Validation of Machine Learning Models for Craniofacial Growth Prediction
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Materials
2.2. Data Collection
2.3. Data Normalization and Validation
2.3.1. Interpolation of Missing Values
2.3.2. Normalization of Coordinate Values
2.3.3. Tested Statistical Methods
- MRA using the stepwise method
- LASSO
- RBFN
- MLP
- GBDT
2.3.4. Cross-Validation
2.3.5. Validation using LASSO Age-Specific Input Data
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rischen, R.J.; Breuning, K.H.; Bronkhorst, E.M.; Kuijpers-Jagtman, A.M. Records needed for orthodontic diagnosis and treatment planning: A systematic review. PLoS ONE 2013, 8, e74186. [Google Scholar] [CrossRef]
- Burstone, C.J. Process of maturation and growth prediction. Am. J. Orthod. 1963, 49, 907–919. [Google Scholar] [CrossRef]
- Bishara, S.E. Facial and dental changes in adolescents and their clinical implications. Angle Orthod. 2000, 70, 471–483. [Google Scholar] [PubMed]
- Jung, M.H. Current trends in orthodontic patients in private orthodontic clinics. Korean J. Orthod. 2009, 39, 36–42. [Google Scholar] [CrossRef]
- Enlow, D.H.; Hans, M.G. Essentials of Facial Growth; W.B. Saunders Company: Philadelphia, PA, USA, 1996. [Google Scholar]
- Arnett, G.W.; Bergman, R.T. Facial keys to orthodontic diagnosis and treatment planning. Part I. Am. J. Orthod. Dentofac. Orthop. 1993, 103, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, R.M. Planning treatment on the basis of the facial pattern and an estimate of its growth. Angle Orthod. 1957, 27, 14–37. [Google Scholar]
- Ramesh, A.N.; Kambhampati, C.; Monson, J.R.; Drew, P.J. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 2004, 86, 334–338. [Google Scholar] [CrossRef]
- Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Luger, G.F. Artificial Intelligence: Structures and Strategies for Complex Problem Solving; Pearson Education: Harlow, UK, 2005. [Google Scholar]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef]
- Faber, J.; Faber, C.; Faber, P. Artificial intelligence in orthodontics. APOS Trends Orthod. 2019, 9, 201–205. [Google Scholar] [CrossRef]
- Thanathornwong, B. Bayesian-based decision support system for assessing the needs for orthodontic treatment. Healthc. Inform. Res. 2018, 24, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, L.; Wang, A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod. 2010, 80, 262–266. [Google Scholar] [CrossRef]
- Lee, J.H.; Yu, H.J.; Kim, M.J.; Kim, J.W.; Choi, J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health 2020, 20, 270. [Google Scholar] [CrossRef]
- Kim, I.; Misra, D.; Rodriguez, L.; Gill, M.; Liberton, D.K.; Almpani, K.; Lee, J.S.; Antani, S. Malocclusion classification on 3D cone-beam CT craniofacial images using multi-channel deep learning models. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 2020, 1294–1298. [Google Scholar]
- Murata, S.; Lee, C.; Tanikawa, C.; Date, S. Towards a fully automated diagnostic system for orthodontic treatment in dentistry. In Proceedings of the 13th IEEE International Conference on eScience (eScience), Auckland, New Zealand, 24–27 October 2017; pp. 1–8. [Google Scholar]
- Khanna, S. Artificial intelligence: Contemporary applications and future compass. Int. Dent. J. 2010, 60, 269–272. [Google Scholar]
- Moorrees, C.F.; uan Venrooij, M.E.; Lebret, L.M.; Glatky, C.G.; Kent, R.L.; Reed, R.B. New norms for the mesh diagram analysis. Am. J. Orthod. 1976, 69, 57–71. [Google Scholar] [CrossRef]
- Moorrees, C.F.; Efstratiadis, S.S.; Kent, R.L., Jr. The mesh diagram for analysis of facial growth. Proc. Finn. Dent. Soc. 1991, 87, 33–41. [Google Scholar] [PubMed]
- Johnston, L.E. A simplified approach to prediction. Am. J. Orthod. 1975, 67, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Popovich, F.; Thompson, G.W. Craniofacial templates for orthodontic case analysis. Am. J. Orthod. 1977, 71, 406–420. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, R.M. A principle of arcial growth of the mandible. Angle Orthod. 1972, 42, 368–386. [Google Scholar]
- Ricketts, R.M. The value of cephalometrics and computerized technology. Angle Orthod. 1972, 42, 179–199. [Google Scholar]
- Chvatal, B.A.; Behrents, R.G.; Ceen, R.F.; Buschang, P.H. Development and testing of multilevel models for longitudinal craniofacial growth prediction. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 45–56. [Google Scholar] [CrossRef]
- Buschang, P.H.; Tanguay, R.; Demirjian, A.; LaPalme, L.; Turkewicz, J. Mathematical models of longitudinal mandibular growth for children with normal and untreated class II, division 1 malocclusion. Eur. J. Orthod. 1988, 10, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Buschang, P.H.; Tanguay, R.; Demirjian, A.; LaPalme, L.; Goldstein, H. Modeling longitudinal mandibular growth: Percentiles for gnathion from 6 to 15 years of age in girls. Am. J. Orthod. Dentofac. Orthop. 1989, 95, 60–66. [Google Scholar] [CrossRef] [PubMed]
- van Diepenbeek, A.F.; Buschang, P.H.; Prahl-Andersen, B. Age-dependant cephalometric standards as determined by multilevel modeling. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Buschang, P.H.; Tanguay, R.; LaPalme, L.; Demirjian, A. Mandibular growth prediction: Mean growth increments versus mathematical models. Eur. J. Orthod. 1990, 12, 290–296. [Google Scholar] [CrossRef]
- Manabe, A.; Ishida, T.; Kanda, E.; Ono, T. Evaluation of maxillary and mandibular growth patterns with cephalometric analysis based on cervical vertebral maturation: A Japanese cross-sectional study. PLoS ONE 2022, 17, e0265272. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, K.; McNamara, J.A., Jr.; Kimura, T.; Murata, S.; Iizuka, T. Craniofacial structure of Japanese and European-American adults with normal occlusions and well-balanced faces. Am. J. Orthod. Dentofac. Orthop. 1996, 110, 431–438. [Google Scholar] [CrossRef]
- Efroymson, M.A. Multiple regression analysis. In Mathematical Methods for Digital Computers; John Wiley & Sons: Hoboken, NJ, USA, 1960; pp. 191–203. [Google Scholar]
- Raju, N.S.; Bilgic, R.; Edwards, J.E.; Fleer, P.F. Methodology review: Estimation of population validity and cross-validity, and the use of equal weights in prediction. Appl. Psychol. Meas. 1997, 21, 291–305. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Broomhead, D.S.; Lowe, D. Radial basis functions, multi-variable functional interpolation and adaptive networks. R. Signals Radar Establ. Malvern 1988, 25, 1–8. [Google Scholar]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer: Hoboken, NJ, USA, 2013. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Hoboken, NJ, USA, 1998. [Google Scholar]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, Georgia, USA, 17–19 June 2013; pp. 1139–1147. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 3148–3156. [Google Scholar]
- Wood, T.; Anigbo, J.O.; Eckert, G.; Stewart, K.T.; Dundar, M.M.; Turkkahraman, H. Prediction of the post-pubertal mandibular length and Y axis of growth by using various machine learning techniques: A retrospective longitudinal study. Diagnostics 2023, 13, 1553. [Google Scholar] [CrossRef]
- Verma, S.L.; Tikku, T.; Khanna, R.; Maurya, R.P.; Srivastava, K.; Singh, V. Predictive accuracy of estimating mandibular growth potential by regression equation using cervical vertebral bone age. Natl. J. Maxillofac. Surg. 2021, 12, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Oueis, H.; Ono, Y.; Takagi, Y. Prediction of mandibular growth in Japanese children age 4 to 9 years. Pediatr. Dent. 2002, 24, 264–268. [Google Scholar] [PubMed]
- Moshfeghi, M.; Rahimi, H.; Rahimi, H.; Nouri, M.; Bagheban, A.A. Predicting mandibular growth increment on the basis of cervical vertebral dimensions in Iranian girls. Prog. Orthod. 2013, 14, 3. [Google Scholar] [CrossRef][Green Version]
- Yano, N.; Ono, Y.; Takagi, Y. Prediction of mandibular growth in children with anterior crossbite. J. Pediatr. Dent. 2009, 19, 212–219. [Google Scholar] [CrossRef]
- Sato, K.; Mito, T.; Mitani, H. An accurate method of predicting mandibular growth potential based on bone maturity. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Mito, T.; Sato, K.; Mitani, H. Predicting mandibular growth potential with cervical vertebral bone age. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 173–177. [Google Scholar] [CrossRef]
- Bichu, Y.M.; Hansa, I.; Bichu, A.Y.; Premjani, P.; Flores-Mir, C.; Vaid, N.R. Applications of artificial intelligence and machine learning in orthodontics: A scoping review. Prog. Orthod. 2021, 22, 18. [Google Scholar] [CrossRef]
- Jiwa, S. Applicability of Deep Learning for Mandibular Growth Prediction. Master’s Thesis, Boston University, Ann Arbor, MI, USA, 2020. [Google Scholar]
- Ricketts, R.M. Philosophies and methods of facial growth prediction. Proc. Found. Orthod. Res. 1971, 11–30. [Google Scholar]
- Zhang, J.N.; Lu, H.P.; Hou, J.; Wang, Q.; Yu, F.Y.; Zhong, C.; Huang, C.Y.; Chen, S. Deep learning-based prediction of mandibular growth trend in children with anterior crossbite using cephalometric radiographs. BMC Oral Health 2023, 23, 28. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Kim, M.G.; Hwang, H.W.; Cho, S.J.; Donatelli, R.E.; Lee, S.J. Evaluation of an individualized facial growth prediction model based on the multivariate partial least squares method. Angle Orthod. 2022, 92, 705–713. [Google Scholar] [CrossRef]
- Hirschfeld, W.J.; Moyers, R.E. Prediction of craniofacial growth: The state of the art. Am. J. Orthod. 1971, 60, 435–444. [Google Scholar] [CrossRef][Green Version]
- Leslie, L.R.; Southard, T.E.; Southard, K.A.; Casko, J.S.; Jakobsen, J.R.; Tolley, E.A.; Hillis, S.L.; Carolan, C.; Logue, M. Prediction of mandibular growth rotation: Assessment of the Skieller, Björk, and Linde–Hansen method. Am. J. Orthod. Dentofac. Orthop. 1998, 114, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Botsis, T.; Hartvigsen, G.; Chen, F.; Weng, C. Secondary use of EHR: Data quality issues and informatics opportunities. Summit Transl. Bioinform. 2010, 2010, 1–5. [Google Scholar]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Atkinson, M.E.; White, F.H. Principles of Anatomy and Oral Anatomy for Dental Students; Churchill Livingstone: London, UK, 1992; pp. 469–475. [Google Scholar]
- Tanaka, E.M.; Sato, S. Longitudinal alteration of the occlusal plane and development of different dentoskeletal frames during growth. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 602.e1–602.e11. [Google Scholar] [CrossRef]
Skeletal Linear Parameters | Landmarks to Be Used |
---|---|
N–S | (Nasion, Sella) |
N–Ba | (Nasion, Basion) |
S–Ba | (Sella, Basion) |
N–ANS | (Nasion, ANS) |
S–Gn | (Sella, Gnathion) |
Ar–Go | (Articulare, Gonion) |
Ar–Me | (Articulare, Menton) |
Go–Me | (Gonion, Menton) |
N–Me | (Nasion, Menton) |
ANS–Me | (ANS, Menton) |
Gn–Cd | (Gnathion, Condylion) |
Pog–Go | (Pogonion, Gonion) |
Cd–Go | (Condylion, Gonion) |
Skeletal Angular Parameters | Landmarks to Be Used |
---|---|
Convexity | (Nasion, A point), (A point, Pogonion) |
A–B plane | (A point, B point), (Nasion, Pogonion) |
SNA | (Sella, Nasion), (Nasion, A point) |
SNB | (Sella, Nasion), (Nasion, B point) |
ANB | (Nasion, A point), (Nasion, B point) |
N-Pog to SN | (Nasion, Pogonion), (Sella, Nasion) |
Nasal floor to SN | (ANS, PNS), (Sella, Nasion) |
NSBa | (Nasion, Sella), (Sella, Basion) |
NSAr | (Nasion, Sella), (Sella, Articulare) |
NSGn | (Nasion, Sella), (Sella, Gnathion) |
ArGoMe | (Articulare, Gonion), (Menton, Gonion) |
Mandibular pl to SN | (Gonion, Menton), (Sella, Nasion) |
Gonial angle | (Articulare, Gonion), (Gonion, Menton) |
U1 to SN | (mx1 root, mx1-incisor superius), (Sella, Nasion) |
L1 to mandibular pl | (md1 root, md1-incisor inferius), (Menton, Gonion) |
Interincisal angle | (mx1 root, mx1-incisor superius), (md1 root, md1-incisor inferius) |
Occlusal pl to SN | (mx1-incisor superius, occlusal pl.), (Sella, Nasion) |
MRA | LASSO | RBFN | MLP | GBDT | |
---|---|---|---|---|---|
Porion | 1.19 | 0.67 | 7.01 | 4.23 | 24.76 |
Basion | 2.44 | 1.35 | 7.25 | 4.11 | 1.87 |
Nasion | 1.13 | 0.77 | 3.73 | 2.50 | 2.47 |
Orbitale | 1.60 | 0.99 | 4.68 | 3.02 | 1.96 |
A point | 2.99 | 1.62 | 7.57 | 4.13 | 3.23 |
Pogonion | 3.71 | 2.43 | 12.77 | 8.78 | 1.85 |
B point | 2.47 | 1.64 | 10.78 | 5.90 | 2.10 |
PNS | 1.90 | 1.08 | 6.66 | 4.34 | 2.70 |
ANS | 2.40 | 1.43 | 6.91 | 3.99 | 1.66 |
R1 | 2.49 | 1.03 | 7.01 | 3.89 | 1.95 |
R3 | 1.59 | 0.97 | 6.25 | 2.81 | 2.07 |
Articulare | 1.33 | 0.77 | 6.39 | 3.85 | 2.34 |
Menton | 3.07 | 1.80 | 12.72 | 7.62 | 2.24 |
mx1-incisor superius | 2.89 | 1.66 | 9.61 | 3.80 | 2.29 |
mx1 root | 3.38 | 1.88 | 8.16 | 4.44 | 2.33 |
md1-incisor inferius | 3.13 | 1.56 | 9.32 | 3.74 | 2.43 |
md1 root | 2.88 | 1.77 | 10.48 | 6.21 | 2.46 |
Occlusal plane | 2.68 | 1.55 | 9.44 | 3.66 | 2.53 |
mx6 distal | 3.01 | 1.53 | 7.78 | 4.03 | 2.48 |
mx6 root | 2.79 | 1.66 | 7.11 | 5.01 | 2.88 |
md6 distal | 3.10 | 1.56 | 8.35 | 3.85 | 2.95 |
md6 root | 3.44 | 1.75 | 9.53 | 6.29 | 3.37 |
Gnathion | 3.18 | 1.76 | 12.99 | 7.18 | 4.93 |
Gonion | 2.20 | 1.39 | 10.22 | 5.89 | 2.68 |
Condylion | 1.23 | 0.67 | 5.86 | 3.16 | 3.13 |
Average | 2.49 | 1.41 | 8.34 | 4.66 | 3.43 |
MRA | LASSO | RBFN | MLP | GBDT | |
---|---|---|---|---|---|
ANS–Me | 2.22 | 1.33 | 5.30 | 3.58 | 1.96 |
Ar–Go | 2.54 | 1.31 | 4.11 | 2.43 | 1.60 |
Ar–Me | 3.28 | 1.67 | 5.55 | 4.78 | 4.06 |
Cd–Go | 3.00 | 1.36 | 4.57 | 3.01 | 3.59 |
Gn–Cd | 2.72 | 1.79 | 5.65 | 4.11 | 2.64 |
Go–Me | 2.37 | 1.56 | 4.11 | 3.19 | 1.68 |
N–ANS | 1.43 | 0.92 | 2.57 | 2.12 | 1.34 |
N–Ba | 2.53 | 1.52 | 4.81 | 3.74 | 1.93 |
N–Me | 2.49 | 1.73 | 6.21 | 3.22 | 1.67 |
Pog–Go | 2.29 | 1.65 | 4.38 | 3.28 | 2.08 |
S–Ba | 2.20 | 1.19 | 2.95 | 2.57 | 1.98 |
S–Gn | 2.32 | 1.80 | 7.57 | 3.39 | 2.35 |
Average | 2.45 | 1.49 | 4.81 | 3.29 | 2.24 |
Accuracy (%) | 96.39 | 97.87 | 93.29 | 95.33 | 96.73 |
MRA | LASSO | RBFN | MLP | GBDT | |
---|---|---|---|---|---|
A-B_plane | 2.67 | 1.30 | 2.79 | 3.61 | 3.38 |
ANB | 1.49 | 0.74 | 1.86 | 1.45 | 15.54 |
ArGoMe | 3.65 | 1.57 | 5.60 | 3.66 | 1.99 |
Convexity | 3.71 | 1.71 | 4.74 | 4.08 | 2.67 |
Gonial_angle | 3.65 | 1.57 | 5.60 | 4.42 | 2.63 |
Interincisal_angle | 8.25 | 3.75 | 9.23 | 6.48 | 1.80 |
L1_to_mandibular_pl | 5.05 | 2.08 | 5.85 | 5.74 | 1.57 |
Mandibular_pl_to_SN | 2.77 | 0.92 | 6.23 | 3.93 | 1.65 |
N-Pog_to_SN | 1.61 | 0.69 | 5.47 | 1.98 | 1.41 |
NSAr | 1.15 | 0.91 | 6.84 | 3.26 | 3.82 |
NSBa | 1.31 | 0.74 | 6.36 | 5.64 | 4.07 |
NSGn | 0.79 | 0.32 | 5.84 | 2.66 | 1.82 |
Nasal_floor_to_SN | 1.58 | 0.70 | 4.63 | 2.52 | 2.38 |
Occlusal_pl_to_SN | 25.77 | 11.69 | 16.06 | 14.75 | 2.01 |
SNA | 2.03 | 1.03 | 5.47 | 2.50 | 1.12 |
SNB | 1.13 | 0.59 | 5.31 | 2.49 | 1.64 |
U1_to_SN | 6.60 | 2.73 | 8.22 | 6.33 | 1.88 |
Average | 4.31 | 1.94 | 6.24 | 4.44 | 3.02 |
Accuracy (%) | 88.21 | 94.45 | 82.75 | 85.35 | 63.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Kuroda, Y.; Soeda, Y.; Koizumi, S.; Yamaguchi, T. Validation of Machine Learning Models for Craniofacial Growth Prediction. Diagnostics 2023, 13, 3369. https://doi.org/10.3390/diagnostics13213369
Kim E, Kuroda Y, Soeda Y, Koizumi S, Yamaguchi T. Validation of Machine Learning Models for Craniofacial Growth Prediction. Diagnostics. 2023; 13(21):3369. https://doi.org/10.3390/diagnostics13213369
Chicago/Turabian StyleKim, Eungyeong, Yasuhiro Kuroda, Yoshiki Soeda, So Koizumi, and Tetsutaro Yamaguchi. 2023. "Validation of Machine Learning Models for Craniofacial Growth Prediction" Diagnostics 13, no. 21: 3369. https://doi.org/10.3390/diagnostics13213369
APA StyleKim, E., Kuroda, Y., Soeda, Y., Koizumi, S., & Yamaguchi, T. (2023). Validation of Machine Learning Models for Craniofacial Growth Prediction. Diagnostics, 13(21), 3369. https://doi.org/10.3390/diagnostics13213369