Diagnostic and Therapeutic Particularities of Sepsis in Hemodialysis Patients
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Diagnostic Particularities in Hemodialysis Patients
3.2. Vascular Access and Microbiological Profiles
3.3. Empirical Therapy and Antimicrobial Resistance
3.4. Clinical Outcomes and Mortality Predictors in Hemodialysis-Associated Sepsis
4. Discussion
5. Conclusions
6. Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AML | Antimicrobial Lock |
AV | Arteriovenous |
AVF | Arteriovenous Fistula |
BSI | Bloodstream Infection |
CABSI | Catheter-Associated Bloodstream Infection |
CDC | Centers for Disease Control and Prevention |
CRBSI | Catheter-Related Bloodstream Infection |
CRP | C-Reactive Protein |
CRRT | Continuous Renal Replacement Therapy |
CVC | Central Venous Catheter |
ESBL | Extended-Spectrum Beta-Lactamase |
ESRD | End-Stage Renal Disease |
HAI | Hemodialysis-Associated Infection |
HCAI | Healthcare-Associated Infection |
IE | Infective Endocarditis |
IHD | Intermittent Hemodialysis |
MDR | Multidrug-Resistant |
MDRO | Multidrug-Resistant Organism |
MICS | Malnutrition–Inflammation Complex Syndrome |
MRSA | Methicillin-Resistant Staphylococcus aureus |
MSSA | Methicillin-Sensitive Staphylococcus aureus |
OR | Odds Ratio |
PCT | Procalcitonin |
PD | Peritoneal Dialysis |
PIRRT | Prolonged Intermittent Renal Replacement Therapy |
RRT | Renal Replacement Therapy |
SAB | Staphylococcus aureus Bacteremia |
SIRS | Systemic Inflammatory Response Syndrome |
SMR | Standardized Mortality Ratio |
VRE | Vancomycin-Resistant Enterococci |
References
- World Health Organization. Global Report on the Epidemiology and Burden of Sepsis: Current Evidence, Identifying Gaps and Future Directions; WHO: Geneva, Switzerland, 2020; ISBN 978-92-4-001078-9. [Google Scholar]
- Abou Dagher, G.; Harmouche, E.; Jabbour, E.; Bachir, R.; Zebian, D.; Bou Chebl, R. Sepsis in hemodialysis patients. BMC Emerg. Med. 2015, 15, 30. [Google Scholar] [CrossRef]
- Locham, S.; Naazie, I.; Canner, J.; Siracuse, J.; Al-Nouri, O.; Malas, M. Incidence and risk factors of sepsis in hemodialysis patients in the United States. J. Vasc. Surg. 2021, 73, 1016–1021. [Google Scholar] [CrossRef]
- Bou Chebl, R.; Tamim, H.; Abou Dagher, G.; Sadat, M.; Ghamdi, G.; Itani, A.; Saeedi, A.; Arabi, Y.M. Sepsis in end-stage renal disease patients: Are they at an increased risk of mortality? Ann. Med. 2021, 53, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Putra, I.P.E.D.; Severe, A.V. Shunt-Related Sepsis in a Chronic Dialysis Patient with Immobility and Protein Energy Wasting: A Case Report and Literature Review. Siber J. Adv. Multidiscip. 2025, 3, 21–26. [Google Scholar] [CrossRef]
- Patel, S.; Puri, N.; Dellinger, R.P. Sepsis management for the nephrologist. Clin. J. Am. Soc. Nephrol. 2022, 17, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.; Golestaneh, L.; Allon, M.; Abreo, K.; Mokrzycki, M.H. Prevention of bloodstream infections in patients undergoing hemodialysis. Clin. J. Am. Soc. Nephrol. 2019, 15, 132–151. [Google Scholar] [CrossRef]
- Kumbar, L.; Yee, J. Current concepts in hemodialysis vascular access infections. Adv. Chronic Kidney Dis. 2019, 26, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Lok, C.E.; Mokrzycki, M.H. Prevention and management of catheter-related infection in hemodialysis patients. Kidney Int. 2011, 79, 587–598. [Google Scholar] [CrossRef]
- Zilberman-Itskovich, S.; Elukbi, Y.; Weinberg Sibony, R.; Shapiro, M.; Zelnik Yovel, D.; Strulovici, A.; Khatib, A.; Marchaim, D. The epidemiology of multidrug-resistant sepsis among chronic hemodialysis patients. Antibiotics 2022, 11, 1255. [Google Scholar] [CrossRef]
- Apata, I.W.; Kabbani, S.; Neu, A.M.; Kear, T.M.; D’Agata, E.M.C.; Levenson, D.J.; Kliger, A.S.; Hicks, L.A.; Patel, P.R. Opportunities to improve antibiotic prescribing in outpatient hemodialysis facilities: A report from the American Society of Nephrology and Centers for Disease Control and Prevention Antibiotic Stewardship White Paper Writing Group. Am. J. Kidney Dis. 2021, 77, 757–768. [Google Scholar] [CrossRef]
- Galindo Marín, I.; Mon, C.; Ortiz Librero, M.; El Fellah, S.; Sánchez Sánchez, M.; Camacho Juarez, R.E.; Lentisco Ramírez, C.; Cedeño Mora, S.A.; Herrero Berrón, J.C.; Gálvez, E.; et al. Hemodialysis catheter-related bloodstream infections during 10 years and factors associated. Int. J. Urol. Nephrol. 2024, 12, 1–5. [Google Scholar] [CrossRef]
- Mori, K.; Yamamoto, Y.; Hanafusa, N.; Yamamoto, S.; Fukuma, S.; Onishi, Y.; Emoto, M.; Inaba, M. Association of Nutritional Risk Index with Infection-Related Hospitalization and Death After Hospitalization in Patients Undergoing Maintenance Hemodialysis. J. Ren. Nutr. 2025, 35, 187–195. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y.; Chen, M.; Zhu, H.; He, G.; Yu, W.; Qiao, D.; Shen, Y.; Song, L.; Deng, Q. The Complex Diagnosis of Post-Dialysis Fever: A Case Report and Literature Review of Infective Endocarditis in a Dialysis Patient. BMC Nephrol. 2025, 26, 331. [Google Scholar] [CrossRef]
- Tao, M.; Zheng, D.; Liang, X.; He, Q.; Zhang, W. Diagnostic Value of Procalcitonin for Bacterial Infections in Patients Undergoing Hemodialysis: A Systematic Review and Meta-Analysis. Ren. Fail. 2022, 44, 81–93. [Google Scholar] [CrossRef]
- Krishnan, K.; Kishan, A.; Sreedhara, C.G.; Mythri, S. WCN25-3641 Spectrum of Hemodialysis Catheter-Related Blood Stream Infections: Insights from a Prospective Observational Study at a Tertiary Care Center in South India. Kidney Int. Rep. 2025, 10 (Suppl. S2), S720–S721. [Google Scholar] [CrossRef]
- Jagani, P.P. Curious Case of Shewanella Sepsis Originating from A Stercoral Ulcer. J. Clin. Med. Img. 2024, 8, 1–6. [Google Scholar]
- Pasilan, R.M.; Tomacruz-Amante, I.D.; Dimacali, C.T. The epidemiology and microbiology of central venous catheter related bloodstream infections among hemodialysis patients in the Philippines: A retrospective cohort study. BMC Nephrol. 2024, 25, 331. [Google Scholar] [CrossRef]
- Lata, C.; Molnar, A.O.; Hladunewich, M.; Dirk, J.; Hiremath, S. Catheter-related bloodstream infection in end-stage kidney disease: A Canadian narrative review. Can. J. Kidney Health Dis. 2016, 3, 24. [Google Scholar] [CrossRef]
- Sedhain, A.; Sapkota, A.; Mahotra, N.B. Hemodialysis catheter-related infection in a teaching hospital of Central Nepal. JIOM Nepal 2019, 41, 11–16. [Google Scholar]
- Badia-Cebada, L.; Peñafiel, J.; Saliba, P.; Andrés, M.; Càmara, J.; Domenech, D.; Jiménez-Martínez, E.; Marrón, A.; Moreno, E.; Pomar, V.; et al. Trends in the epidemiology of catheter-related bloodstream infections; towards a paradigm shift, Spain, 2007 to 2019. Euro Surveill. 2022, 27, 2100610. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.H.; Cortés-Penfield, N.W.; Mandayam, S.; Niu, J.; Atmar, R.L.; Wu, E.; Chen, D.; Zamani, R.; Shah, M.K. Dialysis catheter–related bloodstream infections in patients receiving hemodialysis on an emergency-only basis: A retrospective cohort analysis. Clin. Infect. Dis. 2019, 68, 1011–1016. [Google Scholar] [CrossRef]
- Gomez-Ramirez, D.; Olmos, C.; Fernandez-Perez, C.; Del Prado, N.; Rosillo, N.; Bernal, J.L.; Zulet, P.; Vilacosta, I.; Elola, F.J. Outcomes of infective endocarditis in patients with end-stage renal disease and dialysis in Spain: A population-based study. Eur. Heart J. 2024, 45 (Suppl. S1), ehae666.1955. [Google Scholar] [CrossRef]
- Lokkur, P.P.; Rana, A.S.; Mittal, A.; Manhas, N.; Sethi, S.K.; Bansal, S.B. Clinical profile and outcome of patients with infective endocarditis due to dialysis access. Kidney Int. Rep. 2025, 10 (Suppl. S2), S454. [Google Scholar] [CrossRef]
- Abbasi, S.H.; Aftab, R.A.; Mei Lai, P.S.; Lim, S.K.; Nur Zainol Abidin, R.N.Z. Prevalence, microbial etiology and risk factors associated with healthcare associated infections among end stage renal disease patients on renal replacement therapy. J. Pharm. Pract. 2023, 36, 1142–1155. [Google Scholar] [CrossRef]
- Song, J.; Choi, H.; Jeong, E.Y.; Kang, H.J.; Kim, T.; Lee, S.; Jang, H.; Kim, D.K. Multidrug-resistant pathogens in patients with hemodialysis-associated pneumonia. BMC Infect. Dis. 2017, 17, 665. [Google Scholar] [CrossRef]
- Zacharioudakis, I.M.; Zervou, F.N.; Ziakas, P.D.; Rice, L.B.; Mylonakis, E. Vancomycin-resistant enterococci colonization among dialysis patients: A meta-analysis of prevalence, risk factors, and significance. Am. J. Kidney Dis. 2015, 65, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Alfano, G.; Morisi, N.; Donati, G. Risk of infections related to endovascular catheters and cardiac implantable devices in hemodialysis patients. J. Vasc. Access 2024, 26, 400–416. [Google Scholar] [CrossRef]
- Rha, B.; See, I.; Dunham, L.; Kutty, P.K.; Moccia, L.; Apata, I.W.; Ahern, J.; Jung, S.; Li, R.; Nadle, J.; et al. Vital Signs: Health Disparities in Hemodialysis-Associated Staphylococcus aureus Bloodstream Infections—United States, 2017–2020. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Fram, D.; Okuno, M.F.P.; Taminato, M.; Ponzio, V.; Manfredi, S.R.; Grothe, C.; Belasco, A.; Sesso, R.; Barbosa, D. Risk factors for bloodstream infection in patients at a Brazilian hemodialysis center: A case–control study. BMC Infect. Dis. 2015, 15, 158. [Google Scholar] [CrossRef]
- Ren, W.; Jiang, J.; Wang, Y.; Jin, Y.; Fang, Y.; Zhao, C. Analysis of pathogenic distribution and drug resistance of catheter-related bloodstream infection in hemodialysis patients with vein tunneled cuffed catheter. Eur. J. Inflamm. 2021, 19, 1–7. [Google Scholar] [CrossRef]
- Wolley, M.J.; Taylor, S.L.; Hossain, F.; Abbas, S.A.; Marshall, M.R. Association between antimicrobial locks for hemodialysis central venous catheters and antibiotic resistance. Hemodial. Int. 2012, 16, S2–S9. [Google Scholar] [CrossRef]
- Lawrence, C.K.; Sathianathan, C.; Verrelli, M.; Lagacé-Wiens, P.; Ariano, R.; Badejo, G.; Boyce, M.L.; Davis, J.C.; Zelenitsky, S.A. Clinical Blood Isolates from Hemodialysis Patients: Distribution of Organisms and Antimicrobial Resistance, 2007–2014. Can. J. Hosp. Pharm. 2020, 73, 266–271. [Google Scholar] [CrossRef]
- Fysaraki, M.; Samonis, G.; Valachis, A.; Daphnis, E.; Karageorgopoulos, D.E.; Falagas, M.E.; Stylianou, K.; Kofteridis, D.P. Incidence, Clinical, Microbiological Features and Outcome of Bloodstream Infections in Patients Undergoing Hemodialysis. Int. J. Med. Sci. 2013, 10, 1632–1638. [Google Scholar] [CrossRef]
- Patel, P.R.; Kallen, A.J.; Arduino, M.J. Epidemiology, Surveillance, and Prevention of Bloodstream Infections in Hemodialysis Patients. Am. J. Kidney Dis. 2010, 56, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Alhazmi, S.M.; Noor, S.O.; Alshamrani, M.M.; Farahat, F.M. Bloodstream infection at hemodialysis facilities in Jeddah: A medical record review. Ann. Saudi Med. 2019, 39, 258–264. [Google Scholar] [CrossRef]
- AbuTaha, S.A.; Al-Kharraz, T.; Belkebir, S.; Abu Taha, A.; Zyoud, S.H. Patterns of microbial resistance in bloodstream infections of hemodialysis patients: A cross-sectional study from Palestine. Sci. Rep. 2022, 12, 18003. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, M.R.; Souli, M.; Ruffin, F.; Park, L.P.; Dagher, M.; Eichenberger, E.M.; Maskarinec, S.A.; Thaden, J.T.; Mohnasky, M.; Wyatt, C.M.; et al. Staphylococcus aureus Bacteremia Among Patients Receiving Maintenance Hemodialysis: Trends in Clinical Characteristics and Outcomes. Am. J. Kidney Dis. 2022, 79, 393–403.e1. [Google Scholar] [CrossRef] [PubMed]
- Jamal, A.; Babazono, A.; Li, Y.; Yoshida, S.; Fujita, T. Multilevel Analysis of Hemodialysis-Associated Infection Among End-Stage Renal Disease Patients: Results of a Retrospective Cohort Study Utilizing the Insurance Claim Data of Fukuoka Prefecture, Japan. Medicine 2020, 99, e19871. [Google Scholar] [CrossRef]
- Mostaghim, A.S.; Lo, H.Y.A.; Khardori, N. A Retrospective Epidemiologic Study to Define Risk Factors, Microbiology, and Clinical Outcomes of Infective Endocarditis in a Large Tertiary-Care Teaching Hospital. SAGE Open Med. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Lowe, K.M.; Heffner, A.C.; Karvetski, C.H. Clinical Factors and Outcomes of Dialysis-Dependent End-Stage Renal Disease Patients with Emergency Department Septic Shock. J. Emerg. Med. 2018, 54, 16–24. [Google Scholar] [CrossRef]
- Lafrance, J.-P.; Rahme, E.; Iqbal, S.; Elftouh, N.; Laurin, L.-P.; Vallée, M. Trends in infection-related hospital admissions and impact of length of time on dialysis among patients on long-term dialysis: A retrospective cohort study. CMAJ Open 2014, 2, E109–E114. [Google Scholar] [CrossRef]
- Powe, N.R.; Jaar, B.; Furth, S.L.; Hermann, J.; Briggs, W. Septicemia in dialysis patients: Incidence, risk factors, and prognosis. Kidney Int. 1999, 55, 1081–1090. [Google Scholar] [CrossRef]
- Jaar, B.G.; Hermann, J.A.; Furth, S.L.; Briggs, W.; Powe, N.R. Septicemia in diabetic hemodialysis patients: Comparison of incidence, risk factors, and mortality with nondiabetic hemodialysis patients. Am. J. Kidney Dis. 2000, 35, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Berman, S.J.; Johnson, E.W.; Nakatsu, C.; Alkan, M.; Chen, R.; LeDuc, J. Burden of infection in patients with end-stage renal disease requiring long-term dialysis. Clin. Infect. Dis. 2004, 39, 1747–1753. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.H.; Au, E.H.; Davies, C.E.; Jaure, A.; Howell, M.; Lim, W.H.; Craig, J.C.; Teixeira-Pinto, A.; Wong, G. Long-term trends in infection-related mortality in adults treated with maintenance dialysis. Am. J. Kidney Dis. 2023, 82, 597–607. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Jaber, B.L. Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney Int. 2000, 58, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Clark, E.; Kumar, A.; Langote, A.; Lapinsky, S.; Dodek, P.; Kramer, A.; Wood, G.; Bagshaw, S.M.; Wood, K.; Gurka, D.; et al. Septic shock in chronic dialysis patients: Clinical characteristics, antimicrobial therapy and mortality. Intensive Care Med. 2016, 42, 762–771. [Google Scholar] [CrossRef]
- Hoff, B.M.; Maker, J.H.; Dager, W.E.; Heintz, B.H. Antibiotic dosing for critically ill adult patients receiving intermittent hemodialysis, prolonged intermittent renal replacement therapy, and continuous renal replacement therapy: An update. Ann. Pharmacother. 2020, 54, 43–55. [Google Scholar] [CrossRef]
- AlQahtani, M.; El-Saed, A.; Alsheddi, F.; Alamri, A.H.; Shibl, A.M.; Alanazi, K.H. Infection control surveillance of dialysis events at outpatient hemodialysis centers in Saudi Arabia: A 3-year national data. Infect. Prev. Pract. 2025, 7, 100447. [Google Scholar] [CrossRef]
- Habas, E.; Rayani, A.; Khammaj, A. Long-term complications of hemodialysis. Sebha Med. J. 2012, 11, 12–18. [Google Scholar]
Clinical Feature/Marker | Behavior in Hemodialysis Patients | Diagnostic Limitation | Clinical Interpretation |
---|---|---|---|
Fever | Often absent or attenuated | Reduced sensitivity as early marker | Use in combination with other markers and clinical signs |
Leukocytosis | Blunted due to baseline immune dysregulation | Difficult to distinguish from chronic baseline elevations | Interpret in context of patient’s baseline values |
Hypotension | May appear late or in severe stages | Non-specific in ESRD population | Requires high suspicion in absence of classical signs |
Altered Mental Status | Frequently observed as an early presentation | Nonspecific; may delay recognition of sepsis | Warrants early diagnostic workup, especially if vascular access dysfunction is also present |
C-Reactive Protein (CRP) | Chronically elevated, nonspecific | Low specificity due to uremia and systemic inflammation | Trending values may help monitor response to therapy |
Procalcitonin (PCT) | Elevated even without infection; better sensitivity than CRP | Improved performance vs. CRP but still lacks specificity in stable patients | Supports infection suspicion when rising acutely in symptomatic patients |
Country/Region | Study Design | Sample Size | Prevalence/Incidence | Predominant Pathogens | Key Findings |
---|---|---|---|---|---|
Lebanon [2] | Single-center retrospective | 90 | 26.7% catheter infections; 39/90 bacteremic | E. coli 24.4%, CoNS 22.2%, Klebsiella 7.8%, Pseudomonas 7.8%, Enterococcus 6.7%, S. aureus 5.6% | Catheter infections leading cause of bacteremia; in-hospital mortality 26.7% |
Saudi Arabia [4] | Retrospective ICU cohort | 8803 (730 ESRD) | 8.3% ESRD among sepsis admissions; hospital mortality 49% vs. 32% | Not reported | Higher mortality in ESRD sepsis; OR 1.44; predictors = ventilation, liver disease, vasopressors |
Philippines [18] | Retrospective cohort | 707 (197 CRBSI) | CRBSI 6.72/1000 catheter-days; relapse 5.08%; reinfection 15.7%; mortality 6.1% | Gram-negatives 52% (Burkholderia 13%, Enterobacter 13%, Acinetobacter 11%); CoNS 34.5%, S. aureus 13% | 44.5% MDROs; risk factors = autoimmune disease, frequent CVC use; right-sided access protective |
Canada [19] | Narrative review (cohorts and surveillance) | Multiple (e.g., SPIN-HD, n = 527, 94) | CRBSI 1.2–2.5/1000 pt-days; SPIN-HD 3.7/1000 procedures | S. aureus 32–55%, CoNS 14–40%, Enterococcus 5–7%, Pseudomonas 2–3%, Klebsiella 1–4%, Candida 1–3% | High catheter use (49%); MRSA major concern; prevention strategies emphasized |
Nepal [20] | Prospective cohort | 594 insertions (41 CRI) | CRI 6.94/1000 catheter-days; 61% CRBSI, 39% CRLI | CoNS 26.8%, S. aureus 24.4%, Klebsiella 21.9%, Proteus 9.7%, E. coli 7.3%, Pseudomonas 7.3% | Risk factors: prolonged catheter >30 days, recent CVC change, IV med use |
Spain [21] | Prospective multicenter surveillance | 9290 CRBSI episodes | Decline from 0.29 to 0.13/1000 pt-days; 62.7% CVC | CoNS 39.5%, S. aureus 24.6%, Enterobacteriaceae 18.4%, Candida 5.9%, Pseudomonas 5.2% | Shift from CoNS to S. aureus dominance; PVC/PICVC infections rising |
USA (Houston) [22] | Retrospective cohort | 329 emergency-only HD | CRBSI 0.84/1000 catheter-days; 17% recurrent | MSSA 24.8%, MRSA 16.8%, CoNS 13.9%, Enterococcus 5%, Enterobacter 16.8%, Klebsiella 4% | High recurrence; 4% mortality; prolonged hospital stay |
India [24] | Retrospective cohort | 15 HD with IE | 86% tunneled catheters; 66% prior CRBSI | S. aureus 46%, 3 fungal IE | Complications: shock, stroke, embolism; mortality 53% |
Malaysia [25] | Multicenter retrospective | 400 ESRD on RRT | HCAI prevalence 43.5%; CRBSI 36.8%; peritonitis 25.8%; pneumonia 21.2% | 53.4% Gram-positive, 42.4% Gram-negative; MSSA and MRSA linked with CRBSI | Risk factors: multiple accesses, hyperglycemia, hyponatremia, high CRP |
South Korea [26] | Multicenter retrospective cohort | 105 HD pneumonia cases | 22.8% MDR pneumonia; mortality 7.6% overall, 25% MDR vs. 2.4% non-MDR | S. aureus 16.1% (MRSA 9.5%), Klebsiella 10.4%, S. pneumoniae 9.5%, Pseudomonas 6.6%, Acinetobacter 5.7% | Predictors: recent hospitalization, PSI >147; risk stratification model proposed |
Multinational [27] | Systematic review and meta-analysis | 4842 patients, 23 studies | Pooled VRE colonization 6.2%; North America 5.2% | VRE | Risk factors: antibiotics, vancomycin, hospitalization; colonization ↑ risk of infection (OR 21.62) |
USA [29] | National surveillance (NHSN + EIP) | 4840 facilities; 14,822 BSIs | S. aureus BSI 4248/100,000 person-years; 34% of BSIs; 38% MRSA | S. aureus (MSSA + MRSA) | CVC strongest risk factor (6× vs. AVF); disparities by race/SES |
Brazil [30] | Retrospective case–control | 162 (81 BSI cases, 81 controls) | BSIs 100% (by design); Gram+ 72.8%, Gram− 25.9%, fungi 1.2% | S. aureus 32% (39% MRSA), S. epidermidis 13.6% (100% MR), Enterococcus 3.7% (67% VRE) | Risk factors: CVC use OR 11.2, hospitalization OR 6.6, antibiotics OR 2.5; mortality 18.5% |
China [31] | Retrospective observational | 75 TCC with CRBSI (33 positive cultures) | Blood culture positivity 44%; Gram+ 66.7%, Gram− 33.3% | S. aureus 45.5% (20% MRSA), S. epidermidis 9.1%, Enterococcus 6.1%, Klebsiella 6.1%, Enterobacter 6.1% | High resistance: GP 100% penicillin-R; GN > 50% resistant to ceftriaxone; all sensitive to carbapenems and fluoroquinolones |
Pathogen | Associated Access Type | Reported Prevalence (%) | Antimicrobial Resistance Traits |
---|---|---|---|
Staphylococcus aureus (MSSA/MRSA) | Central venous catheters (CVC), especially tunneled | 20–45% overall; up to 23% MRSA [18,19] | Methicillin resistance (MRSA), biofilm formation [19,21] |
Coagulase-negative staphylococci | CVCs and prosthetic grafts | 15–30% [18,19,21] | Gentamicin resistance with AML use, biofilms [32] |
Klebsiella pneumoniae (ESBL-producing) | CVCs; prolonged catheter use | 9–22% [18,20,21] | ESBL enzymes, reduced fluoroquinolone efficacy [18,20,30] |
Escherichia coli | Non-tunneled catheters, emergency access | 8–15% [18,20] | Potential for ESBL or carbapenem resistance [20,31] |
Pseudomonas aeruginosa | Multiple catheter manipulations; hospital exposure | 7–14% [18,21,26] | Multidrug resistance, efflux pumps, β-lactamases [26,30] |
Vancomycin-resistant Enterococci (VRE) | Recent hospitalization; prior vancomycin use | 6–10% colonization; high risk of infection [27] | Intrinsic vancomycin resistance [27] |
Risk Category | Empirical Antibiotic Regimen | Coverage Goals | Notes / References |
---|---|---|---|
Low Risk (Stable patient, AVF access, no recent hospitalization) | Cefazolin ± aminoglycoside or fluoroquinolone | Gram-positive coverage; Gram-negative if signs of systemic infection | Appropriate in low MDRO settings [33] |
Moderate Risk (Recent outpatient infection, prosthetic access) | Vancomycin + third-generation cephalosporin (e.g., ceftriaxone) | MRSA and Gram-negative organisms; broader spectrum needed | Consider hospital antibiogram data [33,34] |
High Risk (CVC, recent hospitalization or prior MDRO) | Vancomycin + β-lactam/β-lactamase inhibitor (e.g., piperacillin-tazobactam) | Broad Gram-positive + Gram-negative including ESBLs and MRSA | Delay in appropriate therapy linked to mortality [34] |
Severe Risk (Septic shock, MDR colonization or ICU admission) | Vancomycin + carbapenem (e.g., meropenem) ± aminoglycoside | Coverage for MRSA, ESBL, Pseudomonas, and potential carbapenem-resistant organisms | Requires urgent escalation; consider stewardship input [32,33,34,35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanasescu, M.-D.; Rosu, A.-M.; Minca, A.; Rosu, A.-L.; Grigorie, M.-M.; Timofte, D.; Ionescu, D. Diagnostic and Therapeutic Particularities of Sepsis in Hemodialysis Patients. Life 2025, 15, 1488. https://doi.org/10.3390/life15091488
Tanasescu M-D, Rosu A-M, Minca A, Rosu A-L, Grigorie M-M, Timofte D, Ionescu D. Diagnostic and Therapeutic Particularities of Sepsis in Hemodialysis Patients. Life. 2025; 15(9):1488. https://doi.org/10.3390/life15091488
Chicago/Turabian StyleTanasescu, Maria-Daniela, Andrei-Mihnea Rosu, Alexandru Minca, Andreea-Liana Rosu, Maria-Mihaela Grigorie, Delia Timofte, and Dorin Ionescu. 2025. "Diagnostic and Therapeutic Particularities of Sepsis in Hemodialysis Patients" Life 15, no. 9: 1488. https://doi.org/10.3390/life15091488
APA StyleTanasescu, M.-D., Rosu, A.-M., Minca, A., Rosu, A.-L., Grigorie, M.-M., Timofte, D., & Ionescu, D. (2025). Diagnostic and Therapeutic Particularities of Sepsis in Hemodialysis Patients. Life, 15(9), 1488. https://doi.org/10.3390/life15091488