A Cone-Beam Computed Tomography-Based Assessment of Safe Zones for Orthodontic Mini-Implant Placement in the Lateral Maxilla: A Retrospective Morphometric Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. CBCT Imaging Device and Software Characteristics
2.3. Morphometric Parameters
- Sagittal cross-section:
- Level A—4 mm from the alveolar crest;
- Level B—3 mm from the alveolar crest;
- Level C—2 mm from the alveolar crest.
- 2.
- Axial cross-section:
- Buccopalatal depth (BPD)—the distance between the buccal and palatal cortical bone (Figure 2a).
- Interdental width (IDW)—the smallest mesiodistal distance between the adjacent roots (Figure 2b).
2.4. Relationship Between Radiological Ideal Placement Point (IPP) and Dental Structures
2.5. Statistical Analysis
3. Results
3.1. Demographics and Group Classification
3.2. Statistical Differences Between the Groups
3.3. Relationship Between Interdental Width and Buccopalatal Depth
3.4. Descriptive Data on Mean Interdental Width and Buccopalatal Depth
3.5. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, H.J.; Eun, C.S.; Cho, J.H.; Lee, K.H.; Hwang, H.S. Factors associated with initial stability of mini-screws for orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Chang, H.H.; Huang, C.Y.; Hung, H.C.; Lai, E.H.; Yao, C.C. A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin. Oral. Implants Res. 2007, 18, 768–775. [Google Scholar] [CrossRef]
- Kim, J.W.; Ahn, S.J.; Chang, Y.I. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 190–194. [Google Scholar] [CrossRef]
- Farnsworth, D.; Rossouw, P.E.; Ceen, R.F.; Buschang, P.H. Cortical bone thickness at common miniscrew implant placement sites. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Bedoya, D.; Villegas-Girao, G.; Agudelo-Suárez, A.A.; Ramírez-Ossa, D.M. A scoping review about the characteristics and success-failure rates of temporary anchorage devices in orthodontics. Dent. J. 2022, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.Y.; Chou, S.T.; Tseng, Y.C.; Yang, Y.H.; Wu, C.Y.; Lan, T.H.; Liu, P.H.; Chang, H.P. Influence of different implant materials on the primary stability of orthodontic mini-implants. Kaohsiung J. Med. Sci. 2012, 28, 673–678. [Google Scholar] [CrossRef]
- Papageorgiou, S.N.; Zogakis, I.P.; Papadopoulos, M.A. Failure rates and associated risk factors of orthodontic miniscrew implants: A meta-analysis. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 577–595. [Google Scholar] [CrossRef]
- Nanda, R.; Uribe, F. Temporary Anchorage Devices in Orthodontics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Giudice, A.L.; Rustico, L.; Longo, M.; Oteri, G.; Papadopoulos, M.A.; Nucera, R. Complications reported with the use of orthodontic miniscrews: A systematic review. Korean J. Orthod. 2021, 51, 199–216. [Google Scholar] [CrossRef]
- Motoyoshi, M. Biomechanics of extraalveolar miniscrews. Dent. Press J. Orthod. 2019, 24, 93–109. [Google Scholar]
- Deguchi, T.; Nasu, M.; Murakami, K.; Yabuuchi, T.; Kamioka, H.; Takano-Yamamoto, T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 721.e7–721.e12. [Google Scholar] [CrossRef]
- Umalkar, S.S.; Jadhav, V.V.; Paul, P.; Reche, A. Modern anchorage systems in orthodontics. Cureus 2022, 14, e31476. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Lin, L.Y.; Roberts, W.E. Orthodontic bone screws: A quick update and its promising future. Orthod. Craniofac. Res. 2020, 24, 75–82. [Google Scholar] [CrossRef]
- Fayed, M.M.; Pazera, P.; Katsaros, C. Optimal sites for orthodontic mini-implant placement assessed by cone beam computed tomography. Angle Orthod. 2010, 80, 939–951. [Google Scholar] [CrossRef]
- Truong, M.Y.; Kim, S.; Kim, I.; Lee, W.; Park, Y.S. Revisiting the complications of orthodontic miniscrew. BioMed Res. Int. 2022, 2022, 8720412. [Google Scholar] [CrossRef]
- Purmal, K.; Alam, M.; Pohchi, A.; Abdul Razak, N.H. 3D mapping of safe and danger zones in the maxilla and mandible for the placement of intermaxillary fixation screws. PLoS ONE 2013, 8, e84202. [Google Scholar] [CrossRef]
- MacDonald, D.; Telyakova, V. An overview of cone-beam computed tomography and dental panoramic radiography in dentistry in the community. Tomography 2024, 10, 1222–1237. [Google Scholar] [CrossRef] [PubMed]
- Polizzi, A.; Serra, S.; Leonardi, R. Use of CBCT in orthodontics: A scoping review. J. Clin. Med. 2024, 13, 6941. [Google Scholar] [CrossRef] [PubMed]
- Haude, A.M.; Lehmann, T.; Hennig, C.L.; Jacobs, C. Comparison of conventional two-dimensional and digital three-dimensional imaging in orthodontics: A systematic review and meta-analysis. J. Orofac. Orthop. 2025, 1–18. [Google Scholar] [CrossRef]
- Erten, O.; Yılmaz, B.N. Three-dimensional imaging in orthodontics. Turk. J. Orthod. 2018, 31, 86–94. [Google Scholar] [CrossRef]
- Caetano, G.R.; Soares, M.Q.; Oliveira, L.B.; Junqueira, J.L.; Nascimento, M.C. Two-dimensional radiographs versus cone-beam computed tomography in planning mini-implant placement: A systematic review. J. Clin. Exp. Dent. 2022, 14, e669–e677. [Google Scholar] [CrossRef]
- Abbassy, M.A.; Sabban, H.M.; Hassan, A.H.; Zawawi, K.H. Evaluation of mini-implant sites in the posterior maxilla using traditional radiographs and cone-beam computed tomography. Saudi Med. J. 2015, 36, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
- Arnaut, A.; Milanovic, P.; Vasiljevic, M.; Jovicic, N.; Vojinovic, R.; Selakovic, D.; Rosic, G. The shape of nasopalatine canal as a determining factor in therapeutic approach for orthodontic teeth movement: A CBCT study. Diagnostics 2021, 11, 2345. [Google Scholar] [CrossRef]
- Hilgers, M.L.; Scarfe, W.C.; Scheetz, J.P.; Farman, A.G. Accuracy of linear temporomandibular joint measurements with CBCT and panoramic radiography. Angle Orthod. 2005, 75, 760–765. [Google Scholar]
- De Grauwe, A.; Ayaz, I.; Shujaat, S.; Dimitrov, S.; Gbadegbegnon, L.; Vande Vannet, B.; Jacobs, R. CBCT in orthodontics: A systematic review on justification of CBCT in a paediatric population prior to orthodontic treatment. Eur. J. Orthod. 2019, 41, 381–389. [Google Scholar] [CrossRef]
- Scarfe, W.C.; Farman, A.G. What is cone-beam CT and how does it work? Dent. Clin. N. Am. 2008, 52, 707–730. [Google Scholar] [CrossRef]
- Kumar, M.; Shanavas, M.; Sidappa, A.; Kiran, M. Cone beam computed tomography—Know its secrets. J. Int. Oral Health 2015, 7, 64–68. [Google Scholar]
- De Vos, W.; Casselman, J.; Swennen, G.R. Cone beam computerized tomography (CBCT) imaging of oral and maxillofacial region: A systematic review of the literature. Int. J. Oral. Maxillofac. Surg. 2009, 38, 609–625. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, Z.; Tan, L.; Tan, L.; Zhao, Z.; Yang, P.; Li, Y.; Tang, T.; Zhao, L. Orthodontic mini-implant stability under continuous or intermittent loading: A histomorphometric and biomechanical analysis. Clin. Implant Dent. Relat. Res. 2015, 17, 163–172. [Google Scholar] [CrossRef]
- Poggio, P.M.; Incorvati, C.; Velo, S.; Carano, A. “Safe zones”: A guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod. 2006, 76, 191–197. [Google Scholar]
- Erbay Elibol, F.K.; Oflaz, E.; Buğra, E.; Orhan, M.; Demir, T. Effect of cortical bone thickness and density on pullout strength of mini-implants: An experimental study. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 178–185. [Google Scholar] [CrossRef]
- Zago, H.; Navarro, R.L.; Laranjeira, V.; Fernandes, T.M.; Conti, A.C.; Oltramari, P.V. 3-D evaluation of temporary skeletal anchorage sites in the maxilla. J. Clin. Exp. Dent. 2021, 13, e1131–e1139. [Google Scholar] [CrossRef]
- Park, J.; Cho, H.J. Three-dimensional evaluation of interradicular spaces and cortical bone thickness for the placement and initial stability of microimplants in adults. Am. J. Orthod. Dentofac. Orthop. 2019, 136, 314.e1–314.e12. [Google Scholar] [CrossRef] [PubMed]
- Leo, M.; Cerroni, L.; Pasquantonio, G.; Condò, S.G.; Condò, R. Temporary anchorage devices (TADs) in orthodontics: Review of the factors that influence the clinical success rate of mini-implants. Clin. Ter. 2016, 167, e70–e77. [Google Scholar] [PubMed]
- Vasoglou, G.; Stefanidaki, I.; Apostolopoulos, K.; Fotakidou, E.; Vasoglou, M. Accuracy of mini-Implant placement using a computer-aided designed surgical guide, with information of intraoral scan and the use of a cone-beam CT. Dent. J. 2022, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, E.Y.; Suzuki, B. Accuracy of miniscrew implant placement with a 3-dimensional surgical guide. J. Oral Maxillofac. Surg. 2008, 66, 1245–1252. [Google Scholar] [CrossRef]
- Hou, Z.; Qu, X.; Hou, L.; Ren, F. Comparison between effects of mini-implant anchorage and face-bow anchorage in orthodontics for children. J. Clin. Pediatr. Dent. 2024, 48, 198–203. [Google Scholar]
- Fan, Y.; Han, B.; Zhang, Y.; Guo, Y.; Li, W.; Chen, H.; Meng, C.; Penington, A.; Schneider, P.; Pei, Y.; et al. Natural reference structures for three-dimensional maxillary regional superimposition in growing patients. BMC Oral Health 2023, 23, 655. [Google Scholar] [CrossRef]
- Mehta, P.R.; Bhimani, R.A.; Badavannavar, A.N. Mini-implant supported Orthodontic Molar Intrusion: An unconventional approach for pre-implant prosthetics. Int. J. Oral Implantol. Clin. Res. 2017, 8, 26–30. [Google Scholar] [CrossRef]
- Baby, B.; Mathew, P.C.; Mathew, J.J.; Anjana, G.; Nair, R.P. Orthodontic intrusion of a single molar using mini-implant -pre-prosthetic orthodontics: A case report. Int. J. Adv. Res. 2022, 10, 41–44. [Google Scholar] [CrossRef]
- Taffarel, I.P.; Meira, T.M.; Guimarães, L.K.; Antelo, O.M.; Tanaka, O.M. Biomechanics for orthodontic intrusion of severely extruded maxillary molars for functional prosthetic rehabilitation. Case Rep. Dent. 2019, 1, 8246129. [Google Scholar] [CrossRef]
- Dumitrache, M.; Grenard, A. La cartographie des sites anatomiques mini-implantaires au niveau de la première molaire maxillaire à l’aide du NewTom 3G® [Mapping mini-implant anatomic sites in the area of the maxillary first molar with the aid of the NewTom 3G® system]. Orthod. Fr. 2010, 81, 287–299. (In French) [Google Scholar] [CrossRef] [PubMed]
- Deguchi, T.; Takano-Yamamoto, T.; Kanomi, R.; Hartsfield, J.K., Jr.; Roberts, W.E.; Garetto, L.P. The use of small titanium screws for orthodontic anchorage. J. Dent. Res. 2003, 82, 377–381. [Google Scholar] [CrossRef]
- Bittencourt, L.P.; Raymundo, M.V.; Mucha, J.N. The optimal position for insertion of orthodontic miniscrews. Rev. Odontol. 2011, 26, 133–138. [Google Scholar]
- Silvestrini Biavati, A.; Tecco, S.; Migliorati, M.; Festa, F.; Marzo, G.; Gherlone, E.; Tetè, S. Three-dimensional tomographic mapping related to primary stability and structural miniscrew characteristics. Orthod. Craniofac. Res. 2011, 14, 88–99. [Google Scholar] [CrossRef]
- Lee, K.J.; Joo, E.; Kim, K.D.; Lee, J.S.; Park, Y.C.; Yu, H.S. Computed tomographic analysis of tooth-bearing alveolar bone for orthodontic miniscrew placement. Am. J. Orthod Dentofac. Orthop. 2009, 135, 486–494. [Google Scholar] [CrossRef]
- Martins, M.F.; Mariano Pereira, P.; Costa, H.N.; Bugaighis, I. Risk factors associated with mini-implant failure: A retrospective study. Med. Sci. Forum. 2023, 22, 30. [Google Scholar]
- Rai, A.J.; Datarkar, A.N.; Borle, R.M. Customised screw for intermaxillary fixation of maxillofacial injuries. Br. J. Oral Maxillofac. Surg. 2009, 47, 325–326. [Google Scholar] [CrossRef]
- Stasiak, M.; Adamska, P. Should cone-beam computed tomography be performed prior to orthodontic miniscrew placement in the infrazygomatic crest area? A systematic review. Biomedicines 2023, 11, 2389. [Google Scholar] [CrossRef]
- Elkolaly, M.A.; Hasan, H.S. MH cortical screws, a revolutionary orthodontic TADs design. J. Orthod. Sci. 2022, 11, 53. [Google Scholar] [CrossRef]
- Cozzani, M.; Nucci, L.; Lupini, D.; Dolatshahizand, H.; Fazeli, D.; Barzkar, E.; Naeini, E.; Jamilian, A. The ideal insertion angle after immediate loading in Jeil, Storm, and Thunder miniscrews: A 3D-FEM study. Int. Orthod. 2020, 18, 503–508. [Google Scholar] [CrossRef]
- Uchida, Y.; Namura, Y.; Motoyoshi, M. Optimal insertion torque for orthodontic anchoring screw placement: A comprehensive review. Appl. Sci. 2023, 13, 10681. [Google Scholar] [CrossRef]
Age Group | ||||
---|---|---|---|---|
Frequency | Percent | Valid Percent | Cumulative Percent | |
11–20 | 17 | 27.4 | 27.4 | 27.4 |
21–30 | 16 | 25.8 | 25.8 | 53.2 |
31–40 | 13 | 21.0 | 21.0 | 74.2 |
41+ | 16 | 25.8 | 25.8 | 100.0 |
Total | 62 | 100.0 | 100.0 |
Age Groups | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | Sig. (p Values) | ||
---|---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||||
Region 2 BPD Level A | 11–20 | 17 | 9.87 | 1.37 | 0.33 | 9.17 | 10.58 | 7.39 | 11.86 | 0.021 *, ** |
21–30 | 16 | 9.31 | 0.70 | 0.17 | 8.93 | 9.68 | 7.93 | 10.24 | ||
31–40 | 13 | 9.33 | 0.61 | 0.17 | 8.96 | 9.70 | 8.65 | 10.94 | ||
41+ | 16 | 8.70 | 1.19 | 0.30 | 8.06 | 9.33 | 6.49 | 10.50 | ||
Total | 62 | 9.31 | 1.11 | 0.14 | 9.03 | 9.59 | 6.49 | 11.86 | ||
Region 2 BPD Level B | 11–20 | 17 | 9.94 | 1.27 | 0.31 | 9.28 | 10.60 | 7.49 | 11.56 | 0.001 *, ** |
21–30 | 16 | 9.26 | 0.70 | 0.18 | 8.89 | 9.64 | 8.06 | 10.45 | ||
31–40 | 13 | 9.09 | 0.47 | 0.13 | 8.81 | 9.37 | 8.42 | 9.99 | ||
41+ | 16 | 8.54 | 1.09 | 0.27 | 7.96 | 9.12 | 6.83 | 10.43 | ||
Total | 62 | 9.22 | 1.07 | 0.14 | 8.95 | 9.50 | 6.83 | 11.56 | ||
Region 2 BPD Level C | 11–20 | 17 | 9.70 | 1.23 | 0.30 | 9.06 | 10.33 | 7.13 | 11.46 | 0.000 *, ** |
21–30 | 16 | 9.08 | 0.71 | 0.18 | 8.70 | 9.46 | 7.96 | 10.23 | ||
31–40 | 13 | 8.65 | 0.76 | 0.21 | 8.19 | 9.11 | 6.97 | 9.91 | ||
41+ | 16 | 8.07 | 1.05 | 0.26 | 7.50 | 8.63 | 6.35 | 9.89 | ||
Total | 62 | 8.90 | 1.14 | 0.14 | 8.61 | 9.19 | 6.35 | 11.46 | ||
Region 3 BPD Level A | 11–20 | 17 | 11.20 | 1.29 | 0.31 | 10.53 | 11.86 | 9.17 | 13.90 | 0.005 *, ** |
21–30 | 16 | 10.34 | 0.60 | 0.15 | 10.02 | 10.65 | 8.84 | 11.26 | ||
31–40 | 13 | 11.07 | 1.00 | 0.28 | 10.47 | 11.67 | 9.78 | 13.53 | ||
41+ | 16 | 9.99 | 1.17 | 0.29 | 9.37 | 10.61 | 8.18 | 12.27 | ||
Total | 62 | 10.64 | 1.15 | 0.15 | 10.35 | 10.93 | 8.18 | 13.90 | ||
Region 3 BPD Level B | 11–20 | 17 | 11.44 | 1.27 | 0.31 | 10.79 | 12.09 | 9.04 | 13.88 | 0.005 *, ** |
21–30 | 16 | 10.47 | 0.62 | 0.15 | 10.14 | 10.80 | 8.89 | 11.50 | ||
31–40 | 13 | 11.35 | 1.07 | 0.30 | 10.70 | 12.00 | 10.05 | 13.50 | ||
41+ | 16 | 10.33 | 1.11 | 0.28 | 9.74 | 10.92 | 8.28 | 12.51 | ||
Total | 62 | 10.89 | 1.14 | 0.15 | 10.60 | 11.17 | 8.28 | 13.88 | ||
Region 3 BPD Level C | 11–20 | 17 | 10.66 | 1.27 | 0.31 | 10.01 | 11.31 | 8.67 | 13.94 | 0.006 *, ** |
21–30 | 16 | 10.16 | 0.74 | 0.19 | 9.77 | 10.55 | 8.14 | 11.12 | ||
31–40 | 13 | 10.79 | 1.05 | 0.29 | 10.16 | 11.43 | 9.35 | 13.31 | ||
41+ | 16 | 9.37 | 1.51 | 0.38 | 8.57 | 10.17 | 7.17 | 11.76 | ||
Total | 62 | 10.23 | 1.28 | 0.16 | 9.90 | 10.55 | 7.17 | 13.94 | ||
Region 4 BPD Level C | 11–20 | 17 | 12.13 | 0.73 | 0.18 | 11.75 | 12.50 | 10.52 | 13.11 | 0.037 ”, ** |
21–30 | 16 | 11.75 | 1.41 | 0.35 | 11.00 | 12.50 | 7.22 | 13.68 | ||
31–40 | 13 | 11.48 | 2.09 | 0.58 | 10.22 | 12.75 | 7.34 | 14.09 | ||
41+ | 16 | 10.89 | 1.48 | 0.37 | 10.10 | 11.69 | 6.33 | 12.46 | ||
Total | 62 | 11.58 | 1.50 | 0.19 | 11.20 | 11.96 | 6.33 | 14.09 | ||
Region 1 C1-IPP | 11–20 | 17 | 13.40 | 1.05 | 0.25 | 12.87 | 13.94 | 11.44 | 15.09 | 0.002 *, ** |
21–30 | 16 | 13.06 | 0.78 | 0.20 | 12.65 | 13.50 | 11.85 | 14.26 | ||
31–40 | 13 | 14.51 | 1.31 | 0.36 | 13.72 | 15.30 | 11.71 | 16.10 | ||
41+ | 16 | 13.47 | 0.75 | 0.19 | 13.07 | 13.87 | 12.42 | 15.03 | ||
Total | 62 | 13.57 | 1.09 | 0.14 | 13.29 | 13.84 | 11.44 | 16.10 | ||
Region 2′ CP-IPP | 11–20 | 17 | 9.16 | 0.68 | 0.17 | 8.81 | 9.51 | 8.02 | 10.16 | 0.016 ”, ** |
21–30 | 16 | 9.67 | 0.96 | 0.24 | 9.16 | 10.18 | 7.67 | 11.39 | ||
31–40 | 13 | 9.88 | 0.85 | 0.24 | 9.36 | 10.39 | 7.57 | 11.39 | ||
41+ | 16 | 9.48 | 0.87 | 0.22 | 9.02 | 9.95 | 7.87 | 11.18 | ||
Total | 62 | 9.53 | 0.87 | 0.11 | 9.31 | 9.74 | 7.57 | 11.39 | ||
Region 4′ CP-IPP | 11–20 | 17 | 8.91 | 0.82 | 0.20 | 8.49 | 9.33 | 7.65 | 10.45 | 0.048 *, ** |
21–30 | 16 | 9.62 | 0.91 | 0.23 | 9.14 | 10.11 | 8.10 | 12.01 | ||
31–40 | 13 | 9.93 | 1.35 | 0.37 | 9.12 | 10.74 | 7.30 | 12.01 | ||
41+ | 16 | 9.35 | 0.96 | 0.24 | 8.84 | 9.87 | 8.27 | 12.01 | ||
Total | 62 | 9.42 | 1.05 | 0.13 | 9.16 | 9.69 | 7.30 | 12.01 |
Gender | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | Sig. (p Values) | ||
---|---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||||
Region 4′ BPD Level A | male | 23 | 8.96 | 1.17 | 0.25 | 8.45 | 9.47 | 6.99 | 12.80 | 0.028 *, ** |
female | 39 | 8.47 | 0.99 | 0.16 | 8.15 | 8.79 | 5.38 | 10.20 | ||
Total | 62 | 8.65 | 1.08 | 0.14 | 8.38 | 8.93 | 5.38 | 12.80 | ||
Region 4′ BPD Level B | male | 23 | 8.64 | 1.08 | 0.23 | 8.17 | 9.11 | 6.56 | 11.60 | 0.040 *, ** |
female | 39 | 8.36 | 1.05 | 0.17 | 8.02 | 8.71 | 5.11 | 9.85 | ||
Total | 62 | 8.47 | 1.06 | 0.14 | 8.19 | 8.74 | 5.11 | 11.60 | ||
Region 3 CP-IPP | male | 22 | 9.85 | 1.15 | 0.25 | 9.34 | 10.36 | 8.32 | 12.11 | 0.050 *, ** |
female | 40 | 9.31 | 0.91 | 0.14 | 9.02 | 9.61 | 8.17 | 12.84 | ||
Total | 62 | 9.50 | 1.03 | 0.13 | 9.24 | 9.76 | 8.17 | 12.84 |
Interdental Width (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Canine and First Premolar | First and Second Premolars | Second Premolar and First Molar | First and Second Molars | ||||||
Level | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Right | |||||||||
4mm(A) | 3.13 | 0.78 | 3.05 | 0.70 | 3.21 | 0.84 | 3.18 | 0.79 | |
3mm(B) | 2.92 | 0.77 | 2.78 | 0.68 | 2.93 | 0.78 | 2.94 | 0.71 | |
2mm(C) | 2.70 | 0.75 | 2.53 | 0.66 | 2.69 | 0.73 | 2.73 | 0.63 | |
Left | 4mm(A) | 3.08 | 0.67 | 3.17 | 0.80 | 3.08 | 0.77 | 2.75 | 0.87 |
3mm(B) | 2.84 | 0.68 | 2.91 | 0.80 | 2.79 | 0.68 | 2.56 | 0.73 | |
2mm(C) | 2.59 | 0.65 | 2.77 | 1.35 | 2.53 | 0.59 | 2.37 | 0.61 |
Buccopalatal Depth (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Canine and First Premolar | First and Second Premolars | Second Premolar and First Molar | First and Second Molars | ||||||
Level | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Right | |||||||||
4mm(A) | 9.05 | 0.99 | 9.31 | 1.10 | 10.64 | 1.15 | 11.93 | 1.50 | |
3mm(B) | 8.75 | 1.21 | 9.22 | 1.07 | 10.88 | 1.14 | 12.22 | 1.51 | |
2mm(C) | 8.39 | 1.19 | 8.90 | 1.13 | 10.23 | 1.28 | 11.58 | 1.50 | |
Left | 4mm(A) | 9.01 | 1.44 | 9.55 | 1.25 | 10.77 | 0.95 | 8.65 | 1.08 |
3mm(B) | 8.79 | 1.37 | 9.28 | 1.46 | 11.04 | 0.98 | 8.46 | 1.06 | |
2mm(C) | 8.26 | 1.49 | 8.89 | 1.83 | 10.45 | 0.94 | 8.17 | 1.07 |
Region | Level | IDW over 3 mm in % |
---|---|---|
1 | A | 54.80 |
B | 46.80 | |
C | 37.10 | |
2 | A | 56.50 |
B | 41.90 | |
C | 24.20 | |
3 | A | 59.70 |
B | 51.60 | |
C | 33.90 | |
4 | A | 67.70 |
B | 43.50 | |
C | 32.30 | |
1′ | A | 66.10 |
B | 43.50 | |
C | 33.90 | |
2′ | A | 61.30 |
B | 46.80 | |
C | 29.00 | |
3′ | A | 53.20 |
B | 33.90 | |
C | 25.80 | |
4′ | A | 33.90 |
B | 19.40 | |
C | 14.50 |
Pearson Correlation | p-Value | ||
---|---|---|---|
Region 1-1′ | C1-IPP | 0.28 | 0.027 |
C2-IPP | 0.39 | 0.002 | |
Region 3-3′ | C1-IPP | 0.53 | 0.000 |
C2-IPP | 0.29 | 0.025 | |
Region 4-4′ | C1-IPP | 0.33 | 0.009 |
C2-IPP | 0.38 | 0.002 |
Length | Mean Values (mm) | SD | |
---|---|---|---|
Region 1 | C1-IPP | 13.56 | 1.08 |
C2-IPP | 12.40 | 0.88 | |
CP-IPP | 9.76 | 1.14 | |
Region 2 | C1-IPP | 12.63 | 0.83 |
C2-IPP | 12.19 | 0.77 | |
CP-IPP | 9.55 | 0.96 | |
Region 3 | C1-IPP | 12.45 | 1.13 |
C2-IPP | 11.84 | 1.28 | |
CP-IPP | 9.50 | 1.02 | |
Region 4 | C1-IPP | 12.76 | 1.31 |
C2-IPP | 11.57 | 1.07 | |
CP-IPP | 9.59 | 0.71 | |
Region 1′ | C1-IPP | 13.85 | 1.07 |
C2-IPP | 12.71 | 0.87 | |
CP-IPP | 9.71 | 0.87 | |
Region 2′ | C1-IPP | 12.54 | 0.75 |
C2-IPP | 11.98 | 0.83 | |
CP-IPP | 9.52 | 0.86 | |
Region 3′ | C1-IPP | 12.55 | 1.09 |
C2-IPP | 11.98 | 1.15 | |
CP-IPP | 10.03 | 1.16 | |
Region 4′ | C1-IPP | 12.43 | 0.94 |
C2-IPP | 11.24 | 0.76 | |
CP-IPP | 9.42 | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakovljevic, I.; Milanovic, P.; Vasiljevic, M.; Milanovic, J.; Stevanovic, M.Z.; Jovicic, N.; Stepovic, M.; Ristic, V.; Selakovic, D.; Rosic, G.; et al. A Cone-Beam Computed Tomography-Based Assessment of Safe Zones for Orthodontic Mini-Implant Placement in the Lateral Maxilla: A Retrospective Morphometric Study. Diagnostics 2025, 15, 1252. https://doi.org/10.3390/diagnostics15101252
Jakovljevic I, Milanovic P, Vasiljevic M, Milanovic J, Stevanovic MZ, Jovicic N, Stepovic M, Ristic V, Selakovic D, Rosic G, et al. A Cone-Beam Computed Tomography-Based Assessment of Safe Zones for Orthodontic Mini-Implant Placement in the Lateral Maxilla: A Retrospective Morphometric Study. Diagnostics. 2025; 15(10):1252. https://doi.org/10.3390/diagnostics15101252
Chicago/Turabian StyleJakovljevic, Iva, Pavle Milanovic, Milica Vasiljevic, Jovana Milanovic, Momir Z. Stevanovic, Nemanja Jovicic, Milos Stepovic, Vladimir Ristic, Dragica Selakovic, Gvozden Rosic, and et al. 2025. "A Cone-Beam Computed Tomography-Based Assessment of Safe Zones for Orthodontic Mini-Implant Placement in the Lateral Maxilla: A Retrospective Morphometric Study" Diagnostics 15, no. 10: 1252. https://doi.org/10.3390/diagnostics15101252
APA StyleJakovljevic, I., Milanovic, P., Vasiljevic, M., Milanovic, J., Stevanovic, M. Z., Jovicic, N., Stepovic, M., Ristic, V., Selakovic, D., Rosic, G., & Arnaut, A. (2025). A Cone-Beam Computed Tomography-Based Assessment of Safe Zones for Orthodontic Mini-Implant Placement in the Lateral Maxilla: A Retrospective Morphometric Study. Diagnostics, 15(10), 1252. https://doi.org/10.3390/diagnostics15101252