%) | 0.641 |
Lincosamides | 1 (4.0%) | 1 (8.3%) | 0 (0.0%) | 0.606 | |
Cephalosporins | 20 (80.0%) | 6 (50.0%) | 5 (45.5%) | 0.065 | |
Penicillins | 12 (48.0%) | 3 (25.0%) | 1 (9.1%) | 0.058 | |
Carbapenems | 2 (8.0%) | 2 (16.7%) | 5 (45.5%) | 0.029 | |
Oxazolidinones | 3 (12.0%) | 0 (0.0%) | 4 (36.4%) | 0.041 | |
Duration of previous ATB | ≤10 days | 5 (20.0%) | 11 (91.7%) | 9 (81.8%) | <0.001 |
>10 days | 20 (80.0%) | 1 (8.3%) | 2 (18.2%) | — | |
Concomitant ATB use | 11 (44.0%) | 5 (41.7%) | 5 (45.5%) | 0.983 | |
ONS | 2 (8.0%) | 1 (8.3%) | 5 (45.5%) | 0.026 | |
Antidepressants | 10 (40.0%) | 7 (58.3%) | 1 (9.1%) | 0.032 | |
PPI/AntiH2 | 21 (84.0%) | 8 (66.7%) | 8 (72.7%) | 0.467 |
Metabolite/Ratio | Condition | AUC | Sensitivity | Specificity |
---|---|---|---|---|
AAA/propionate | CDI (I+R vs. X+C) | 0.883 (0.785–0.982) | 0.783 (0.783–0.951) | 0.880 (0.753–1.000) |
AAA/isovalerate | CDI (I+R vs. X+C) | 0.893 (0.776–1.000) | 0.880 (0.880–1.000) | 0.833 (0.622–1.000) |
GCDCA/isobutyrate | CDI (I+R vs. X) | 0.942 (0.868–1.000) | 0.995 (0.950–1.000) | 0.880 (0.753–1.000) |
AABA | Recurrent infection (R vs. I) | 0.888 (0.700–1.000) | 0.917 (0.917–1.000) | 0.769 (0.540–0.998) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bea-Serrano, C.; Belmonte-Domingo, A.; Pinto-Pla, C.; Ferrer-Ribera, A.; Vela-Bernal, S.; de Gracia-León, A.I.; de Castro-Oliver, A.; Serna-Navarro, L.; Prades-Sirvent, C.; Ruiz-Raga, D.; et al. Fecal Metabolomics for the Diagnosis of Clostridioides difficile Infection. Diagnostics 2025, 15, 2331. https://doi.org/10.3390/diagnostics15182331
Bea-Serrano C, Belmonte-Domingo A, Pinto-Pla C, Ferrer-Ribera A, Vela-Bernal S, de Gracia-León AI, de Castro-Oliver A, Serna-Navarro L, Prades-Sirvent C, Ruiz-Raga D, et al. Fecal Metabolomics for the Diagnosis of Clostridioides difficile Infection. Diagnostics. 2025; 15(18):2331. https://doi.org/10.3390/diagnostics15182331
Chicago/Turabian StyleBea-Serrano, Carlos, Andreu Belmonte-Domingo, Carolina Pinto-Pla, Ana Ferrer-Ribera, Sara Vela-Bernal, Ana Isabel de Gracia-León, Andrea de Castro-Oliver, Lucas Serna-Navarro, Celia Prades-Sirvent, David Ruiz-Raga, and et al. 2025. "Fecal Metabolomics for the Diagnosis of Clostridioides difficile Infection" Diagnostics 15, no. 18: 2331. https://doi.org/10.3390/diagnostics15182331
APA StyleBea-Serrano, C., Belmonte-Domingo, A., Pinto-Pla, C., Ferrer-Ribera, A., Vela-Bernal, S., de Gracia-León, A. I., de Castro-Oliver, A., Serna-Navarro, L., Prades-Sirvent, C., Ruiz-Raga, D., Galindo, M. J., Forner-Giner, M. J., & Oltra-Sempere, M. R. (2025). Fecal Metabolomics for the Diagnosis of Clostridioides difficile Infection. Diagnostics, 15(18), 2331. https://doi.org/10.3390/diagnostics15182331