Brittle Cornea Syndrome: Molecular Diagnosis and Management
Abstract
1. Introduction
2. Detailed Case Description
- Measurement of visual acuity: both best-corrected visual acuity (BCVA) and uncorrected visual acuity (UCVA);
- Slit-lamp examination: to assess corneal transparency, the presence of opacities, or other structural abnormalities (Figure 1);
- Corneal topography: to analyze corneal curvature and morphology (Figure 2);
- Corneal pachymetry: to measure corneal thickness at different points and determine the degree of thinning;
- All examinations were performed both pre- and post-surgery to monitor the clinical progression of the patients after treatment.
2.1. Case 1: 28-Year-Old Male
2.2. Case 2: 25-Year-Old Female
- Topical antibiotics (e.g., Moxifloxacin 0.5%) four times a day for 2 weeks.
- Topical corticosteroids (e.g., Fluorometholone 0.1% or Prednisolone 1%) initially four times a day, gradually reducing the dosage as directed by the ophthalmologist for 12 months.
2.3. Clinical Implications
- Long-term monitoring to prevent and manage complications such as graft rejection and secondary glaucoma [3,5]. Beyond its clinical significance, the documentation of these rare BCS cases contributes to a broader understanding of the disease, helping to refine diagnostic criteria and treatment protocols. Future research should focus on genotype–phenotype correlations, novel therapeutic interventions, and strategies to enhance surgical success rates for patients with BCS [3,7].
3. Discussion
3.1. Clinical and Genetic Diagnosis
3.2. Challenges in Management and Treatment
3.3. Penetrating Keratoplasty (PK)
3.4. Protective Strategies and Lifestyle Modifications
3.5. Multidisciplinary Management
3.6. Future Directions in Research and Therapy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cundy, T.; Vincent, A.; Robertson, S. Does brittle cornea syndrome have a bone fragility phenotype? Bone Rep. 2021, 15, 101124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eleiwa, T.; Raheem, M.; Patel, N.A.; Berrocal, A.M.; Grajewski, A.; Abou Shousha, M. Case Series of Brittle Cornea Syndrome. Case Rep. Ophthalmol. Med. 2020, 2020, 4381273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dhooge, T.; Van Damme, T.; Syx, D.; Mosquera, L.M.; Nampoothiri, S.; Radhakrishnan, A.; Simsek-Kiper, P.O.; Utine, G.E.; Bonduelle, M.; Migeotte, I.; et al. More than meets the eye: Expanding and reviewing the clinical and mutational spectrum of brittle cornea syndrome. Hum. Mutat. 2021, 42, 711–730. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, X.; Gao, X.; Li, W. Characteristics of brittle cornea syndrome by multimodal imaging modalities: A case report. BMC Ophthalmol. 2023, 23, 378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rolvien, T.; Kornak, U.; Linke, S.J.; Amling, M.; Oheim, R. Whole-Exome Sequencing Identifies Novel Compound Heterozygous ZNF469 Mutations in Two Siblings with Mild Brittle Cornea Syndrome. Calcif. Tissue Int. 2020, 107, 294–299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanr, A.; Demir, S.; Gurkan, H. Homozygous Val6Gly Variation in PRDM5 Gene Causing Brittle Cornea Syndrome: A New Turkish Case. Mol. Syndromol. 2023, 14, 129–135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Islam, M.; Chang, C.; Gershwin, M.E. Ehlers-Danlos Syndrome: Immunologic contrasts and connective tissue comparisons. J. Transl. Autoimmun. 2020, 4, 100077. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akbari, M.; Dourandeesh, M. Spontaneous Rupture of an Infant’s Cornea. J. Pediatr. Ophthalmol. Strabismus. 2022, 59, e42–e45. [Google Scholar] [CrossRef] [PubMed]
- Sklar, B.A.; Pisuchpen, P.; Bareket, M.; Milman, T.; Eagle, R.C., Jr.; Minor, J.; Procopio, R.; Capasso, J.; Levin, A.V.; Hammersmith, K. Identification and Management of a Novel PRDM5 Gene Pathologic Variant in a Family With Brittle Cornea Syndrome. Cornea 2023, 42, 1572–1577. [Google Scholar] [CrossRef] [PubMed]
- Selina, A.; John, D.; Loganathan, L.; Madhuri, V. Case report of a <i>PRDM5</i> linked brittle cornea syndrome type 2 in association with a novel SLC6A5 mutation. Indian J. Ophthalmol. 2020, 68, 2545–2547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walkden, A.; Burkitt-Wright, E.; Au, L. Brittle cornea syndrome: Current perspectives. Clin. Ophthalmol. 2019, 13, 1511–1516. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaufmann, C.; Schubiger, G.; Thiel, M.A. Corneal Cross-Linking for Brittle Cornea Syndrome. Cornea 2015, 34, 1326–1328. [Google Scholar] [CrossRef] [PubMed]
- Perez-Straziota, C.; Gaster, R.N.; Rabinowitz, Y.S. Corneal Cross-Linking for Pediatric Keratcoconus Review. Cornea 2018, 37, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Hussin, H.M.; Biswas, S.; Majid, M.; Haynes, R.; Tole, D. A novel technique to treat traumatic corneal perforation in a case of presumed brittle cornea syndrome. Br. J. Ophthalmol. 2007, 91, 399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avgitidou, G.; Siebelmann, S.; Bachmann, B.; Kohlhase, J.; Heindl, L.M.; Cursiefen, C. Brittle cornea syndrome: A case report and review of the literature. BMC Ophthalmol. 2018, 18, 252. [Google Scholar] [CrossRef]
- Burkitt Wright, E.M.; Porter, L.F.; Spencer, H.L.; Clayton-Smith, J.; Au, L.; Munier, F.L.; Smithson, S.; Suri, M.; Rohrbach, M.; Manson, F.D.; et al. Brittle cornea syndrome: Recognition, molecular diagnosis and management. Orphanet J. Rare Dis. 2013, 8, 68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, S.; Kumari, A.; Daniel, R.; Yangzes, S.; Srivastava, P.; Kaur, A. Biallelic novel variants in ZNF469 causing Brittle Cornea Syndrome 1: A detailed report of an Indian patient. Ophthalmic Genet. 2024, 45, 294–298. [Google Scholar] [CrossRef]
- Burkitt Wright, E.M.M.; Spencer, H.L.; Daly, S.B.; Manson, F.D.C.; Zeef, L.A.H.; Urquhart, J.; Zoppi, N.; Bonshek, R.; Tosounidis, I.; Mohan, M.; et al. Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance. Am. J. Hum. Genet. 2011, 88, 767–777. [Google Scholar] [CrossRef]
- Moore, P.; Wolf, A.; Sathyamoorthy, M. An Eye into the Aorta: The Role of Extracellular Matrix Regulatory Genes ZNF469 and PRDM5, from Their Previous Association with Brittle Cornea Syndrome to Their Novel Association with Aortic and Arterial Aneurysmal Diseases. Int. J. Mol. Sci. 2024, 25, 5848. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Colombi, M.; Dordoni, C.; Chiarelli, N.; Ritelli, M. Differential diagnosis and diagnostic flow chart of joint hypermobility syndrome/ehlers-danlos syndrome hypermobility type compared to other heritable connective tissue disorders. American journal of medical genetics. Part C Semin. Med. Genet. 2015, 169, 6–22. [Google Scholar] [CrossRef]
- Royce, P.M.; Steinmann, B.; Vogel, A.; Steinhorst, U.; Kohlschuetter, A. Brittle cornea syndrome: An heritable connective tissue disorder distinct from Ehlers-Danlos syndrome type VI and fragilitas oculi, with spontaneous perforations of the eye, blue sclerae, red hair, and normal collagen lysyl hydroxylation. Eur. J. Pediatr. 1990, 149, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sinha, N.R.; Mohan, R.R. Corneal gene therapy: Structural and mechanistic understanding. Ocul. Surf. 2023, 29, 279–297. [Google Scholar] [CrossRef] [PubMed]
- Incandela, C.; D’Oria, F.; Lapenna, L.; Acquaviva, A. Penetrating keratoplasty in brittle Cornea syndrome: Case series and review of the literature. Eur. J. Ophthalmol. 2024, 34, 11–17. [Google Scholar] [CrossRef]
- Rafat, M.; Jabbarvand, M.; Sharma, N.; Xeroudaki, M.; Tabe, S.; Omrani, R.; Thangavelu, M.; Mukwaya, A.; Fagerholm, P.; Lennikov, A.; et al. Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts. Nat. Biotechnol. 2023, 41, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Ramin, S.; Abbasi, A.; Ahadi, M.; Moallemi Rad, L.; Kobarfad, F. Assessment of the effects of intrastromal injection of adipose-derived stem cells in keratoconus patients. Int. J. Ophthalmol. 2023, 16, 863–870. [Google Scholar] [CrossRef]
- El Zarif, M.; A Jawad, K.; Alió Del Barrio, J.L.; A Jawad, Z.; Palazón-Bru, A.; de Miguel, M.P.; Saba, P.; Makdissy, N.; Alió, J.L. Corneal Stroma Cell Density Evolution in Keratoconus Corneas Following the Implantation of Adipose Mesenchymal Stem Cells and Corneal Laminas: An In Vivo Confocal Microscopy Study. Investig. Ophthalmol. Vis. Sci. 2020, 61, 22. [Google Scholar] [CrossRef]
- Sharma, N.; Agarwal, R.; Jhanji, V.; Bhaskar, S.; Kamalakkannan, P.; Nischal, K.K. Lamellar keratoplasty in children. Surv. Ophthalmol. 2020, 65, 675–690. [Google Scholar] [CrossRef]
- Skalicka, P.; Porter, L.F.; Brejchova, K.; Malinka, F.; Dudakova, L.; Liskova, P. Brittle cornea syndrome: Disease-causing mutations in ZNF469 and two novel variants identified in a patient followed for 26 years. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. 2020, 164, 183–188. [Google Scholar] [CrossRef]
- Mohan, R.R.; Martin, L.M.; Sinha, N.R. Novel insights into gene therapy in the cornea. Exp. Eye Res. 2021, 202, 108361. [Google Scholar] [CrossRef]
- Deshmukh, R.; Ong, Z.Z.; Rampat, R.; Alió Del Barrio, J.L.; Barua, A.; Ang, M.; Mehta, J.S.; Said, D.G.; Dua, H.S.; Ambrósio, R., Jr.; et al. Management of keratoconus: An updated review. Front. Med. 2023, 10, 1212314. [Google Scholar] [CrossRef]
Case 1 (Male, 28 Years Old) | Case 2 (Female, 25 Years Old) | |
---|---|---|
Main Symptoms | Progressive visual deterioration, recurrent corneal erosions | Progressive visual deterioration |
Minimum Corneal Thickness | 189 µm | 157 µm |
Type of Keratoplasty | Penetrating keratoplasty (PKP) | Deep anterior lamellar keratoplasty (DALK), later converted to PKP |
Reason for Conversion to PKP | Not applicable | Severe central endothelial perforation |
Postoperative Therapy | Immunosuppressive | Immunosuppressive |
Preoperative BCVA | 20/200 | 20/200 |
Postoperative BCVA | 20/30 | 20/25 |
Observed Complications | None after 7 years of follow-up | None after 7 years of follow-up |
Genetic Findings | PRDM5 gene mutation | PRDM5 gene mutation |
Conclusions | Continuous monitoring is necessary to prevent complications | DALK can reduce complications when feasible |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeppieri, M.; Gentile, M.; Acquaviva, A.; Scollo, D.; D’Esposito, F.; Gagliano, G.; Avitabile, A.; Gagliano, C.; Lapenna, L. Brittle Cornea Syndrome: Molecular Diagnosis and Management. Diagnostics 2025, 15, 1596. https://doi.org/10.3390/diagnostics15131596
Zeppieri M, Gentile M, Acquaviva A, Scollo D, D’Esposito F, Gagliano G, Avitabile A, Gagliano C, Lapenna L. Brittle Cornea Syndrome: Molecular Diagnosis and Management. Diagnostics. 2025; 15(13):1596. https://doi.org/10.3390/diagnostics15131596
Chicago/Turabian StyleZeppieri, Marco, Mattia Gentile, Antonio Acquaviva, Davide Scollo, Fabiana D’Esposito, Giuseppe Gagliano, Alessandro Avitabile, Caterina Gagliano, and Lucia Lapenna. 2025. "Brittle Cornea Syndrome: Molecular Diagnosis and Management" Diagnostics 15, no. 13: 1596. https://doi.org/10.3390/diagnostics15131596
APA StyleZeppieri, M., Gentile, M., Acquaviva, A., Scollo, D., D’Esposito, F., Gagliano, G., Avitabile, A., Gagliano, C., & Lapenna, L. (2025). Brittle Cornea Syndrome: Molecular Diagnosis and Management. Diagnostics, 15(13), 1596. https://doi.org/10.3390/diagnostics15131596