Prognostic Value of 18F–FDG–PET Parameters in Patients with Small Cell Lung Cancer: A Meta-Analysis and Review of Current Literature
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.1.1. Search Strategy
2.1.2. Study Selection
2.2. Data
2.3. Statistics
3. Results
3.1. Quality of the Studies
3.2. Qualitative Analysis: Prognostic Value of Baseline PET Parameters
3.2.1. Baseline SUV
3.2.2. Baseline MTV
3.2.3. Baseline PET Parameters Combining SUV with Tumor Volume
3.3. Qualitative Analysis: Prognostic Value of Post-Treatment PET Parameters
3.4. Qualitative Analysis: Prognostic Value of PET Parameter Change, Early and Final Response Evaluation
3.5. Qualitative Analysis: Prognostic Value of PET Parameters at Mixed Treatment Phases
3.6. Quantitative Analysis: Prognostic Value of Baseline PET Parameters
3.6.1. Baseline SUVmax
3.6.2. Baseline MTV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dayen, C.; Debieuvre, D.; Molinier, O.; Raffy, O.; Paganin, F.; Virally, J.; Larive, S.; Desurmont-Salasc, B.; Perrichon, M.; Martin, F.; et al. New insights into stage and prognosis in small cell lung cancer: An analysis of 968 cases. J. Thorac. Dis. 2017, 9, 5101–5111. [Google Scholar] [CrossRef] [PubMed]
- Lattuca-Truc, M.; Timsit, J.F.; Levra, M.G.; Ruckly, S.; Villa, J.; Dumas, I.; Pinsolle, J.; Ferrer, L.; Guillem, P.; Moro-Sibilot, D.; et al. Trends in response rate and survival in small-cell lung cancer patients between 1997 and 2017. Lung Cancer 2019, 131, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, Z.; Wang, Q. Emerging therapies for small cell lung cancer. J. Hematol. Oncol. 2019, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zimmermann, S.; Parikh, K.; Mansfield, A.S.; Adjei, A.A. Current Diagnosis and Management of Small-Cell Lung Cancer. Mayo Clin. Proc. 2019, 94, 1599–1622. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, Z.; Luo, F.; Zhao, Y.; Hou, X.; Liu, T.; Wang, K.; Zhao, H.; Huang, Y.; Zhang, L. Comparison of First-Line Treatments for Patients with Extensive-Stage Small Cell Lung Cancer: A Systematic Review and Network Meta-analysis. JAMA Netw. Open 2020, 3, e2015748. [Google Scholar] [CrossRef]
- Ruben, J.D.; Ball, D.L. The efficacy of PET staging for small-cell lung cancer: A systematic review and cost analysis in the Australian setting. J. Thorac. Oncol. 2012, 7, 1015–1020. [Google Scholar] [CrossRef]
- Fischer, B.M.; Mortensen, J.; Langer, S.W.; Loft, A.; Berthelsen, A.K.; Petersen, B.I.; Daugaard, G.; Lassen, U.; Hansen, H.H. A prospective study of PET/CT in initial staging of small-cell lung cancer: Comparison with CT, bone scintigraphy and bone marrow analysis. Ann. Oncol. 2007, 18, 338–345. [Google Scholar] [CrossRef]
- Van Loon, J.; van Baardwijk, A.; Boersma, L.; Ollers, M.; Lambin, P.; De Ruysscher, D. Therapeutic implications of molecular imaging with PET in the combined modality treatment of lung cancer. Cancer Treat. Rev. 2011, 37, 331–343. [Google Scholar] [CrossRef]
- Langer, N.H.; Christensen, T.N.; Langer, S.W.; Kjaer, A.; Fischer, B.M. PET/CT in therapy evaluation of patients with lung cancer. Expert Rev. Anticancer Ther. 2014, 14, 595–620. [Google Scholar] [CrossRef]
- Fischer, B.M.; Mortensen, J.; Langer, S.W.; Loft, A.; Berthelsen, A.K.; Daugaard, G.; Lassen, U.; Hansen, H.H. PET/CT imaging in response evaluation of patients with small cell lung cancer. Lung Cancer 2006, 54, 41–49. [Google Scholar] [CrossRef]
- Hayden, J.A.; van der Windt, D.A.; Cartwright, J.L.; Cote, P.; Bombardier, C. Assessing bias in studies of prognostic factors. Ann. Intern. Med. 2013, 158, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.R.; Seo, J.H.; Chong, A.; Min, J.J.; Song, H.C.; Kim, Y.C.; Bom, H.S. Whole-body metabolic tumour volume of 18F-FDG PET/CT improves the prediction of prognosis in small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.R.; Seo, J.H.; Hong, C.M.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Min, J.J.; Song, H.C.; Bom, H.S.; Kim, Y.C.; et al. Extra-thoracic tumor burden but not thoracic tumor burden on (18)F-FDG PET/CT is an independent prognostic biomarker for extensive-disease small cell lung cancer. Lung Cancer 2013, 81, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Lee, J.S.; Mok, J.H.; Lee, K.; Kim, K.U.; Park, H.K.; Kim, S.J.; Lee, M.K. Metabolic burden measured by (18)f-fluorodeoxyglucose positron emission tomography/computed tomography is a prognostic factor in patients with small cell lung cancer. Cancer Res. Treat. 2014, 46, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Chang, S. Limited Prognostic Value of SUV max Measured by F-18 FDG PET/CT in Newly Diagnosed Small Cell Lung Cancer Patients. Oncol. Res. Treat. 2015, 38, 577–585. [Google Scholar] [CrossRef]
- Jin, F.; Qu, B.; Fu, Z.; Zhang, Y.; Han, A.; Kong, L.; Yu, J. Prognostic Value of Metabolic Parameters of Metastatic Lymph Nodes on (18)F-FDG PET/CT in Patients With Limited-stage Small-cell Lung Cancer With Lymph Node Involvement. Clin. Lung Cancer 2018, 19, e101–e108. [Google Scholar] [CrossRef]
- Gomez, D.R.; Gladish, G.W.; Wei, X.; Kotamarti, K.R.; Allen, P.K.; Cox, J.D.; O’Reilly, M.S.; Erasmus, J.J.; Fossella, F.V.; Komaki, R. Prognostic value of positron emission tomography/computed tomography findings in limited-stage small cell lung cancer before chemoradiation therapy. Am. J. Clin. Oncol. 2014, 37, 77–80. [Google Scholar] [CrossRef]
- Choi, E.K.; Park, M.; Im, J.J.; Chung, Y.A.; Oh, J.K. Prognostic value of (18)F-FDG PET/CT metabolic parameters in small cell lung cancer. J. Int. Med. Res. 2019. [Google Scholar] [CrossRef]
- Kasahara, N.; Kaira, K.; Yamaguchi, K.; Masubuchi, H.; Tsurumaki, H.; Hara, K.; Koga, Y.; Sakurai, R.; Higuchi, T.; Handa, T.; et al. Fluorodeoxyglucose uptake is associated with low tumor-infiltrating lymphocyte levels in patients with small cell lung cancer. Lung Cancer 2019, 134, 180–186. [Google Scholar] [CrossRef]
- Aktan, M.; Koc, M.; Kanyilmaz, G.; Yavuz, B.B. Prognostic value of pre-treatment (18)F-FDG-PET uptake in small-cell lung cancer. Ann. Nucl. Med. 2017, 31, 462–468. [Google Scholar] [CrossRef]
- Kwon, S.H.; Hyun, S.H.; Yoon, J.K.; An, Y.S.; Oh, Y.T.; Choi, J.H.; Park, K.J.; Lee, S.J. The Highest Metabolic Activity on FDG PET Is Associated with Overall Survival in Limited-Stage Small-Cell Lung Cancer. Medicine 2016, 95, e2772. [Google Scholar] [CrossRef]
- Van der Leest, C.; Smit, E.F.; Baas, J.; Versteijlen, R.J.; van Walree, N.; Hoogsteden, H.C.; Aerts, J.G. SUVmax during 18FDG-PET scanning in small cell lung cancer: Similar information as in non-small cell lung cancer? Lung Cancer 2012, 76, 67–71. [Google Scholar] [CrossRef]
- Zhu, D.; Ma, T.; Niu, Z.; Zheng, J.; Han, A.; Zhao, S.; Yu, J. Prognostic significance of metabolic parameters measured by (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with small cell lung cancer. Lung Cancer 2011, 73, 332–337. [Google Scholar] [CrossRef]
- Chong, S.; Lee, K.S.; Kim, B.T.; Choi, J.Y.; Yi, C.A.; Chung, M.J.; Oh, D.K.; Lee, J.Y. Integrated PET/CT of pulmonary neuroendocrine tumors: Diagnostic and prognostic implications. AJR Am. J. Roentgenol. 2007, 188, 1223–1231. [Google Scholar] [CrossRef]
- Ozdemir, O.; Batum, O.; Ermin, S.; Aksel, N.; Komurcuoglu, B.; Mertoglu, A.; Deniz, S.; Balci, G.; Koparal, H.; Ozbilek, E.; et al. Metabolic activity of primary tumour on PET/CT has a relationship with survival in stages I-III small-cell lung carcinoma. Clin. Respir. J. 2020. [Google Scholar] [CrossRef]
- Araz, M.; Soydal, C.; Ozkan, E.; Sen, E.; Nak, D.; Kucuk, O.N.; Gonullu, U.; Kir, K.M. Prognostic value of metabolic parameters on baseline 18F-FDG PET/CT in small cell lung cancer. Q. J. Nucl. Med. Mol. Imaging 2019. [Google Scholar] [CrossRef]
- Chang, H.; Lee, S.J.; Lim, J.; Lee, J.S.; Kim, Y.J.; Lee, W.W. Prognostic significance of metabolic parameters measured by (18)F-FDG PET/CT in limited-stage small-cell lung carcinoma. J. Cancer Res. Clin. Oncol. 2019. [Google Scholar] [CrossRef]
- Fu, L.; Zhu, Y.; Jing, W.; Guo, D.; Kong, L.; Yu, J. Incorporation of circulating tumor cells and whole-body metabolic tumor volume of (18)F-FDG PET/CT improves prediction of outcome in IIIB stage small-cell lung cancer. Chin. J. Cancer Res. 2018, 30, 596–604. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, I.R.; Boo, S.H.; Park, H.L.; Kim, S.H. Prognostic Value of Pre- and Post-Treatment FDG PET/CT Parameters in Small Cell Lung Cancer Patients. Nucl. Med. Mol. Imaging 2018, 52, 31–38. [Google Scholar] [CrossRef]
- Yilmaz Demirci, N.; Yilmaz, U.; Biner Uslu, I.; Dikmen, A.; Yilmaz, A.; Erdogan, Y. Prognostic significance of standardised uptake value (SUVmax) measured on 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with small cell lung cancer. Eur. J. Cancer Care 2017, 26. [Google Scholar] [CrossRef]
- Dinc, N.S.; Aydin, K.; Odabas, H.; Ercelep, O.; Tufan, G.; Seker, M.; Yasar, N.; Aydin, D.; Yuksel, S.; Mert, A.; et al. Pretreatment PET/CT Standardized Uptake Values Play a Role in Predicting Response to Treatment and Survival in Patients with Small Cell Lung Cancer. Oncol. Res. Treat. 2016, 39, 130–134. [Google Scholar] [CrossRef]
- Nobashi, T.; Koyasu, S.; Nakamoto, Y.; Kubo, T.; Ishimori, T.; Kim, Y.H.; Yoshizawa, A.; Togashi, K. Prognostic value of fluorine-18 fludeoxyglucose positron emission tomography parameters differs according to primary tumour location in small-cell lung cancer. Br. J. Radiol. 2016, 89, 20150618. [Google Scholar] [CrossRef]
- Zer, A.; Domachevsky, L.; Rapson, Y.; Nidam, M.; Flex, D.; Allen, A.M.; Stemmer, S.M.; Groshar, D.; Bernstine, H. The Role of 18F-FDG PET/CT on Staging and Prognosis in Patients with Small Cell Lung Cancer. Eur. Radiol. 2016, 26, 3155–3161. [Google Scholar] [CrossRef]
- Ong, L.T.; Dunphy, M.; Foster, A.; Woo, K.M.; Zhang, Z.; Perez, C.A.; Pietanza, C.M.; Rosenzweig, K.E.; Gelblum, D.Y.; Rimner, A.; et al. Prognostic Value of Preradiotherapy (18)F-FDG PET/CT Volumetrics in Limited-Stage Small-Cell Lung Cancer. Clin. Lung Cancer 2016, 17, 184–188. [Google Scholar] [CrossRef]
- Park, S.B.; Choi, J.Y.; Moon, S.H.; Yoo, J.; Kim, H.; Ahn, Y.C.; Ahn, M.J.; Park, K.; Kim, B.T. Prognostic value of volumetric metabolic parameters measured by [18F]fluorodeoxyglucose-positron emission tomography/computed tomography in patients with small cell lung cancer. Cancer Imag. 2014, 14, 2. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.O.; Jung, C.K.; Kim, Y.S.; Yoo, I.R.; Choi, W.H.; Jeon, E.K.; Hong, S.H.; Chun, S.H.; Kim, S.J.; et al. Metabolic activity on [18f]-fluorodeoxyglucose-positron emission tomography/computed tomography and glucose transporter-1 expression might predict clinical outcomes in patients with limited disease small-cell lung cancer who receive concurrent chemoradiation. Clin. Lung Cancer. 2014, 15, e13–e21. [Google Scholar] [CrossRef] [PubMed]
- Go, S.I.; Song, H.N.; Kang, J.H.; Kang, M.H.; Kim, M.J.; Jung, J.; Chung, S.I.; Choi, B.H.; Hwang, I.G.; Kim, S.H.; et al. The clinical impact of the sum of the maximum standardized uptake value on the pretreatment with F-FDG-PET/CT in small-cell lung cancer. Oncology 2014, 86, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Inal, A.; Kucukoner, M.; Kaplan, M.A.; Urakci, Z.; Nas, N.; Guven, M.; Dostbil, Z.; Altindag, S.; Isikdogan, A. Is (18)F-FDG-PET/CT prognostic factor for survival in patients with small cell lung cancer? Single center experience. Rev. Port. Pneumol. 2013, 19, 260–265. [Google Scholar] [CrossRef]
- Jhun, B.W.; Lee, K.J.; Jeon, K.; Suh, G.Y.; Chung, M.P.; Kim, H.; Kwon, O.J.; Sun, J.M.; Ahn, J.S.; Ahn, M.J.; et al. Clinical applicability of staging small cell lung cancer according to the seventh edition of the TNM staging system. Lung Cancer 2013, 81, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Cho, A.; Cho, B.C.; Yun, M.; Kim, S.K.; Chang, J.; Moon, J.W.; Park, I.K.; Choi, H.J.; Kim, J.H. High tumor metabolic activity as measured by fluorodeoxyglucose positron emission tomography is associated with poor prognosis in limited and extensive stage small-cell lung cancer. Clin. Cancer Res. 2009, 15, 2426–2432. [Google Scholar] [CrossRef]
- Pandit, N.; Gonen, M.; Krug, L.; Larson, S.M. Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 78–84. [Google Scholar] [CrossRef]
- Quartuccio, N.; Evangelista, L.; Alongi, P.; Caobelli, F.; Altini, C.; Cistaro, A.; Lambertini, A.; Schiorlin, I.; Popescu, C.E.; Linguanti, F.; et al. Prognostic and diagnostic value of [18F]FDG-PET/CT in restaging patients with small cell lung carcinoma: An Italian multicenter study. Nucl. Med. Commun. 2019. [Google Scholar] [CrossRef]
- Ziai, D.; Wagner, T.; El Badaoui, A.; Hitzel, A.; Woillard, J.B.; Melloni, B.; Monteil, J. Therapy response evaluation with FDG-PET/CT in small cell lung cancer: A prognostic and comparison study of the PERCIST and EORTC criteria. Cancer Imag. 2013, 13, 73–80. [Google Scholar] [CrossRef]
- Onitilo, A.A.; Engel, J.M.; Demos, J.M.; Mukesh, B. Prognostic significance of 18 F-fluorodeoxyglucose—positron emission tomography after treatment in patients with limited stage small cell lung cancer. Clin. Med. Res. 2008, 6, 72–77. [Google Scholar] [CrossRef][Green Version]
- Blum, R.; MacManus, M.P.; Rischin, D.; Michael, M.; Ball, D.; Hicks, R.J. Impact of positron emission tomography on the management of patients with small-cell lung cancer: Preliminary experience. Am. J. Clin. Oncol. 2004, 27, 164–171. [Google Scholar] [CrossRef]
- Van Loon, J.; Offermann, C.; Ollers, M.; van Elmpt, W.; Vegt, E.; Rahmy, A.; Dingemans, A.M.; Lambin, P.; De Ruysscher, D. Early CT and FDG-metabolic tumour volume changes show a significant correlation with survival in stage I-III small cell lung cancer: A hypothesis generating study. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2011, 99, 172–175. [Google Scholar] [CrossRef]
- Mirili, C.; Guney, I.B.; Paydas, S.; Seydaoglu, G.; Kapukaya, T.K.; Ogul, A.; Gokcay, S.; Buyuksimsek, M.; Yetisir, A.E.; Karaalioglu, B.; et al. Prognostic significance of neutrophil/lymphocyte ratio (NLR) and correlation with PET-CT metabolic parameters in small cell lung cancer (SCLC). Int. J. Clin. Oncol. 2019, 24, 168–178. [Google Scholar] [CrossRef]
- Reymen, B.; Van Loon, J.; van Baardwijk, A.; Wanders, R.; Borger, J.; Dingemans, A.M.; Bootsma, G.; Pitz, C.; Lunde, R.; Geraedts, W.; et al. Total gross tumor volume is an independent prognostic factor in patients treated with selective nodal irradiation for stage I to III small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1319–1324. [Google Scholar] [CrossRef]
- Arslan, N.; Tuncel, M.; Kuzhan, O.; Alagoz, E.; Budakoglu, B.; Ozet, A.; Ozguven, M.A. Evaluation of outcome prediction and disease extension by quantitative 2-deoxy-2-[18F] fluoro-D-glucose with positron emission tomography in patients with small cell lung cancer. Ann. Nucl. Med. 2011, 25, 406–413. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, Y.; Wang, L.; Chen, J.; Byanju, S.; Zhang, H.; Liao, M. Prognostic value of the maximum standardized uptake value of pre-treatment primary lesions in small-cell lung cancer on 18F-FDG PET/CT: A meta-analysis. Acta Radiol. 2017, 284185117745907. [Google Scholar] [CrossRef]
- Im, H.J.; Pak, K.; Cheon, G.J.; Kang, K.W.; Kim, S.J.; Kim, I.J.; Chung, J.K.; Kim, E.E.; Lee, D.S. Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: A meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 241–251. [Google Scholar] [CrossRef]
- Xie, M.; Wu, K.; Liu, Y.; Jiang, Q.; Xie, Y. Predictive value of F-18 FDG PET/CT quantization parameters in diffuse large B cell lymphoma: A meta-analysis with 702 participants. Med. Oncol. 2015, 32, 446. [Google Scholar] [CrossRef]
- Bonomo, P.; Merlotti, A.; Olmetto, E.; Bianchi, A.; Desideri, I.; Bacigalupo, A.; Franco, P.; Franzese, C.; Orlandi, E.; Livi, L.; et al. What is the prognostic impact of FDG PET in locally advanced head and neck squamous cell carcinoma treated with concomitant chemo-radiotherapy? A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2122–2138. [Google Scholar] [CrossRef]
- Wen, W.; Xuan, D.; Hu, Y.; Li, X.; Liu, L.; Xu, D. Prognostic value of maximum standard uptake value, metabolic tumor volume, and total lesion glycolysis of positron emission tomography/computed tomography in patients with breast cancer: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0225959. [Google Scholar] [CrossRef]
- Cheng, G.; Huang, H. Prognostic Value of (18)F-Fluorodeoxyglucose PET/Computed Tomography in Non-Small-Cell Lung Cancer. PET Clin. 2018, 13, 59–72. [Google Scholar] [CrossRef]
- Han, S.; Woo, S.; Suh, C.H.; Kim, Y.J.; Oh, J.S.; Lee, J.J. A systematic review of the prognostic value of texture analysis in (18)F-FDG PET in lung cancer. Ann. Nucl. Med. 2018, 32, 602–610. [Google Scholar] [CrossRef]
- Krarup, M.M.K.; Nygard, L.; Vogelius, I.R.; Andersen, F.L.; Cook, G.; Goh, V.; Fischer, B.M. Heterogeneity in tumours: Validating the use of radiomic features on (18)F-FDG PET/CT scans of lung cancer patients as a prognostic tool. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 144, 72–78. [Google Scholar] [CrossRef]
- Finkle, J.H.; Penney, B.C.; Pu, Y. An updated and validated PET/CT volumetric prognostic index for non-small cell lung cancer. Lung Cancer 2018, 123, 136–141. [Google Scholar] [CrossRef]
- Riley, R.D.; Moons, K.G.M.; Snell, K.I.E.; Ensor, J.; Hooft, L.; Altman, D.G.; Hayden, J.; Collins, G.S.; Debray, T.P.A. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019, 364, k4597. [Google Scholar] [CrossRef]
- Sterne, J.A.; Sutton, A.J.; Ioannidis, J.P.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rucker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef]
- Debray, T.P.A.; Moons, K.G.M.; Riley, R.D. Detecting small-study effects and funnel plot asymmetry in meta-analysis of survival data: A comparison of new and existing tests. Res. Synth. Methods 2018, 9, 41–50. [Google Scholar] [CrossRef]
PET Parameters in Included Studies | Definition | |
---|---|---|
SUV: Standardized uptake value | FDG uptake measured as the ratio of radioactivity in a region of interest (ROI) (voxel, cm3, tumor) and the mean radioactivity across the whole body | |
SUVmax | The highest single-voxel SUV in a predefined ROI | |
tSUVmax | SUVmax in the primary tumor | |
nSUVmax | SUVmax in regional lymph node metastases | |
mSUVmax | SUVmax in distant metastases | |
tnSUVmax | SUVmax in the primary tumor and regional lymph node metastases | |
wbSUVmax | SUVmax in all malignant lesions throughout the whole body | |
thoracicSUVmax | SUVmax in intrathoracic malignant lesions (lung, pleura, mediastinum) | |
extrathoracicSUVmax | SUVmax in extrathoracic malignant lesions | |
tn-meanSUVmax | Average of SUVmax from primary tumor and regional lymph node metastases | |
wb-meanSUVmax | Average of SUVmax from each malignant lesion throughout the whole body | |
wb-sumSUVmax | Sum of all SUVmax from each malignant lesion throughout the whole body | |
ΔtSUVmax | Change of tSUVmax (e.g., from baseline to end of therapy) | |
SUVpeak | Average of SUV within a small region of interest (e.g., 1 cm3) centered at the most active area in the tumor | |
tSUVpeak | SUVpeak in the primary tumor | |
wbSUVpeak | SUVpeak in all malignant lesions throughout the whole body | |
ΔtSUVpeak | Change of tSUVpeak (e.g., from baseline to end of therapy) | |
SUVmean | Average of SUV in an MTV; suffix indicates delineation method for MTV | |
tSUVmean2.5 | SUVmean in MTV2.5 in the primary tumor | |
tSUVmean40 | SUVmean in MTV40 in the primary tumor | |
tSUVmean42 | SUVmean in MTV42 in the primary tumor | |
nSUVmean2.5 | SUVmean in MTV2.5 in regional lymph node metastases | |
nSUVmean40 | SUVmean in MTV40 in regional lymph node metastases | |
mSUVmean40 | SUVmean in MTV40 in distant metastases | |
wbSUVmean2.5 | SUVmean from all MTV2.5s throughout the whole body | |
wbSUVmean(software) | SUVmean from all MTVsoftware throughout the whole body | |
thoracicSUVmean(software) | SUVmean from MTVsoftware in intrathoracic malignant lesions (lung, pleura, mediastinum) | |
wb-meanSUVmean2.5 | Average of SUVmean from each MTV2.5 throughout the whole body | |
SULpeak | SUVpeak in a 1 cm3 sphere normalized to lean body mass; recommended by PERCIST | |
Wb-sumSULpeak | Sum of maximum 5 SULpeak’s throughout the whole body | |
ΔtSULpeak | Change of SULpeak (e.g., from baseline to end of therapy in the primary tumor) | |
SUVmax(glu) | SUVmax corrected for blood glucose level | |
tSUVmax(glu) | SUVmax(glu) in the primary tumor | |
SUVmax(liver) | SUVmax corrected for SUV in the liver | |
tSUVmax(liver) | SUVmax(liver) in the primary tumor | |
ΔtSUVmax(liver) | Change of tSUVmax(liver) (e.g., from baseline to end of therapy) | |
Δtn-meanSUVmax(liver) | Change of average of SUVmax(liver)s in primary tumor and regional lymph node metastases (e.g., from baseline to end of therapy) | |
PET-positive | Presence of PET-vivid lesion | |
wbPET-positive | PET-vivid lesions throughout the whole body | |
tPET-positive | PET-vivid primary tumor | |
nPET-positive | PET-vivid regional lymph node metastases | |
mPET-positive | PET-vivid distant metastases | |
MTV: Metabolic tumor volume | Tumor volume defined by FDG–PET; delineation of the tumor volume can be defined with a preset threshold, software based, or it can be determined visually | |
MTV with fixed threshold | MTV delineated with a fixed threshold | |
tMTV2.5 | MTV with SUV > 2.5 in the primary tumor | |
nMTV2.5 | MTV with SUV > 2.5 in regional lymph nodes | |
tnMTV2.5 | MTV with SUV > 2.5 in the primary tumor and regional lymph nodes | |
wbMTV2.5 | MTV with SUV > 2.5 throughout the whole body | |
ΔtnMTV2.5 | Change of tnMTV2.5 (e.g., from baseline to end of therapy) | |
tMTV3.0 | MTV with SUV > 3.0 in the primary tumor | |
wbMTV3.0 | MTV with SUV > 3.0 throughout the whole body | |
thoracicMTV3.0 | MTV with SUV > 3.0 in intrathoracic malignant lesions (lung, pleura, mediastinum) | |
ExtrathoracicMTV3.0 | Volume with SUV > 3.0 in extrathoracic malignant lesions | |
hottest-tumorMTV3.0 | MTV with SUV > 3.0 in the hottest tumor throughout the whole body | |
MTV with relative threshold | MTV delineated with a threshold relative to SUVmax | |
tMTV40 | MTV with SUV > 40% of SUVmax in the primary tumor | |
nMTV40 | MTV with SUV > 40% of SUVmax in regional lymph node metastases | |
mMTV40 | MTV with SUV > 40% of SUVmax in distant metastases | |
wbMTV40 | MTV with SUV > 40% of SUVmax throughout the whole body | |
tMTV42 | MTV with SUV > 42% of SUVmax in the primary tumor | |
tnMTV42 | MTV with SUV > 42% of SUVmax in the primary tumor and regional lymph node metastases | |
wbMTV50 | MTV with SUV > 50% of SUVmax throughout the whole body | |
ΔtnMTV40 | Change of MTV with SUV > 40% of SUVmax in primary tumor and regional lymph node metastases (e.g., from baseline to end of therapy) | |
ΔtnMTV50 | Change of MTV with SUV > 50% of SUVmax in primary tumor and regional lymph node metastases (e.g., from baseline to end of therapy) | |
MTV with software-based delineation | MTV delineated by software; studies included all used an isocontouring method with liver as background | |
wbMTVsoftware | Software-based MTV throughout the whole body | |
thoracicMTVsoftware | Software-based MTV in all intrathoracic malignant lesions (lung, pleura, mediastinum) | |
GTV: gross tumor volume | Tumor volume used for radiotherapy planning consisting of regional lymph nodes defined before chemotherapy and tumor volume defined by PET post-chemotherapy | |
GTV | ||
TLG: Total lesion glycolysis | Parameter combining FDG uptake and tumor volume; calculated by multiplication of MTV and SUVmean within the MTV | |
tTLG2.5 | MTV2.5 × SUVmean2.5 in primary tumor | |
nTLG2.5 | MTV2.5 × SUVmean2.5 in regional lymph nodes | |
tnTLG2.5 | MTV2.5 × SUVmean2.5 in primary tumor and regional lymph nodes | |
wbTLG2.5 | MTV2.5 × SUVmean2.5 throughout the whole body | |
ΔtnTLG2.5 | Change of tnTLG2.5 (e.g., from baseline to end of therapy) | |
tTLG3.0 | TLG3.0 × SUVmean3.0 in primary tumor | |
wbTLG3.0 | TLG3.0 × SUVmean3.0 throughout the whole body | |
hottest-tumorTLG3.0 | TLG3.0 × SUVmean3.0 in the hottest tumor throughout the whole body | |
tTLG40 | MTV40 × SUVmean40 in primary tumor | |
nTLG40 | MTV40 × SUVmean40 in regional lymph node metastases | |
mTLG40 | MTV40 × SUVmean40 in distant metastases | |
wbTLG40 | MTV40 × SUVmean40 throughout the whole body | |
tTLG42 | MTV42 × SUVmean42 in primary tumor | |
tnTLG42 | MTV42 × SUVmean42 in primary tumor and regional lymph node metastases | |
wbTLG50 | MTV50 × SUVmean50 throughout the whole body | |
wbTLGsoftware | MTVsoftware × SUVmean(software) throughout the whole body | |
thoracicTLGsoftware | MTVsoftware × SUVmean(software) in intrathoracic malignant lesions (lung, pleura, mediastinum) |
Study | Patients | Therapy | Endpoints | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|---|---|---|
N (LD/ED) | CCRT/Cht/RT | SUVmax | Other Uptake Values | MTV | Compound Parameters | PET Parameters | Other Covariates | ||
Özdemir 2020 [25] | 153 (153/0) | 94/59/0 | PFS OS | tSUVmax: n.s nSUVmax: n.s. | tSUVmax: OS nSUVmax: n.s. | LDH: n.s. Sex: n.s. Albumin: n.s. Cht: regimen: n.s. Treatment response: PFS + OS RT: PFS + OS | |||
119 (0/119) | 0/119/0 | PFS OS | tSUVmax: n.s nSUVmax: n.s. mSUVmax: n.s. | tSUVmax: n.s nSUVmax: n.s. mSUVmax: n.s. | LDH: OS Sex: n.s. Albumin: n.s. Cht: regimen: n.s. Treatment response: PFS + OS | ||||
Choi 2019 [18] | 50 (50/0) | 38/11/1 | OS | tSUVmax: OS | tMTV3.0: n.s. wbMTV3.0: OS | tTLG3.0: n.s. wbTLG3.0: OS | tSUVmax: OS wbMTV3.0: n.s. wbTLG3.0: n.s. | Age n.s. Sex: n.s. | |
68 (0/68) | 0/65/3 | OS | wbSUVmax: n.s. | hottest-tumorMTV3.0: n.s. wbMTV3.0: OS | hottest-tumorTLG3.0: n.s. wbTLG3.0: OS | wbMTV3.0: OS wbTLG3.0: OS | Age: n.s. LDH: n.s. Sex: n.s. | ||
Kasahara 2019 [19] | 98 (40/58) | NA | OS | tSUVmax: OS LD: tSUVmax: OS ED: tSUVmax: n.s. | tSUVmax: OS LD: tSUVmax: OS | Stage: OS PS: OS PD-L1: OS | |||
Araz 2019 [26] | 38 (15/23) | 17/19/0 Sur: 2 | OS | wbSUVmax: n.s | wbSUVmean(software): n.s. wbSUVpeak: n.s. | wbMTVsoftware: OS | wbTLGsoftware: n.s. | wbSUVmax: n.s. wbSUVmean(software): n.s. wbSUVpeak: n.s. wbMTVsoftware: OS wbTLG: n.s. | Age: n.s. LDH: n.s. Sex: n.s. |
Chang 2019 [27] | 30 (30/0) | 30/0/0 | PFS OS | tSUVmax: n.s. | tSUVmax(glu): PFS + OS | tMTV2.5: OS | tTLG2.5. OS | tSUVmax(glu): PFS tMTV2.5: OS tTLG: n.s. | None |
Fu 2018 [28] | 129 (129/0) | 129/0/0 | PFS OS | wbMTV3.0: PFS + OS | wbMTV3.0: PFS + OS | Age: n.s. Sex: n.s. PS: n.s. Cht regimen: n.s. CTC: PFS + OS | |||
Jin 2018 [16] | 46 (46/0) | 46/0/0 | OS PFS | tSUVmax: n.s. nSUVmax: n.s. | tSUVmean2.5: n.s. nSUVmean2.5: n.s. | tMTV2.5: n.s. nMTV2.5: PFS + OS tnMTV2.5: PFS + OS | tTLG2.5: n.s. nTLG2.5: PFS + OS tnTLG2.5: PFS + OS | nMTV2.5: PFS + OS tnMTV2.5: n.s. nTLG2.5: PFS + OS tnTLG2.5: n.s. | PS: PFS + OS N1 station involvement: n.s. Subcarinal LN metastases: PFS + OS |
Kim H 2018 [29] | 59 (27/32) | 22/37/0 | OS PFS | tSUVmax: n.s. | tSUVpeak: n.s. | tnMTV2.5: PFS | tnTLG2.5: PFS | tnMTV2.5: n.s. tnTLG2.5: n.s. | Stage: PFS LDH: n.s. RECIST: PFS |
Aktan 2017 [20] | 46 (46/0) | 46/0/0 | OS PFS | tSUVmax: OS nSUVmax: OS | tSUVmax: n.s. nSUVmax: OS | Age: OS | |||
Yilmaz Demirci 2017 [30] | 142 (60/82) | 38/104/0 | OS | tSUVmax: n.s. | tSUVmax: n.s. | Stage: n.s. Age: n.s. LDH: OS PS: OS Albumin: OS Calcium: n.s. Thoracic RT: OS PCI: n.s. | |||
Dinc 2016 [31] | 90 (33/57) | 33/57 | OS PFS | tSUVmax: n.s. | none | Stage: PFS OR: PFS + OS | |||
Kwon 2016 [21] | 59 (59/0) | 41/14/5 Cht + sur: 4 | OS PFS | wbSUVmax: PFS + OS | wbMTV2.5: PFS + OS | wbTLG2.5: OS + PFS | wbSUVmax: OS wbMTV2.5: PFS wbTLG2.5: n.s. | Stage: NA 1 Age: NA 1 LDH: NA 1 PS: NA 1 ChT (yes vs. no): NA 1 | |
Nobashi 2016 [32] | 28 (14/14) central SCLC | 14/14 | OS PFS | tSUVmax: n.s. wbSUVmax: n.s. | wbMTV40: PFS + OS | wbTLG40: PFS + OS | tSUVmax: n.s. wbSUVmax: n.s. wbMTV40: n.s. wbTLG40: n.s. | Stage: PFS + OS NSE: n.s. | |
41 (24/17) peripheral SCLC | 13/28 | OS PFS | tSUVmax: n.s. wbSUVmax: n.s. | wbMTV40: PFS + OS | wbTLG40: PFS + OS | tSUVmax: n.s. wbSUVmax: n.s. wbMTV40: PFS + OS wbTLG40: PFS + OS | Stage: OS 2 NSE: n.s. | ||
Zer 2016 [33] | 55 (24/31) | 24/31/0 | OS PFS | none 3 | none 3 | none 3 | tSUVmax: n.s. nSUVmax: n.s. tMTV42: n.s. tnMTV42: PFS tTLG42: n.s. tnTLG42: OS | Stage: n.s. | |
Ong 2016 [34] | 120 (120/0) | 120/0/0 | OS DFS LRF DF | tSUVmax: n.s. | tSUVmean42: n.s. | tMTV42: DF | tTLG42: n.s. | tMTV42: n.s. | Stage: DFS + DF Age: DF PS: n.s. |
Kim SJ 2015 [15] | 82 (31/51) 4 | 31/51 | OS PFS | tSUVmax: n.s. LD: tSUVmax: n.s. ED: tSUVmax: n.s. | none | Stage: OS Age: n.s. LDH: OS Sex: n.s. PS: OS | |||
Park 2014 [35] | 202 (95/107) | 85/117 | OS | thoracicSUVmax: n.s. | thoracicSUVmean(software): n.s. | thoracicMTVsoftware: OS LD:thoracic MTVsoftware: OS ED: thoracic MTVsoftware: n.s. | ThoracicTLGsoftware: OS LD: thoracic TLGsoftware: OS ED: thoracic TLGsoftware: n.s. | thoracicMTVsoftware: OS thoracicTLGsoftware: OS | Stage: OS Age: OS |
Kim MH 2014 [14] | 114 (26/88) 4 | CCRT or Cht: 114 | OS PFS | tSUVmax: n.s. | Wb-meanSUVmax: n.s. | wb-sumSUVmax: OS + PFS LD: wb-sumSUVmax: PFS ED: wb-sumSUVmax: OS + PFS | wb-sumSUVmax: PFS + OS | Stage: n.s. Age: OS LDH: n.s. Sex: PFS Cht (no. of cycles): PFS + OS OR: PFS + OS NSE: n.s. CYFRA21-1: n.s. | |
Lee J 2014 [36] | 41 (41/0) | 41/0/0 | OS PFS | tSUVmax(liver): OS | tSUVmax(liver): OS | LDH: PFS + OS Sex: OS OR: OS | |||
Go 2014 [37] | 145 (61/84) | 44/101 | OS PFS | wbSUVmax: n.s. | Wb-meanSUVmax: n.s. | wb-sumSUVmax 5: PFS + OS | wb-sumSUVmax 5: PFS + OS | Stage: PFS Sex: PFS OR: PFS No. of lesions: PFS | |
Inal 2013 [38] | 54 (24/30) | 24/30 | OS | tSUVmax: n.s. | none | Stage: OS PS: OS DM: n.s. | |||
Gomez 2014 [17] | 50 (50/0) | 50/0/0 | OS | tSUVmax: n.s. nSUVmax: n.s. | tn-meanSUVmax: n.s. | ||||
Oh 2013 [13] | 91 (0/91) 6 | 26/65 | OS PFS | wbSUVmax: n.s. thoracicSUVmax: n.s. extrathoracicSUVmax: n.s. | wbMTV3.0: OS + PFS thoracicMTV3.0: n.s. extrathoracicMTV3.0: PFS + OS | wbMTV3.0: n.s. extrathoracic MTV3.0: PFS | Age: n.s. PS: OS Cht (no. of cycles): PFS + OS RT: n.s. PCI: n.s. Bone mets: n.s. Liver mets: n.s. No. of extrathoracic foci: OS | ||
Jhun 2013 [39] | 246 (NA) 7 | NA 7 | OS | tSUVmax: n.s. | none | Stage: OS Age: OS LDH: OS PS: OS Albumin: n.s. | |||
Oh 2012 [12] | 106 (45/61) 6 | 45/61/0 | PFS OS | wbSUVmax: n.s. | wbMTV3.0: PFS + OS LD: wbMTV3.0: PFS + OS ED: wbMTV3.0: PFS + OS | wbSUVmax: n.s. wbMTV3.0: PFS + OS | Stage: OS + PFS LDH: n.s. PS: n.s. Cht (no. of lines): n.s. | ||
Van der Leest 2012 [22] | 75 (35/40) | 26/28/0 sur: 4 None: 13 NA: 4 | OS PFS | tSUVmax: n.s. LD: tSUVmax: n.s. ED: tSUVmax: OS + PFS | |||||
Zhu 2011 [23] | 98 (41/57) | 57/41 | OS PFS | tSUVmax: PFS + OS | wb-meanSUVmean2.5: PFS + OS | wbMTV2.5: PFS + OS LD: wbMTV2.5: PFS + OS ED: wbMTV2.5: PFS + OS | wbTLG2.5: PFS +OS LD: wbTLG2.5: PFS +OS ED: wbTLG2.5: PFS +OS | tSUVmax: n.s. wb-meanSUVmean2.5: n.s. wbMTV2.5: PFS + OS wbTLG2.5: PFS + OS | Stage: OS + PFS LDH: OS + PFS |
Lee YJ 2009 [40] | 76 (41/35) | 41/35 | OS PFS | tSUVmax: NA 3 wbSUVmax: NA 3 | wb-meanSUVmax 8: OS + PFS | wb-meanSUVmax 8: PFS + OS tSUVmax: n.s. 9 wbSUVmax: n.s. 9 | Stage: OS + PFS LDH: PFS PS: OS | ||
Chong 2007 [24] | 15 (9/6) | NA | OS | wbSUVmax: OS 10 | |||||
Pandit 2003 [41] | 8 (4/4) | NA | OS | wbSUVmax: n.s. | PET-positive: n.s. |
Study | Patients | Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|
N (LD/ED) | Therapy CCRT/Cht/RT | Timing of PET (Interval from End of Treatment) | Endpoints | SUVmax | Other Uptake Values | MTV and TLG | PET Parameters | Other Covariates | |
Quartuccio 2019 [42] | 164 (NA/NA) | 62/89/13 | <3 months | PFS OS | tSUVmax: n.s. nSUVmax: n.s. mSUVmax: n.s. | tSUVmean40: n.s. nSUVmean40: n.s. mSUVmean40: n.s. tPET-positive: n.s. nPET-positive: n.s. mPET-positive: PFS + OS | tMTV40: n.s. nMTV40: n.s. mMTV40: n.s. tTLG40: n.s. nTLG40: n.s. mTLG40: n.s. | NA | NA |
Kim H 2018 [29] | 59 (27/32) | 22/37/0 | 0.5–2.7 months | OS PFS | tSUVmax: OS + PFS | tSUVpeak: OS + PFS | tnMTV2.5: PFS + OS tnTLG2.5: OS + PFS | tSUVpeak: n.s. tnMTV2.5: PFS | Stage: PFS LDH: n.s. RECIST: PFS |
Lee J 2014 [36] | 41 (41/0) | 41/0/0 | 3 weeks | OS PFS | tSUVmax(liver) 1: n.s. | none | Sex: OS LDH: PFS + OS OR: OS | ||
Ziai 2013 [43] | 29 (13/16) | 21/8/0 | 4.3–7.5 months (from baseline PET) | PFS OS | 2 SUVmax: PFS + OS | Wb-sumSULpeak 3: PFS + OS wbPET-positive 4: PFS + OS | 2 SUVmax: n.s. Sum-wbSULpeak 3: OS wbPET-positive 4: PFS + OS | Presence of mets: n.s. | |
Onitilo 2008 [44] | 22 (22/0) | 17/5/0 | <4 months | PFS OS | wbPET-positive (<2.5 and visually corrected): PFS | NA | NA | ||
Blum 2004 [45] | 25 (NA/NA) | NA | NA 5 | TTP | wbPET-positive: longer median TTP (no statistical analysis) | NA | NA | ||
Pandit 2003 [41] | 38 (24/13) NA:1 | 23/14/1 | 4 days–48 months (54 PETs included) | OS | wbSUVmax: OS | wbSUVmean 6: n.s. wbPET-positive: OS | NA | NA |
Study | Patients | Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|---|
N (LD/ED) | Therapy: CCRT/Cht | Timing of Response Evaluation | Endpoints | ΔSUV | ΔMTV and ΔTLG | PET Parameters | Other Covariates | |
Kim H 2018 [29] | 59 (27/32) | 22/37 | Final response: 0.5–2.7 months after therapy | OS PFS | ΔtSUVmax: OS + PFS ΔtSUVpeak: OS + PFS | ΔtnMTV2.5: PFS ΔtnTLG2.5: n.s. | ΔtSUVpeak: OS | Stage: PFS LDH: n.s. RECIST: PFS |
Lee J 2014 [36] | 41 (41/0) | 41/0 | Final response: 3 weeks after end of CCRT | OS PFS | ΔtSUVmax(liver) 1: n.s Δtn-meanSUVmax(liver) 1: OS + PFS | ΔtSUVmax(liver) 1: n.s Δtn-meanSUVmax(liver) 1: PFS 2 | Sex: OS LDH: PFS + OS OR: OS | |
Ziai 2013 [43] | 29 (13/16) | 21/8 | Final response: 4.3–7.5 month from baseline-PET | PFS OS | ΔtSULpeak 3: PFS | None | Presence of mets: PFS | |
V Loon 2011 [46] | 15 (15/0) | 15/0 | Early response: after 1 cycle Cht | OS | ΔtnMTV40: OS ΔtnMTV50: OS | NA | NA |
Study | Patients | Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|
N (LD/ED) | Therapy CCRT/Cht | Timing of PET | Endpoints | SUV | MTV | TLG | PET Parameters | Other Covariates | |
Mirili 2019 [47] | 54 (16/36) | 19/26 No therapy: 9 | Baseline or after therapy (not further specified) | OS PFS | tSUVmax: OS tSUVmean40: n.s. | tMTV40: PFS + OS wbMTV40: PFS + OS | tTLG40 n.s. wbTLG40: PFS + OS | wbTLG40: n.s. | Age: OS Stage: OS Sex: n.s. NLR: OS |
Reymen 2013 [48] | 119 (119/0) | 119/0 | Baseline/during therapy 1 | OS | GTV: OS | GTV: OS | PS: OS Stage: n.s. Age: n.s. Sex: n.s. LDH: n.s. N-status: n.s. SER: n.s. | ||
Arslan 2011 [49] | 25 (10/15) | NA | Baseline (12) or restaging/response evaluation (13) | OS | wbSUVmax: n.s. wbSUVmean2.5: n.s. | wbMTV2.5: n.s. wbMTV50: n.s. | wbTLG2.5: n.s. wbTLG50:OS | wbSUVmax: n.s. wbSUVmean2.5: n.s. wbMTV2.5: n.s. wbMTV50: n.s. wbTLG2.5: n.s. wbTLG50: OS | Baseline vs. restaging: n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christensen, T.N.; Andersen, P.K.; Langer, S.W.; Fischer, B.M.B. Prognostic Value of 18F–FDG–PET Parameters in Patients with Small Cell Lung Cancer: A Meta-Analysis and Review of Current Literature. Diagnostics 2021, 11, 174. https://doi.org/10.3390/diagnostics11020174
Christensen TN, Andersen PK, Langer SW, Fischer BMB. Prognostic Value of 18F–FDG–PET Parameters in Patients with Small Cell Lung Cancer: A Meta-Analysis and Review of Current Literature. Diagnostics. 2021; 11(2):174. https://doi.org/10.3390/diagnostics11020174
Chicago/Turabian StyleChristensen, Tine Nøhr, Per Kragh Andersen, Seppo W. Langer, and Barbara Malene Bjerregaard Fischer. 2021. "Prognostic Value of 18F–FDG–PET Parameters in Patients with Small Cell Lung Cancer: A Meta-Analysis and Review of Current Literature" Diagnostics 11, no. 2: 174. https://doi.org/10.3390/diagnostics11020174
APA StyleChristensen, T. N., Andersen, P. K., Langer, S. W., & Fischer, B. M. B. (2021). Prognostic Value of 18F–FDG–PET Parameters in Patients with Small Cell Lung Cancer: A Meta-Analysis and Review of Current Literature. Diagnostics, 11(2), 174. https://doi.org/10.3390/diagnostics11020174