Efficacy and Safety of Intravenous Thrombolysis Beyond 4.5 Hours in Ischemic Stroke: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection and the Eligibility Criteria
2.3. Data Extraction, Outcomes, and Quality Assessment
2.4. Statistical Analysis
2.5. Certainty of Evidence Assessment
3. Results
3.1. Study Selection
3.2. Study and Patient Characteristics
3.3. Results of Quality Assessment
3.4. Efficacy Outcomes
3.5. Safety Outcomes
3.6. Leave-One-Out Sensitivity Analysis
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, Z.; Chaudhary, F.; Agrawal, D.K. Epidemiology, Pathophysiology, and Current Treatment Strategies in Stroke. Cardiol. Cardiovasc. Med. 2024, 8, 389–404. [Google Scholar] [CrossRef]
- Fan, J.; Li, X.; Yu, X.; Liu, Z.; Jiang, Y.; Fang, Y.; Zong, M.; Suo, C.; Man, Q.; Xiong, L. Global Burden, Risk Factor Analysis, and Prediction Study of Ischemic Stroke, 1990–2030. Neurology 2023, 101, e137–e150. [Google Scholar] [CrossRef]
- Wahlgren, N.; Moreira, T.; Michel, P.; Steiner, T.; Jansen, O.; Cognard, C.; Mattle, H.P.; van Zwam, W.; Holmin, S.; Tatlisumak, T.; et al. Mechanical thrombectomy in acute ischemic stroke: Consensus statement by ESO-Karolinska Stroke Update 2014/2015, supported by ESO, ESMINT, ESNR and EAN. Int. J. Stroke 2016, 11, 134–147. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Asif, K.S.; Otite, F.O.; Desai, S.M.; Herial, N.; Inoa, V.; Al-Mufti, F.; Jadhav, A.P.; Dmytriw, A.A.; Castonguay, A.; Khandelwal, P.; et al. Mechanical Thrombectomy Global Access For Stroke (MT-GLASS): A Mission Thrombectomy (MT-2020 Plus) Study. Circulation 2023, 147, 1208–1220. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2018, 49, e46–e110. [Google Scholar] [CrossRef]
- Saini, V.; Guada, L.; Yavagal, D.R. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology 2021, 97 (Suppl. 20), S6–S16. [Google Scholar] [CrossRef]
- Davis, S.M.; Donnan, G.A.; Parsons, M.W.; Levi, C.; Butcher, K.S.; Peeters, A.; Barber, P.A.; Bladin, C.; De Silva, D.A.; Byrnes, G.; et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): A placebo-controlled randomised trial. Lancet Neurol. 2008, 7, 299–309. [Google Scholar] [CrossRef]
- Yan, S.; Zhou, Y.; Lansberg, M.G.; Liebeskind, D.S.; Yuan, C.; Yu, H.; Chen, F.; Chen, H.; Zhang, B.; Mao, L.; et al. Alteplase for Posterior Circulation Ischemic Stroke at 4.5 to 24 Hours. N. Engl. J. Med. 2025, 392, 1288–1296. [Google Scholar] [CrossRef]
- Xiong, Y.; Campbell, B.C.V.; Schwamm, L.H.; Meng, X.; Jin, A.; Parsons, M.W.; Fisher, M.; Jiang, Y.; Che, F.; Wang, L.; et al. Tenecteplase for Ischemic Stroke at 4.5 to 24 Hours without Thrombectomy. N. Engl. J. Med. 2024, 391, 203–212. [Google Scholar] [CrossRef]
- Günkan, A.; Ferreira, M.Y.; Vilardo, M.; Scarcia, L.; Bocanegra-Becerra, J.E.; Cardoso, L.J.C.; Fabrini Paleare, L.F.; de Oliveira Almeida, G.; Semione, G.; Ferreira, C.; et al. Thrombolysis for Ischemic Stroke Beyond the 4.5-Hour Window: A Meta-Analysis of Randomized Clinical Trials. Stroke 2025, 56, 580–590. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Sterne, J.A.; Gavaghan, D.; Egger, M. Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature. J. Clin. Epidemiol. 2000, 53, 1119–1129. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Iorio, A.; Spencer, F.A.; Falavigna, M.; Alba, C.; Lang, E.; Burnand, B.; McGinn, T.; Hayden, J.; Williams, K.; Shea, B.; et al. Use of GRADE for assessment of evidence about prognosis: Rating confidence in estimates of event rates in broad categories of patients. BMJ 2015, 350, h870. [Google Scholar] [CrossRef]
- Picanço, M.R.; Christensen, S.; Campbell, B.C.V.; Churilov, L.; Parsons, M.W.; Desmond, P.M.; Barber, P.A.; Levi, C.R.; Bladin, C.F.; Donnan, G.A.; et al. Reperfusion after 4.5 hours reduces infarct growth and improves clinical outcomes. Int. J. Stroke 2014, 9, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Thomalla, G.; Simonsen, C.Z.; Boutitie, F.; Andersen, G.; Berthezene, Y.; Cheng, B.; Cheripelli, B.; Cho, T.-H.; Fazekas, F.; Fiehler, J.; et al. MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. N. Engl. J. Med. 2018, 379, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Ringleb, P.; Bendszus, M.; Bluhmki, E.; Donnan, G.; Eschenfelder, C.; Fatar, M.; Kessler, C.; Molina, C.; Leys, D.; Muddegowda, G.; et al. Extending the time window for intravenous thrombolysis in acute ischemic stroke using magnetic resonance imaging-based patient selection. Int. J. Stroke 2019, 14, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Campbell, B.C.V.; Parsons, M.W.; Churilov, L.; Levi, C.R.; Hsu, C.; Kleinig, T.J.; Wijeratne, T.; Curtze, S.; Dewey, H.M.; et al. Thrombolysis Guided by Perfusion Imaging up to 9 Hours after Onset of Stroke. N. Engl. J. Med. 2019, 380, 1795–1803. [Google Scholar] [CrossRef]
- Koga, M.; Yamamoto, H.; Inoue, M.; Asakura, K.; Aoki, J.; Hamasaki, T.; Kanzawa, T.; Kondo, R.; Ohtaki, M.; Itabashi, R.; et al. Thrombolysis with Alteplase at 0.6 mg/kg for Stroke with Unknown Time of Onset: A Randomized Controlled Trial. Stroke 2020, 51, 1530–1538. [Google Scholar] [CrossRef]
- Roaldsen, M.B.; Eltoft, A.; Wilsgaard, T.; Christensen, H.; Engelter, S.T.; Indredavik, B.; Jatužis, D.; Karelis, G.; Kõrv, J.; Lundström, E.; et al. Safety and efficacy of tenecteplase in patients with wake-up stroke assessed by non-contrast CT (TWIST): A multicentre, open-label, randomised controlled trial. Lancet Neurol. 2023, 22, 117–126. [Google Scholar] [CrossRef]
- Wang, L.; Dai, Y.-J.; Cui, Y.; Zhang, H.; Jiang, C.-H.; Duan, Y.-J.; Zhao, Y.; Feng, Y.-F.; Geng, S.-M.; Zhang, Z.-H.; et al. Intravenous Tenecteplase for Acute Ischemic Stroke Within 4.5-24 Hours of Onset (ROSE-TNK): A Phase 2, Randomized, Multicenter Study. J. Stroke 2023, 25, 371–377. [Google Scholar] [CrossRef]
- Albers, G.W.; Jumaa, M.; Purdon, B.; Zaidi, S.F.; Streib, C.; Shuaib, A.; Sangha, N.; Kim, M.; Froehler, M.T.; Schwartz, N.E.; et al. Tenecteplase for Stroke at 4.5 to 24 Hours with Perfusion-Imaging Selection. N. Engl. J. Med. 2024, 390, 701–711. [Google Scholar] [CrossRef]
- Chen, H.-S.; Chen, M.-R.; Cui, Y.; Shen, X.-Y.; Zhang, H.; Lu, J.; Zhao, L.-W.; Duan, Y.-J.; Li, J.; Wang, Y.-M.; et al. Tenecteplase Plus Butyphthalide for Stroke Within 4.5-6 Hours of Onset (EXIT-BT): A Phase 2 Study. Transl. Stroke Res. 2025, 16, 575–583. [Google Scholar] [CrossRef]
- Cheng, X.; Hong, L.; Lin, L.; Churilov, L.; Ling, Y.; Yang, N.; Fu, J.; Lu, G.; Yue, Y.; Zhang, J.; et al. Tenecteplase Thrombolysis for Stroke up to 24 Hours After Onset with Perfusion Imaging Selection: The CHABLIS-T II Randomized Clinical Trial. Stroke 2025, 56, 344–354. [Google Scholar] [CrossRef]
- Campbell, B.C.V.; Ma, H.; Parsons, M.W.; Churilov, L.; Yassi, N.; Kleinig, T.J.; Hsu, C.Y.; Dewey, H.M.; Butcher, K.S.; Yan, B.; et al. Association of Reperfusion After Thrombolysis with Clinical Outcome Across the 4.5- to 9-Hours and Wake-up Stroke Time Window: A Meta-Analysis of the EXTEND and EPITHET Randomized Clinical Trials. JAMA Neurol. 2021, 78, 236–240. [Google Scholar] [CrossRef]
- Campbell, B.C.V.; Ma, H.; Ringleb, P.A.; Parsons, M.W.; Churilov, L.; Bendszus, M.; Levi, C.R.; Hsu, C.; Kleinig, T.J.; Fatar, M.; et al. Extending thrombolysis to 4·5-9 h and wake-up stroke using perfusion imaging: A systematic review and meta-analysis of individual patient data. Lancet 2019, 394, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hao, M.; Wu, N.; Wu, S.; Fisher, M.; Xiong, Y. Comprehensive Review of Tenecteplase for Thrombolysis in Acute Ischemic Stroke. J. Am. Heart Assoc. 2024, 13, e031692. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.C.; Eaton, A.; Melles, R.B.; Hartman, J.; Cullen, S.P.; Chan, S.L.; Rao, V.A.; Nguyen-Huynh, M.N.; Kapadia, B.; Patel, N.U.; et al. Comparative safety of tenecteplase vs alteplase for acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2024, 33, 107468. [Google Scholar] [CrossRef]
- Ifzaal, M.; Bughio, S.A.; Rizvi, S.A.F.A.; Muzaffar, M.; Ali, R.; Ikram, M.; Murtaza, M.; Mirza, A.M.W.; Ans, H.H.; Bucataru, L.; et al. Efficacy and safety of tenecteplase administration in extended time window for acute ischemic stroke: An updated meta-analysis of randomized controlled trials. J. Stroke Cerebrovasc. Dis. 2025, 34, 108338. [Google Scholar] [CrossRef]
- Sheraz, M.; Asif, N.; Khan, A.; Khubaib Khan, M.; Maaz Bin Rehan, M.; Tayyab Amer Ch, M.; Sadain Khalid, A.; Oriana Alfieri, C.; Bouyarden, E.; Amine Ghenai, M.; et al. Tenecteplase versus alteplase in patients with acute ischemic stroke: An updated meta-analysis of randomized controlled trials. J. Stroke Cerebrovasc. Dis. 2025, 34, 108300. [Google Scholar] [CrossRef]
- Ma, Y.; Xiang, H.; Busse, J.W.; Yao, M.; Guo, J.; Ge, L.; Li, B.; Luo, X.; Mei, F.; Liu, J.; et al. Tenecteplase versus alteplase for acute ischemic stroke: A systematic review and meta-analysis of randomized and non-randomized studies. J. Neurol. 2024, 271, 2309–2323. [Google Scholar] [CrossRef]
- Burgos, A.M.; Saver, J.L. Evidence that Tenecteplase Is Noninferior to Alteplase for Acute Ischemic Stroke: Meta-Analysis of 5 Randomized Trials. Stroke 2019, 50, 2156–2162. [Google Scholar] [CrossRef]
- Parsons, M.; Spratt, N.; Bivard, A.; Campbell, B.; Chung, K.; Miteff, F.; O’Brien, B.; Bladin, C.; McElduff, P.; Allen, C.; et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N. Engl. J. Med. 2012, 366, 1099–1107. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahsan, A.; Fatima, L.; Basit, J.; Nashwan, A.J.; Ali, S.; Hamza, M.; Karalis, I.; Ahmed, R.; Alareed, A.; et al. Efficacy and safety of aspirin plus clopidogrel versus aspirin alone in ischemic stroke or high-risk transient ischemic attack: A meta-analysis of randomized controlled trials. Vasc. Med. 2024, 29, 517–525. [Google Scholar] [CrossRef]
- Campbell, B.C.V.; Mitchell, P.J.; Churilov, L.; Yassi, N.; Kleinig, T.J.; Dowling, R.J.; Yan, B.; Bush, S.J.; Dewey, H.M.; Thijs, V.; et al. Tenecteplase versus Alteplase before Thrombectomy for Ischemic Stroke. N. Engl. J. Med. 2018, 378, 1573–1582. [Google Scholar] [CrossRef]
- Shen, Z.; Bao, N.; Tang, M.; Yang, Y.; Li, J.; Liu, W.; Jiang, G. Tenecteplase vs. Alteplase for Intravenous Thrombolytic Therapy of Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Neurol. Ther. 2023, 12, 1553–1572. [Google Scholar] [CrossRef] [PubMed]
- Warach, S.J.; Ranta, A.; Kim, J.; Song, S.S.; Wallace, A.; Beharry, J.; Gibson, D.; Cadilhac, D.A.; Bladin, C.F.; Kleinig, T.J.; et al. Symptomatic Intracranial Hemorrhage with Tenecteplase vs Alteplase in Patients with Acute Ischemic Stroke: The Comparative Effectiveness of Routine Tenecteplase vs Alteplase in Acute Ischemic Stroke (CERTAIN) Collaboration. JAMA Neurol. 2023, 80, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Muir, K.W.; Ford, G.A.; Ford, I.; Wardlaw, J.M.; McConnachie, A.; Greenlaw, N.; Mair, G.; Sprigg, N.; Price, C.I.; MacLeod, M.J.; et al. Tenecteplase versus alteplase for acute stroke within 4·5 h of onset (ATTEST-2): A randomised, parallel group, open-label trial. Lancet Neurol. 2024, 23, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Logallo, N.; Novotny, V.; Assmus, J.; Kvistad, C.E.; Alteheld, L.; Rønning, O.M.; Thommessen, B.; Amthor, K.-F.; Ihle-Hansen, H.; Kurz, M.; et al. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): A phase 3, randomised, open-label, blinded endpoint trial. Lancet Neurol. 2017, 16, 781–788. [Google Scholar] [CrossRef]
- Abuelazm, M.; Seri, A.R.; Awad, A.K.; Ahmad, U.; Mahmoud, A.; Albazee, E.; Kambalapalli, S.; Abdelazeem, B. The efficacy and safety of tenecteplase versus alteplase for acute ischemic stroke: An updated systematic review, pairwise, and network meta-analysis of randomized controlled trials. J. Thromb. Thrombolysis 2023, 55, 322–338. [Google Scholar] [CrossRef]
- Kvistad, C.E.; Næss, H.; Helleberg, B.H.; Idicula, T.; Hagberg, G.; Nordby, L.M.; Jenssen, K.N.; Tobro, H.; Rörholt, D.M.; Kaur, K.; et al. Tenecteplase versus alteplase for the management of acute ischaemic stroke in Norway (NOR-TEST 2, part A): A phase 3, randomised, open-label, blinded endpoint, non-inferiority trial. Lancet Neurol. 2022, 21, 511–519. [Google Scholar] [CrossRef]
- Mujanovic, A.; Eker, O.; Marnat, G.; Strbian, D.; Ijäs, P.; Préterre, C.; Triquenot, A.; Albucher, J.F.; Gauberti, M.; Weisenburger-Lile, D.; et al. Association of intravenous thrombolysis and pre-interventional reperfusion: A post hoc analysis of the SWIFT DIRECT trial. J. Neurointerv. Surg. 2023, 15, e232–e239. [Google Scholar] [CrossRef]
- Tsivgoulis, G.; Katsanos, A.H.; Schellinger, P.D.; Köhrmann, M.; Varelas, P.; Magoufis, G.; Paciaroni, M.; Caso, V.; Alexandrov, A.W.; Gurol, E.; et al. Successful Reperfusion with Intravenous Thrombolysis Preceding Mechanical Thrombectomy in Large-Vessel Occlusions. Stroke 2018, 49, 232–235. [Google Scholar] [CrossRef]
- Kaesmacher, J.; Meinel, T.R.; Nannoni, S.; Olivé-Gadea, M.; Piechowiak, E.I.; Maegerlein, C.; Goeldlin, M.; Pierot, L.; Seiffge, D.J.; Mendes Pereira, V.; et al. Bridging May Increase the Risk of Symptomatic Intracranial Hemorrhage in Thrombectomy Patients with Low Alberta Stroke Program Early Computed Tomography Score. Stroke 2021, 52, 1098–1104. [Google Scholar] [CrossRef]
- Csecsei, P.; Tarkanyi, G.; Bosnyak, E.; Szapary, L.; Lenzser, G.; Szolics, A.; Buki, A.; Hegyi, P.; Abada, A.; Molnar, T. Risk analysis of post-procedural intracranial hemorrhage based on STAY ALIVE Acute Stroke Registry. J. Stroke Cerebrovasc. Dis. 2020, 29, 104851. [Google Scholar] [CrossRef]
- Al-Janabi, O.M.; Jazayeri, S.B.; Toruno, M.A.; Mahmood, Y.M.; Ghozy, S.; Yaghi, S.; Rabinstein, A.A.; Kallmes, D.F. Safety and efficacy of intravenous thrombolytic therapy in the extended window up to 24 hours: A systematic review and meta-analysis. Ann. Clin. Transl. Neurol. 2024, 11, 3310–3319. [Google Scholar] [CrossRef]
Study | Year | Intervention | Sample Size | Age | Sex (M/F) | mRS Score | NIHSS Score | Treatment Time Window, h * | Occlusion Site | Endovascular Thrombectomy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intervention | Control | Intervention | Control | Intervention | Control | Intervention | Control | Intervention | Control | Intervention | Control | Intervention | Control | Intervention | Control | |||
EPITHET [9] | 2014 | Alteplase | 38 | 31 | 75 (65–80) | 73 (59–78) | 23/15 | 19/12 | 0–2 (38) | 0–2 (31) | 12 (7.0–18.0) | 11 (8.0–17.0) | 4.5–6 | 4.5–6 | NR | NR | None | None |
WAKE-UP [22] | 2018 | Alteplase | 254 | 249 | 65.3 ± 11.2 | 65.2 ± 11.9 | 165/89 | 160/89 | 0–1 (254) | 0–1 (249) | 6 (4–9) | 6 (4–9) | ≥4.5 | ≥4.5 | ICA (24) MCA M1 segment (35) MCA M2 segment (32) Other (12) | ICA (11) MCA M1 segment (11) MCA M2 segment (37) Other (36) | None | None |
ECASS-4 [23] | 2019 | Alteplase | 61 | 58 | 76 (65–83) | 79 (67–84) | 36/25 | 31/27 | 0–1 (60) | 0–1 (56) | 10 (9) | 9 (10) | 4.5–9 | 4.5–9 | NR | NR | None | None |
EXTEND [24] | 2019 | Alteplase | 113 | 112 | 73.7 ± 11.7 | 71.0 ± 12.7 | 59/54 | 66/46 | 0–1 (113) | 0–1 (112) | 12 (8.0–17.0) | 10 (6.0–16.5) | 4.5–9 | 4.5–9 | ICA (12) MCA M1 segment (44) MCA M2 segment (25) MCA M3/4 segments (23) ACA (1) PCA (6) Other (2) | ICA (15) MCA M1 segment (38) MCA M2 segment (31) MCA M3/4 segments (18) ACA (2) PCA (4) Other (4) | None | None |
THAWS [25] | 2020 | Alteplase | 70 | 61 | 73.2 ± 12.4 | 75.8 ± 11.9 | 45/25 | 31/30 | 0–1 (70) | 0–1 (61) | 7 (4–13) | 7 (5–12) | ≥4.5 | ≥4.5 | ICA (1) MCA M1 segment (6) MCA M2 segment (11) PCA (1) | ICA (2) MCA M1 segment (8) MCA M2 segment (11) BA (1) | None | None |
TWIST [26] | 2022 | Tenecteplase | 288 | 290 | 72.7 ± 11.3 | 72.9 ± 11.6 | 164/124 | 168/122 | 0 (188) 1 (63) 2 (37) | 0 (191) 1 (57) 2 (42) | 6 (5–11) | 6 (5–10) | ≥4.5 | ≥4.5 | NR | NR | 18 (6) | 42 (14) |
ROSE-TNK [27] | 2023 | Tenecteplase | 40 | 40 | 62.68 ± 8.87 | 62.80 ± 8.56 | 31/9 | 26/14 | 0–1 (40) | 0–1 (40) | 7.5 (6–10.7) | 7 (6–8.7) | 4.5–24 | 4.5–24 | Anterior circulation (24) Posterior circulation (16) | Anterior circulation (28) Posterior circulation (12) | None | None |
TIMELESS [28] | 2024 | Tenecteplase | 228 | 230 | 72 (62–79) | 73 (63–82) | 106/122 | 107/123 | NR | NR | 12 (8–17) | 12 (8–18) | 4.5–24 | 4.5–24 | ICA (20) M1 segment (110) M2 segment (89) Other (9) | ICA (17) M1 segment (117) M2 segment (84) Other (12) | 176 (77.2) | 178 (77.4) |
TRACE III [11] | 2024 | Tenecteplase | 264 | 252 | 67 (58–75) | 68 (59–76) | 183/81 | 167/85 | 0 (230) 1 (34) | 0 (216) 1 (36) | 11 (7–15) | 10 (7–14) | 4.5–24 | 4.5–24 | ICA (87) MCA M1 segment (119) MCA M2 segment (58) | ICA (84) MCA M1 segment (130) MCA M2 segment (38) | None ** | None ** |
EXIT-BT [29] | 2024 | Tenecteplase | 50 | 49 | 63.7 ± 9.6 | 64.8 ± 10.25 | 37/13 | 28/21 | 0–1 (50) | 0–1 (49) | 5 (4–7) | 5 (4–6) | 4.5–6 | 4.5–6 | NR | NR | None | None |
CHABLIS-T II [30] | 2025 | Tenecteplase | 111 | 113 | 64.2 ± 10.4 | 63.6 ± 11.0 | 80/31 | 80/33 | NR | NR | 9 (5–14) | 9 (6–16) | 4.5–24 | 4.5–24 | Extracranial segment of ICA (16) Intracranial segment of ICA (9) First segment of MCA (53) Second segment of MCA (21) ACA (10) | Extracranial segment of ICA (21) Intracranial segment of ICA (7) First segment of MCA (55) Second segment of MCA (24) ACA (6) | 59 (53.2) | 64 (56.6) |
EXPECTS [10] | 2025 | Alteplase | 117 | 117 | 64 (57–76) | 63 (55–74) | 75/42 | 78/39 | 0 (114) 1 (3) | 0 (114) 1 (3) | 3 (2–6) | 3 (1–6) | 4.5–24 | 4.5–25 | NR | NR | None | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Ranasinghe, C.A.; Abu-Sa’da, M.O.; Bhimineni, D.P.; Noushad, M.A.; Warsi, T.; Mesmar, A.; Mukesh, M.A.; Patel, S.K.; Imbianozor, G.; et al. Efficacy and Safety of Intravenous Thrombolysis Beyond 4.5 Hours in Ischemic Stroke: A Systematic Review and Meta-Analysis. Diagnostics 2025, 15, 1812. https://doi.org/10.3390/diagnostics15141812
Ahmad M, Ranasinghe CA, Abu-Sa’da MO, Bhimineni DP, Noushad MA, Warsi T, Mesmar A, Mukesh MA, Patel SK, Imbianozor G, et al. Efficacy and Safety of Intravenous Thrombolysis Beyond 4.5 Hours in Ischemic Stroke: A Systematic Review and Meta-Analysis. Diagnostics. 2025; 15(14):1812. https://doi.org/10.3390/diagnostics15141812
Chicago/Turabian StyleAhmad, Muhammad, Chavin Akalanka Ranasinghe, Mais Omar Abu-Sa’da, Durga Prasad Bhimineni, Muhammed Ameen Noushad, Talal Warsi, Ahmad Mesmar, Munikaverappa Anjanappa Mukesh, Sagar K. Patel, Gabriel Imbianozor, and et al. 2025. "Efficacy and Safety of Intravenous Thrombolysis Beyond 4.5 Hours in Ischemic Stroke: A Systematic Review and Meta-Analysis" Diagnostics 15, no. 14: 1812. https://doi.org/10.3390/diagnostics15141812
APA StyleAhmad, M., Ranasinghe, C. A., Abu-Sa’da, M. O., Bhimineni, D. P., Noushad, M. A., Warsi, T., Mesmar, A., Mukesh, M. A., Patel, S. K., Imbianozor, G., Bhatty, A. M., Alareed, A., Ain, Q., Zulfiqar, E., Ahmed, M., & Ahmed, R. (2025). Efficacy and Safety of Intravenous Thrombolysis Beyond 4.5 Hours in Ischemic Stroke: A Systematic Review and Meta-Analysis. Diagnostics, 15(14), 1812. https://doi.org/10.3390/diagnostics15141812