Prognostic Role of L1CAM in Endometrial Cancer
Abstract
1. Introduction
2. L1CAM Physiology and Pathways
3. L1CAM in Endometrial Cancer
Potential Mechanisms of L1CAM (Figure 1)
4. Diagnostic Role of LICAM
5. The Prognostic Role of L1CAM
5.1. L1CAM Expression and Endometrial Cancer Histology (Table 1)
Author, Year | Antibody | Sample Size (n) | Positivity | Significance |
---|---|---|---|---|
Fogel et al. (2003) [40] |
|
|
|
|
Huszar M et al. (2010) [21] |
|
|
|
|
Zeimet AG et al. (2013) [42] |
|
|
|
|
Bosse T et al., 2014 [43] |
|
|
|
|
Van Gool IC et al. (2016) [35] |
|
|
|
|
Smogeli E et al. (2016) [45] |
|
|
|
|
van der Putten LJ et al. (2016) [46] |
|
|
|
|
Pasanen A et al. (2016) [47] |
|
|
|
|
Kommoss et al. (2017) [48] |
|
|
|
|
Wortman BG, Creutzberg CL et al., 2018 [49] |
|
|
|
|
Klat J et al. 2019 [50] |
|
|
|
|
Kim J et al. (2023) [51] |
|
|
|
|
Joe S et al. (2023) [52] |
|
|
|
|
Yoon H et al. (2024) [53] |
|
|
|
|
Zeiter D et al. (2021) [54] |
|
|
|
|
Suh DH et al. 2014 [55] |
|
|
|
|
Tangen IL et al. (2017) [56] |
|
|
|
|
Pasanen A et al. (2017) [57] |
|
|
|
|
5.2. L1CAM Expression and Molecular Subtype of Endometrial Carcinoma (Table 2)
5.3. L1CAM Expression and Rare Endometrial Cancer Types (Table 3)
5.4. L1CAM Expression in Endometrial Cancer Patients Undergoing Surgery and Adjuvant Chemotherapy
6. Role of L1CAM in Immunomodulation−Serum L1CAM
7. L1CAM as a Therapeutic Target
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Salton, S.R.; Richter-Landsberg, C.; Greene, L.A.; Shelanski, M.L. Nerve growth factor-inducible large external (NILE) glycoprotein: Studies of a central and peripheral neuronal marker. J. Neurosci. 1983, 3, 441–454. [Google Scholar] [CrossRef]
- Bock, E.; Richter-Landsberg, C.; Faissner, A.; Schachner, M. Demonstration of immunochemical identity between the nerve growth factor-inducible large external (NILE) glycoprotein and the cell adhesion molecule L1. EMBO J. 1985, 4, 2765–2768. [Google Scholar] [CrossRef] [PubMed]
- Keilhauer, G.; Faissner, A.; Schachner, M. Differential inhibition of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies. Nature 1985, 316, 728–730. [Google Scholar] [CrossRef] [PubMed]
- Hortsch, M. Structural and functional evolution of the L1 family: Are four adhesion molecules better than one? Mol. Cell. Neurosci. 2000, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fogel, M.; Mechtersheimer, S.; Huszar, M.; Smirnov, A.; Abu-Dahi, A.; Tilgen, W.; Reichrath, J.; Georg, T.; Altevogt, P.; Gutwein, P. L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Lett. 2003, 189, 237–247. [Google Scholar] [CrossRef]
- Debiec, H.; Christensen, E.I.; Ronco, P.M. The cell adhesion molecule L1 is developmentally regulated in the renal epithelium and is involved in kidney branching morphogenesis. J. Cell Biol. 1998, 143, 2067–2079. [Google Scholar] [CrossRef]
- Kowitz, A.; Kadmon, G.; Eckert, M.; Schirrmacher, V.; Schachner, M.; Altevogt, P. Expression and function of the neural cell adhesion molecule L1 in mouse leukocytes. Eur. J. Immunol. 1992, 22, 1199–1205. [Google Scholar] [CrossRef]
- Thies, A.; Schachner, M.; Moll, I.; Berger, J.; Schulze, H.J.; Brunner, G.; Schumacher, U. Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur. J. Cancer 2002, 38, 1708–1716. [Google Scholar] [CrossRef]
- Allory, Y.; Matsuoka, Y.; Bazille, C.; Christensen, E.I.; Ronco, P.; Debiec, H. The L1 cell adhesion molecule is induced in renal cancer cells and correlates with metastasis in clear cell carcinomas. Clin. Cancer Res. 2005, 11, 1190–1197. [Google Scholar] [CrossRef]
- Doberstein, K.; Wieland, A.; Lee, S.B.B.; Blaheta, R.A.A.; Wedel, S.; Moch, H.; Schraml, P.; Pfeilschifter, J.; Kristiansen, G.; Gutwein, P. L1-CAM expression in ccRCC correlates with shorter patients survival times and confers chemoresistance in renal cell carcinoma cells. Carcinogenesis 2011, 32, 262–270. [Google Scholar] [CrossRef]
- Boo, Y.J.; Park, J.M.; Kim, J.; Chae, Y.S.; Min, B.W.; Um, J.W.; Moon, H.Y. L1 expression as a marker for poor prognosis, tumor progression, and short survival in patients with colorectal cancer. Ann. Surg. Oncol. 2007, 14, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Jo, Y.S.; Huang, S.M.; Liang, Z.L.; Min, J.K.; Hong, H.J.; Kim, J.M. L1 cell adhesion molecule as a novel independent poor prognostic factor in gallbladder carcinoma. Hum. Pathol. 2011, 42, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, S.; Morohashi, S.; Kudo, Y.; Akasaka, H.; Ogasawara, H.; Ono, M.; Takasugi, K.; Ishido, K.; Hakamada, K.; Kijima, H. L1 Cell adhesion molecule (L1CAM) expression at the cancer invasive front is a novel prognostic marker of pancreatic ductal adenocarcinoma. J. Surg. Oncol. 2011, 103, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Kaifi, J.T.; Strelow, A.; Schurr, P.G.; Reichelt, U.; Yekebas, E.F.; Wachowiak, R.; Quaas, A.; Strate, T.; Schaefer, H.; Sauter, G.; et al. L1 (CD171) is highly expressed in gastrointestinal stromal tumors. Mod. Pathol. 2006, 19, 399–406. [Google Scholar] [CrossRef]
- Huszar, M.; Moldenhauer, G.; Gschwend, V.; Ben-Arie, A.; Altevogt, P.; Fogel, M. Expression profile analysis in multiple human tumors identifies L1 (CD171) as a molecular marker for differential diagnosis and targeted therapy. Hum. Pathol. 2006, 37, 1000–1008. [Google Scholar] [CrossRef]
- Stevers, M.; Rabban, J.T.; Garg, K.; Van Ziffle, J.; Onodera, C.; Grenert, J.P.; Yeh, I.; Bastian, B.C.; Zaloudek, C.; Solomon, D.A. Well-differentiated papillary mesothelioma of the peritoneum is genetically defined by mutually exclusive mutations in TRAF7 and CDC42. Mod. Pathol. 2019, 32, 88–99. [Google Scholar] [CrossRef]
- Goode, B.; Joseph, N.M.; Stevers, M.; Van Ziffle, J.; Onodera, C.; Talevich, E.; Grenert, J.P.; Yeh, I.; Bastian, B.C.; Phillips, J.J.; et al. Adenomatoid tumors of the male and female genital tract are defined by TRAF7 mutations that drive aberrant NF-kB pathway activation. Mod. Pathol. 2018, 31, 660–673. [Google Scholar] [CrossRef]
- Karpathiou, G.; Casteillo, F.; Dridi, M.; Papoudou-Bai, A.; Dumollard, J.M.; Peoc’h, M. L1CAM expression in cystic mesothelial lesions: A comparison with adenomatoid tumours, well-differentiated papillary mesothelial tumours and malignant mesotheliomas. Histopathology 2021, 79, 272–274. [Google Scholar] [CrossRef]
- Itami, H.; Fujii, T.; Nakai, T.; Takeda, M.; Kishi, Y.; Taniguchi, F.; Terada, C.; Okada, F.; Nitta, Y.; Matsuoka, M.; et al. TRAF7 mutations and immunohistochemical study of uterine adenomatoid tumor compared with malignant mesothelioma. Hum. Pathol. 2021, 111, 59–66. [Google Scholar] [CrossRef]
- Stoyanova, I.I.; Lutz, D. Functional Diversity of Neuronal Cell Adhesion and Recognition Molecule L1CAM through Proteolytic Cleavage. Cells 2022, 11, 3085. [Google Scholar] [CrossRef]
- Huszar, M.; Pfeifer, M.; Schirmer, U.; Kiefel, H.; Konecny, G.E.; Ben-Arie, A.; Edler, L.; Münch, M.; Müller-Holzner, E.; Jerabek-Klestil, S.; et al. Up-regulation of L1CAM is linked to loss of hormone receptors and E-cadherin in aggressive subtypes of endometrial carcinomas. J. Pathol. 2010, 220, 551–561. [Google Scholar] [CrossRef]
- Finas, D.; Huszar, M.; Agic, A.; Dogan, S.; Kiefel, H.; Riedle, S.; Gast, D.; Marcovich, R.; Noack, F.; Altevogt, P.; et al. L1 cell adhesion molecule (L1CAM) as a pathogenetic factor in endometriosis. Hum. Reprod. 2008, 23, 1053–1062. [Google Scholar] [CrossRef]
- Pfeifer, M.; Schirmer, U.; Geismann, C.; Schafer, H.; Sebens, S.; Altevogt, P. L1CAM expression in endometrial carcinomas is regulated by usage of two different promoter regions. BMC Mol. Biol. 2010, 11, 64. [Google Scholar] [CrossRef]
- Gavert, N.; Conacci-Sorrell, M.; Gast, D.; Schneider, A.; Altevogt, P.; Brabletz, T.; Ben-Ze’ev, A. L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J. Cell Biol. 2005, 168, 633–642. [Google Scholar] [CrossRef]
- Geismann, C.; Morscheck, M.; Koch, D.; Bergmann, F.; Ungefroren, H.; Arlt, A.; Tsao, M.S.; Bachem, M.G.; Altevogt, P.; Sipos, B.; et al. Up-regulation of L1CAM in pancreatic duct cells is transforming growth factor beta1- and slug-dependent: Role in malignant transformation of pancreatic cancer. Cancer Res. 2009, 69, 4517–4526. [Google Scholar] [CrossRef]
- Schirmer, U.; Fiegl, H.; Pfeifer, M.; Zeimet, A.G.; Müller-Holzner, E.; Bode, P.K.; Tischler, V.; Altevogt, P. Epigenetic regulation of L1CAM in endometrial carcinoma: Comparison to cancer-testis (CT-X) antigens. BMC Cancer 2013, 13, 156. [Google Scholar] [CrossRef] [PubMed]
- Heubner, M.; Wimberger, P.; Kasimir-Bauer, S.; Otterbach, F.; Kimmig, R.; Siffert, W. The AA genotype of a L1C G842A polymorphism is associated with an increased risk for ovarian cancer. Anticancer. Res. 2009, 29, 3449–3452. [Google Scholar]
- Chen, J.; Gao, F.; Liu, N. L1CAM promotes epithelial to mesenchymal transition and formation of cancer initiating cells in human endometrial cancer. Exp. Ther. Med. 2018, 15, 2792–2797. [Google Scholar] [CrossRef] [PubMed]
- Urick, M.E.; Yu, E.J.; Bell, D.W. High-risk endometrial cancer proteomic profiling reveals that FBXW7 mutation alters L1CAM and TGM2 protein levels. Cancer 2021, 127, 2905–2915. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, S.; Rheinstein, P.H. Druggable genetic targets in endometrial cancer✰,✰✰. Cancer Treat. Res. Commun. 2022, 30, 100502. [Google Scholar] [CrossRef]
- Ye, L.; Wang, X.; Li, B. Expression profile of epithelial-mesenchymal transition-related genes as a prognostic biomarker for endometrial cancer. J. Cancer 2021, 12, 6484–6496. [Google Scholar] [CrossRef]
- Karpathiou, G.; Sramek, V.; Dagher, S.; Mobarki, M.; Dridi, M.; Picot, T.; Chauleur, C.; Peoc’h, M. Peripheral node addressin, a ligand for L-selectin is found in tumor cells and in high endothelial venules in endometrial cancer. Pathol. Res. Pract. 2022, 233, 153888. [Google Scholar] [CrossRef] [PubMed]
- Karpathiou, G.; Dumollard, J.M.; Gavid, M.; Casteillo, F.; Vieville, M.; Prades, J.M.; Froudarakis, M.; Peoc’h, M. High endothelial venules are present in pharyngeal and laryngeal carcinomas and they are associated with better prognosis. Pathol. Res. Pract. 2021, 220, 153392. [Google Scholar] [CrossRef] [PubMed]
- Horeweg, N.; Workel, H.H.; Loiero, D.; Church, D.N.; Vermij, L.; Léon-Castillo, A.; Krog, R.T.; de Boer, S.M.; Nout, R.A.; Powell, M.E.; et al. Tertiary lymphoid structures critical for prognosis in endometrial cancer patients. Nat. Commun. 2022, 13, 1373. [Google Scholar] [CrossRef] [PubMed]
- Van Gool, I.C.; Stelloo, E.; Nout, R.A.; Nijman, H.W.; Edmondson, R.J.; Church, D.N.; MacKay, H.J.; Leary, A.; Powell, M.E.; Mileshkin, L.; et al. Prognostic significance of L1CAM expression and its association with mutant p53 expression in high-risk endometrial cancer. Mod. Pathol. 2016, 29, 174–181. [Google Scholar] [CrossRef]
- Fang, F.; Wang, P.; Huang, H.; Ye, M.; Liu, X.; Li, Q. m(6)A RNA methylation regulator-based signature for prognostic prediction and its potential immunological role in uterine corpus endometrial carcinoma. BMC Cancer 2022, 22, 1364. [Google Scholar] [CrossRef]
- He, W.; Liu, W.; Liu, X.; Tan, W. The mechanism of L1 cell adhesion molecule interacting with protein tyrosine kinase 2 to regulate the focal adhesion kinase-growth factor receptor-bound protein 2-son of sevenless-rat sarcoma pathway in the identification and treatment of type I high-risk endometrial cancer. CytoJournal 2024, 21, 34. [Google Scholar]
- Visser, N.C.; van der Putten, L.J.; van Egerschot, A.; Van de Vijver, K.K.; Santacana, M.; Bronsert, P.; Hirschfeld, M.; Colas, E.; Gil-Moreno, A.; Garcia, A.; et al. Addition of IMP3 to L1CAM for discrimination between low- and high-grade endometrial carcinomas: A European Network for Individualised Treatment of Endometrial Cancer collaboration study. Hum. Pathol. 2019, 89, 90–98. [Google Scholar] [CrossRef]
- Visser, N.C.; van der Wurff, A.A.; IntHout, J.; Reijnen, C.; Dabir, P.D.; Soltani, G.G.; Alcala, L.S.; Boll, D.; Bronkhorst, C.M.; Bult, P.; et al. Improving preoperative diagnosis in endometrial cancer using systematic morphological assessment and a small immunohistochemical panel. Hum. Pathol. 2021, 117, 68–78. [Google Scholar] [CrossRef]
- Fogel, M.; Gutwein, P.; Mechtersheimer, S.; Riedle, S.; Stoeck, A.; Smirnov, A.; Edler, L.; Ben-Arie, A.; Huszar, M.; Altevogt, P. L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet 2003, 362, 869–875. [Google Scholar] [CrossRef]
- Gast, D.; Riedle, S.; Riedle, S.; Schabath, H.; Schlich, S.; Schneider, A.; Issa, Y.; Stoeck, A.; Fogel, M.; Joumaa, S.; et al. L1 augments cell migration and tumor growth but not beta3 integrin expression in ovarian carcinomas. Int. J. Cancer 2005, 115, 658–665. [Google Scholar] [CrossRef]
- Zeimet, A.G.; Reimer, D.; Huszar, M.; Winterhoff, B.; Puistola, U.; Abdel Azim, S.; Müller-Holzner, E.; Ben-Arie, A.; Van Kempen, L.C.; Petru, E.; et al. L1CAM in early-stage type I endometrial cancer: Results of a large multicenter evaluation. J. Natl. Cancer Inst. 2013, 105, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Bosse, T.; Nout, R.A.; Stelloo, E.; Dreef, E.; Nijman, H.W.; Jürgenliemk-Schulz, I.M.; Jobsen, J.J.; Creutzberg, C.L.; Smit, V.T.H.B.M. L1 cell adhesion molecule is a strong predictor for distant recurrence and overall survival in early stage endometrial cancer: Pooled PORTEC trial results. Eur. J. Cancer 2014, 50, 2602–2610. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, T.H.; Smith, D.D.; Ouyang, C.; Warden, C.D.; Williams, J.C.; Han, E.S. L1CAM is an independent predictor of poor survival in endometrial cancer—An analysis of The Cancer Genome Atlas (TCGA). Gynecol. Oncol. 2016, 141, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Smogeli, E.; Davidson, B.; Cvancarova, M.; Holth, A.; Katz, B.; Risberg, B.; Kristensen, G.; Lindemann, K. L1CAM as a prognostic marker in stage I endometrial cancer: A validation study. BMC Cancer 2016, 16, 596. [Google Scholar] [CrossRef]
- van der Putten, L.J.; Visser, N.C.; van de Vijver, K.; Santacana, M.; Bronsert, P.; Bulten, J.; Hirschfeld, M.; Colas, E.; Gil-Moreno, A.; Garcia, A.; et al. L1CAM expression in endometrial carcinomas: An ENITEC collaboration study. Br. J. Cancer 2016, 115, 716–724. [Google Scholar] [CrossRef]
- Pasanen, A.; Tuomi, T.; Isola, J.; Staff, S.; Butzow, R.; Loukovaara, M. L1 Cell Adhesion Molecule as a Predictor of Disease-Specific Survival and Patterns of Relapse in Endometrial Cancer. Int. J. Gynecol. Cancer 2016, 26, 1465–1471. [Google Scholar] [CrossRef]
- Kommoss, F.; Kommoss, F.; Grevenkamp, F.; Bunz, A.K.; Taran, F.A.; Fend, F.; Brucker, S.Y.; Wallwiener, D.; Schönfisch, B.; Greif, K.; et al. L1CAM: Amending the “low-risk” category in endometrial carcinoma. J. Cancer Res. Clin. Oncol. 2017, 143, 255–262. [Google Scholar] [CrossRef]
- Wortman, B.G.; Creutzberg, C.L.; Putter, H.; Jürgenliemk-Schulz, I.M.; Jobsen, J.J.; Lutgens, L.C.; van der Steen-Banasik, E.M.; Mens, J.W.M.; Slot, A.; Kroese, M.S.; et al. Ten-year results of the PORTEC-2 trial for high-intermediate risk endometrial carcinoma: Improving patient selection for adjuvant therapy. Br. J. Cancer 2018, 119, 1067–1074. [Google Scholar] [CrossRef]
- Klat, J.; Mladenka, A.; Dvorackova, J.; Bajsova, S.; Simetka, O. L1CAM as a Negative Prognostic Factor in Endometrioid Endometrial Adenocarcinoma FIGO Stage IA-IB. Anticancer. Res. 2019, 39, 421–424. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.I.; Kim, N.R.; Kim, H.; Kim, H.S.; Chung, H.H.; Kim, J.W.; Lee, C.; Lee, M. Prognostic significance of L1CAM expression in addition to ProMisE in endometrial cancer. Gynecol. Oncol. 2023, 174, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Joe, S.; Lee, M.; Kang, J.; Kim, J.; Hong, S.H.; Lee, S.J.; Lee, K.H.; Lee, A. Enhanced Risk Stratification in Early-Stage Endometrial Cancer: Integrating POLE through Droplet Digital PCR and L1CAM. Cancers 2023, 15, 4899. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Suh, D.H.; Kim, K.; No, J.H.; Kim, Y.B.; Kim, H. Evaluation of prognostic potential of beta-catenin and L1CAM expression according to endometrial cancer risk group. Gynecol. Oncol. 2024, 184, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Zeiter, D.; Vlajnic, T.; Schotzau, A.; Heinzelmann-Schwarz, V.; Montavon, C. L1CAM is not a reliable predictor for lymph node metastases in endometrial cancer, but L1CAM positive patients benefit from radiotherapy. J. Cancer 2021, 12, 6401–6410. [Google Scholar] [CrossRef]
- Suh, D.H.; Kim, M.A.; Kim, H.S.; Chung, H.H.; Park, N.H.; Song, Y.S.; Kang, S.B. L1 cell adhesion molecule expression is associated with pelvic lymph node metastasis and advanced stage in diabetic patients with endometrial cancer: A matched case control study. J. Cancer Prev. 2014, 19, 231–239. [Google Scholar] [CrossRef]
- Tangen, I.L.; Kopperud, R.K.; Visser, N.; Staff, A.C.; Tingulstad, S.; Marcickiewicz, J.; Amant, F.; Bjørge, L.; Pijnenborg, J.; Salvesen, H.B.; et al. Expression of L1CAM in curettage or high L1CAM level in preoperative blood samples predicts lymph node metastases and poor outcome in endometrial cancer patients. Br. J. Cancer 2017, 117, 840–847. [Google Scholar] [CrossRef]
- Pasanen, A.; Loukovaara, M.; Tuomi, T.; Butzow, R. Preoperative Risk Stratification of Endometrial Carcinoma: L1CAM as a Biomarker. Int. J. Gynecol. Cancer 2017, 27, 1318–1324. [Google Scholar] [CrossRef]
- Stelloo, E.; Nout, R.A.; Osse, E.M.; Jürgenliemk-Schulz, I.J.; Jobsen, J.J.; Lutgens, L.C.; van der Steen-Banasik, E.M.; Nijman, H.W.; Putter, H.; Bosse, T.; et al. Improved Risk Assessment by Integrating Molecular and Clinicopathological Factors in Early-stage Endometrial Cancer-Combined Analysis of the PORTEC Cohorts. Clin. Cancer Res. 2016, 22, 4215–4224. [Google Scholar] [CrossRef]
- Karnezis, A.N.; Leung, S.; Magrill, J.; McConechy, M.K.; Yang, W.; Chow, C.; Kobel, M.; Lee, C.H.; Huntsman, D.G.; Talhouk, A.; et al. Evaluation of endometrial carcinoma prognostic immunohistochemistry markers in the context of molecular classification. J. Pathol. Clin. Res. 2017, 3, 279–293. [Google Scholar] [CrossRef]
- Kommoss, F.K.; Karnezis, A.N.; Kommoss, F.; Talhouk, A.; Taran, F.A.; Staebler, A.; Gilks, C.B.; Huntsman, D.G.; Krämer, B.; Brucker, S.Y.; et al. L1CAM further stratifies endometrial carcinoma patients with no specific molecular risk profile. Br. J. Cancer 2018, 119, 480–486. [Google Scholar] [CrossRef]
- Ravaggi, A.; Capoferri, D.; Ardighieri, L.; Ghini, I.; Ferrari, F.; Romani, C.; Bugatti, M.; Zanotti, L.; Vrede, S.; Tognon, G.; et al. Integrated Biomarker Analysis Reveals L1CAM as a Potential Stratification Marker for No Specific Molecular Profile High-Risk Endometrial Carcinoma. Cancers 2022, 14, 5429. [Google Scholar] [CrossRef]
- Pasanen, A.; Loukovaara, M.; Butzow, R. Clinicopathological significance of deficient DNA mismatch repair and MLH1 promoter methylation in endometrioid endometrial carcinoma. Mod. Pathol. 2020, 33, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Vrede, S.W.; Van Weelden, W.J.; Visser, N.C.M.; Bulten, J.; Van Der Putten, L.J.; Van de Vijver, K.; Santacana, M.; Colas, E.; Gil-Moreno, A.; Moiola, C.P.; et al. Immunohistochemical biomarkers are prognostic relevant in addition to the ESMO-ESGO-ESTRO risk classification in endometrial cancer. Gynecol. Oncol. 2021, 161, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Vermij, L.; Jobsen, J.J.; León-Castillo, A.; Brinkhuis, M.; Roothaan, S.; Powell, M.E.; de Boer, S.M.; Khaw, P.; Mileshkin, L.R.; Fyles, A.; et al. Prognostic refinement of NSMP high-risk endometrial cancers using oestrogen receptor immunohistochemistry. Br. J. Cancer 2023, 128, 1360–1368. [Google Scholar] [CrossRef]
- Jamieson, A.; Huvila, J.; Chiu, D.; Thompson, E.F.; Scott, S.; Salvador, S.; Vicus, D.; Helpman, L.; Gotlieb, W.; Kean, S.; et al. Grade and Estrogen Receptor Expression Identify a Subset of No Specific Molecular Profile Endometrial Carcinomas at a Very Low Risk of Disease-Specific Death. Mod. Pathol. 2023, 36, 100085. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, K.; Kildal, W.; Kleppe, A.; Tobin, K.A.R.; Pradhan, M.; Isaksen, M.X.; Vlatkovic, L.; Danielsen, H.E.; Kristensen, G.B.; Askautrud, H.A. Impact of molecular profile on prognosis and relapse pattern in low and intermediate risk endometrial cancer. Eur. J. Cancer 2024, 200, 113584. [Google Scholar] [CrossRef]
- Aro, K.; Pasanen, A.; Butzow, R.; Loukovaara, M. The impact of estrogen receptor and L1 cell adhesion molecule expression on endometrial cancer outcome correlates with clinicopathological risk group and molecular subgroup. Gynecol. Oncol. 2024, 189, 9–15. [Google Scholar] [CrossRef]
- Kleppe, A.; Lindemann, K.; Kildal, W.; Tobin, K.A.R.; Pradhan, M.; Vlatkovic, L.; Isaksen, M.X.; Danielsen, H.E.; Askautrud, H.A.; Kristensen, G.B. Prognostic and therapeutic implication of molecular classification including L1CAM expression in high-risk endometrial cancer. Gynecol. Oncol. 2025, 192, 80–88. [Google Scholar] [CrossRef]
- Kim, J.C.; Ahn, B.; Lee, Y.J.; Nam, E.J.; Kim, S.W.; Kim, S.; Kim, Y.T.; Park, E.; Lee, J.Y. Mismatch repair, p53, and L1 cell adhesion molecule status influence the response to chemotherapy in advanced and recurrent endometrial cancer. BMC Cancer 2024, 24, 1586. [Google Scholar] [CrossRef]
- Li, Y.; Yan, J.; Deng, Y.; Wang, P.; Bai, X.; Qin, W. Multifactorial construction of low-grade and high-grade endometrial cancer recurrence prediction models. Int. J. Gynecol. Obstet. 2025, 170, 816–826. [Google Scholar] [CrossRef]
- Abdel Azim, S.; Sprung, S.; Mutz-Dehbalaie, I.; Fessler, S.; Zeimet, A.G.; Marth, C. L1CAM and HER2 Expression in Early Endometrioid Uterine Cancer. Int. J. Gynecol. Pathol. 2017, 36, 356–363. [Google Scholar] [CrossRef]
- van der Putten, L.J.M.; Visser, N.C.M.; van de Vijver, K.; Santacana, M.; Bronsert, P.; Bulten, J.; Hirschfeld, M.; Colas, E.; Gil-Moreno, A.; Garcia, A.; et al. Added Value of Estrogen Receptor, Progesterone Receptor, and L1 Cell Adhesion Molecule Expression to Histology-Based Endometrial Carcinoma Recurrence Prediction Models: An ENITEC Collaboration Study. Int. J. Gynecol. Cancer 2018, 28, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Zagidullin, B.; Pasanen, A.; Loukovaara, M.; Butzow, R.; Tang, J. Interpretable prognostic modeling of endometrial cancer. Sci. Rep. 2022, 12, 21543. [Google Scholar] [CrossRef] [PubMed]
- Versluis, M.A.C.; Plat, A.; de Bruyn, M.; Matias-Guiu, X.; Trovic, J.; Krakstad, C.; Nijman, H.W.; Bosse, T.; de Bock, G.H.; Hollema, H. L1CAM expression in uterine carcinosarcoma is limited to the epithelial component and may be involved in epithelial-mesenchymal transition. Virchows Arch. 2018, 473, 591–598. [Google Scholar] [CrossRef]
- Kim, S.R.; Cloutier, B.T.; Leung, S.; Cochrane, D.; Britton, H.; Pina, A.; Storness-Bliss, C.; Farnell, D.; Huang, L.; Shum, K.; et al. Molecular subtypes of clear cell carcinoma of the endometrium: Opportunities for prognostic and predictive stratification. Gynecol. Oncol. 2020, 158, 3–11. [Google Scholar] [CrossRef]
- Asano, H.; Hatanaka, K.C.; Matsuoka, R.; Dong, P.; Mitamura, T.; Konno, Y.; Kato, T.; Kobayashi, N.; Ihira, K.; Nozaki, A.; et al. L1CAM Predicts Adverse Outcomes in Patients with Endometrial Cancer Undergoing Full Lymphadenectomy and Adjuvant Chemotherapy. Ann. Surg. Oncol. 2020, 27, 2159–2168. [Google Scholar] [CrossRef]
- Romani, C.; Capoferri, D.; Reijnen, C.; Lonardi, S.; Ravaggi, A.; Ratti, M.; Bugatti, M.; Zanotti, L.; Tognon, G.; Sartori, E.; et al. L1CAM expression as a predictor of platinum response in high-risk endometrial carcinoma. Int. J. Cancer 2022, 151, 637–648. [Google Scholar] [CrossRef]
- Wojciechowski, M.; Glowacka, E.; Wilczynski, M.; Pekala-Wojciechowska, A.; Malinowski, A. The sL1CAM in sera of patients with endometrial and ovarian cancers. Arch. Gynecol. Obstet. 2017, 295, 225–232. [Google Scholar] [CrossRef]
- Sertel, E.; Demir, M.; Dogan, S.; Corakci, A. Could soluble L1 cell adhesion molecule (sL1CAM) in serum be a new biomarker for endometrial cancer? Ginekol. Pol. 2023, 94, 463–469. [Google Scholar] [CrossRef]
- Torres, A.; Pac-Sosinska, M.; Wiktor, K.; Paszkowski, T.; Maciejewski, R.; Torres, K. CD44, TGM2 and EpCAM as novel plasma markers in endometrial cancer diagnosis. BMC Cancer 2019, 19, 401. [Google Scholar] [CrossRef]
- Bednarikova, M.; Vinklerova, P.; Gottwaldova, J.; Ovesna, P.; Hausnerova, J.; Minar, L.; Felsinger, M.; Valik, D.; Cermakova, Z.; Weinberger, V. The Clinical Significance of DJ1 and L1CAM Serum Level Monitoring in Patients with Endometrial Cancer. J. Clin. Med. 2021, 10, 2640. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Hirai, S.; Idogawa, M.; Sumi, T.; Uchida, H.; Sakuma, Y. A Newly Developed Anti-L1CAM Monoclonal Antibody Targets Small Cell Lung Carcinoma Cells. Int. J. Mol. Sci. 2024, 25, 8748. [Google Scholar] [CrossRef]
- Gast, D.; Riedle, S.; Issa, Y.; Pfeifer, M.; Beckhove, P.; Sanderson, M.P.; Arlt, M.; Moldenhauer, G.; Fogel, M.; Krüger, A.; et al. The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies. Oncogene 2008, 27, 1281–1289. [Google Scholar] [CrossRef]
- Silveira, C.G.; Finas, D.; Hunold, P.; Köster, F.; Stroschein, K.; Canny, G.O.; Moldenhauer, G.; Altevogt, P.; Rody, A.; Hornung, D. L1 cell adhesion molecule as a potential therapeutic target in murine models of endometriosis using a monoclonal antibody approach. PLoS ONE 2013, 8, e82512. [Google Scholar] [CrossRef]
Author, Year | Antibody | Sample Size (n) | Positivity | Significance |
---|---|---|---|---|
Stelloo E et al. (2016) [58] | Clone 14.10, dilution 1:500, cutoff 10% | 947 early-stage endometrial carcinomas classified molecularly | 5.6% |
|
Karnezis et al. (2017) [59] | Anti-CD171 (L1) Antibody Clone 14.10, cutoff 10% | 413 endometrial carcinomas classified molecularly | 16% |
|
Kommoss FK et al. (2018) [60] | Clone, 14.10; dilution, 1:50; cutoff, 10% | 452 endometrial carcinomas classified molecularly | 21.5% |
|
Ravaggi A et al. (2022) [61] | Clone 14.10, 1:100 dilution, 10% cutoff | 94 patients with endometrial cancers | 30% |
|
Pasanen et al. (2020) [62] | Clone 14.10, 10% cutoff | 682 endometrial endometroid adenocarcinomas classified according to their MMR protein expression (tissue microarrays) and methylation status | 10.77% |
|
Vrede SW et al. (2021) [63] | Anti-CD171, clone 14.10, dilution 1:100, cutoff 10% | 763 patients with endometrial cancer, tumors with abnormal expression of p53, ER, and PR | 10.4% |
|
Vermij L. et al. (2023) [64] | Clone 14.10, dilution 1:800, 10% cutoff, | 648 patients with high-risk endometrial cancer | 27.8% |
|
Jamieson A et al. (2023) [65] | Clone 14.10, dilutions 1:25–1:50 | 1110 non-specific molecular subgroup of endometrial carcinomas | 10.6% |
|
Lindemann K et al. (2024) [66] | Clone, 14.10; dilution, 1:200; cutoff, 10% | 626 patients with stage I endometrial endometrioid carcinoma | 8% |
|
Aro K et al. (2024) [67] | Clone 14.10, dilution 1:300, cutoff 10% | 1044 patients with molecularly classified endometrial cancer | 15% |
|
Kleppe A et al. (2025) [68] | Clone, 14.10; dilution, 1:200; cutoff, 10% | 486 patients with endometrial cancers | 53% |
|
Kim JC et al. (2024) [69] | Clone UJ127.11, dilution 1:1000, cutoff 10% | 62 patients with advanced-stage endometrial cancer with wild-type p53 expression and proficient MMR expression | 32.26% |
|
Li Y et al. (2025) [70] | N/A |
|
|
|
Abdel Azim S et al. (2017) [71] | Anti-L1 (clone 14.10), cutoff not provided | 142 endometrial endometrioid adenocarcinoma tested for L1CAM and HER2 |
|
|
van der Putten LJM et al. (2018) [72] | Anti-CD171 [L1] antibody clone 14.10, dilution 1:100, cutoff 10% | 293 endometrial carcinomas for ER, PR, and L1CAM expression | 18% |
|
Author, Year | Antibody | Sample Size (n) | Positivity | Significance |
---|---|---|---|---|
Versluis M et al. (2018) [74] | Monoclonal antibodies CD171, clone 14.10, 1:500 dilution, cutoff 10% | 90 cases of uterine carcinosarcomas | 65.4% | No association between L1CAM level and prognosis |
Kim SR et al. 2020 [75] | Clone not provided, cutoff 50% | 52 endometrial clear cell carcinomas | 60% | No important correlation with other factors or prognosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobarki, M. Prognostic Role of L1CAM in Endometrial Cancer. Diagnostics 2025, 15, 2115. https://doi.org/10.3390/diagnostics15162115
Mobarki M. Prognostic Role of L1CAM in Endometrial Cancer. Diagnostics. 2025; 15(16):2115. https://doi.org/10.3390/diagnostics15162115
Chicago/Turabian StyleMobarki, Mousa. 2025. "Prognostic Role of L1CAM in Endometrial Cancer" Diagnostics 15, no. 16: 2115. https://doi.org/10.3390/diagnostics15162115
APA StyleMobarki, M. (2025). Prognostic Role of L1CAM in Endometrial Cancer. Diagnostics, 15(16), 2115. https://doi.org/10.3390/diagnostics15162115