Exploring Ochradenus baccatus: A Novel Source of Bioactive Compounds and Phytochemical Insights for Uncharted Therapeutic Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material Collection and Authentication
2.2. Extract Preparation
2.3. Phytochemical Analysis
2.3.1. Quantitative Profiling
- Total Phenolic Content (TPC): Folin–Ciocalteu method. Absorbance at 765 nm. Results as mg gallic acid equivalents/g extract (mg GAE/g) [23].
- Total Flavonoid Content (TFC): Aluminum chloride method. Absorbance at 510 nm. Results as mg quercetin equivalents/g extract (mg QE/g) [24].
- HPLC-DAD: Shimadzu LC-20AD; C18 column (4.6 × 250 mm, 5 μm). Gradient: 0.1% formic acid (A) and acetonitrile (B) (0–35 min, 10–95% B). Peaks quantified against standards (rutin, quercetin, kaempferol, lupeol) (Sigma-Aldrich) [25].
- GC-MS: Agilent 7890B/5977A MSD; HP-5MS column (30 m × 0.25 mm). Derivatization: BSTFA + 1% TMCS (70 °C, 1 h). Compounds identified via NIST 2020 library (match factor > 85%) [26].
2.3.2. Antioxidant Assays
2.4. In Vitro Biological Assays
2.4.1. Anti-Inflammatory Activity
- COX-1/COX-2 inhibition assessed via ELISA (Cayman Chemical Kit #701050, Ann Arbor, MI, USA) [30].
- Extract concentration: 100 µg/mL. Selectivity Index = (COX-2 %Inh)/(COX-1 %Inh).
2.4.2. Anti-Alzheimer Activity
2.5. In Vivo Studies
2.5.1. Animal Ethics
2.5.2. Alzheimer’s Model Induction and Treatment
- Scopolamine Model: Mice received scopolamine hydrobromide (1 mg/kg/i.p.) daily for 14 days [33].
- Treatment Groups: Group 1: Control (saline), Group 2: Scopolamine (1 mg/kg), Group 3: Scopolamine + O. baccatus leaf extract (200 mg/kg/p.o.)
2.5.3. Behavioral Tests
2.5.4. Histopathology
2.6. Statistical Analysis
3. Results
3.1. Phytochemical Quantification
3.2. Qualitative Analysis of Plant Extract (Leave and Fruits Mixed)
3.2.1. Qualitative Analysis of Plant LFME (Leave and Fruits Mixed Extraction) by GC-MS
3.2.2. Qualitative Analysis of LFME by GC-MS
3.2.3. Qualitative Analysis of LFME by HPLC-DAD
3.3. Biological Activities of LFME
3.3.1. Anti-Inflammatory Activity (COX Inhibition)
3.3.2. Antioxidant Capacity
3.3.3. Anti-Alzheimer Effects
3.3.4. Behavioral Test Results for Cognitive Function and Histopathological Analysis
Morris Water Maze (Spatial Memory Assessment)
Y-Maze Test (Working Memory Assessment)
- Panel A: Progressive reduction in MWM escape latency over 5 days shows extract-treated mice (■) nearing control performance (●) versus impaired scopolamine group (▲), quantitatively confirmed by Table 1 (final escape latency: 22.5 ± 2.1 s vs. scopolamine 42.7 ± 3.2 s; p < 0.05).
- Panel B: Enhanced spontaneous alternation (%) in Y-Maze reflects restored working memory, aligning with Table 2 (65.7 ± 3.9% vs. scopolamine 45.3 ± 3.8%; p < 0.001).
- Panel C: Increased target quadrant time during MWM probe trial indicates preserved spatial memory, correlating with Table 1 data (28.6 ± 2.0 s vs. scopolamine 15.3 ± 1.9 s; p < 0.05).
- Panel D: Unchanged total arm entries across groups (Table 2: 25.3–26.1 entries; p < 0.05) exclude motor confounds.
Histopathological Analysis and Neuronal Density
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
O. baccatus | Ochradenus baccatus |
HPLC | High-performance liquid chromatography |
GC-MS | Gas chromatography–mass spectrometry |
NMR | Nuclear magnetic resonance |
AD | Alzheimer’s disease |
TPC | Total Phenolic Content |
TFC | Total Flavonoid Content |
AChE | Acetylcholinesterase |
GAE | Gallic acid equivalents |
QE | Quercetin equivalents |
LFME | Leave and fruits mixed extraction |
DW | Dry weight |
COX | Cyclooxygenase |
DG | Dentate Gyrus |
BBB | Blood–brain barrier |
MWM | Morris Water Maze |
References
- Al-Bakre, D.A. Vegetation Structure and Environmental Correlates of Climbing Behavior for Desert Shrub Ochradenus baccatus. Plants 2025, 14, 1696. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.; Pérez-García, F. Seed dormancy of Ochradenus baccatus (Resedaceae), a shrubby species from Arabian desert regions. Rev. De. Biol. Trop. 2016, 64, 965–974. [Google Scholar] [CrossRef] [PubMed]
- El-Ghareeb, R.; Shabana, M.A. Vegetation—Environmental relationships in the bed of Wadi El-Sheikh of Southern Sinai. Vegetatio 1990, 90, 145–157. [Google Scholar] [CrossRef]
- Hegazy, A.K.; Lovett-Doust, J.; Adawy, H.A.E. Size- and season-related sex expression and reproductive performance in gynodioecious Ochradenus baccatus Delile (Resedaceae), at Wadi Degla, Egypt. Flora 2011, 206, 1002–1011. [Google Scholar] [CrossRef]
- Nawash, O.; Al-Horani, A.S. The most important medicinal plants in Wadi Araba desert in South West Jordan: A review article. Adv. Environ. Biol. 2011, 5, 418–426. [Google Scholar]
- Salama, F.M.; Ahmed, M.K.; El-Tayeh, N.A.; Hammad, S.A. Ecophysiological studies on Ochradenus baccatus Delile in Wadi Qena, eastern desert, Egypt. Assiut Univ. J. Bot. 2012, 41, 203–223. [Google Scholar]
- Mohammed, H.A.; Ragab, E.A.; Khan, R.A. Taily weed (Ochradenus baccatus Delile) as a middle Eastern Herb: Chemical profile, biological activities, and traditional uses. In Ancient and Traditional Foods, Plants, Herbs and Spices Used in the Middle East; CRC Press: Boca Raton, FL, USA, 2023; pp. 293–306. [Google Scholar]
- Khojali, W.M.A.; Hussein, W.; Bin Break, M.K.; Alafnan, A.; Huwaimel, B.; Khalifa, N.E.; Badulla, W.F.S.; Alshammari, R.A.; Alshammari, L.K.; Alshammari, R.A.R.; et al. Chemical Composition, Antibacterial Activity and In Vitro Anticancer Evaluation of Ochradenus baccatus Methanolic Extract. Medicina 2023, 59, 546. [Google Scholar] [CrossRef]
- Kumar, D.L.; Patyar, R.R.; Alsaadi, M.A.T.A.; Patyar, S. A review on phytochemical and pharmacological aspects of Ochradenus baccatus. BIO Web Conf. 2024, 86, 01019. [Google Scholar] [CrossRef]
- Al-Rimawi, F.; Khalid, M.; Salah, Z.; Zawahreh, M.A.A.; Alnasser, S.M.; Alshammari, S.O.; Wedian, F.; Karimulla, S.; Almutairi, A.; Alanazi, F.I.B.; et al. Anticancer, antioxidant, and antibacterial activity of chemically fingerprinted extract from Cyclamen persicum Mill. Sci. Rep. 2024, 14, 8488. [Google Scholar] [CrossRef]
- Al Shammari, L.; Al-Mustafa, A.; Alfarrayeh, I.; Al-Saharin, R.; Al-Rimawi, F.; Al-Hroub, H.M.; Semreen, M.H.; Mousa, M.; Salman, H.A.; Al-Mazaideh, G.M.; et al. The Remarkable Benefits of Moringa oleifera: Antioxidant Strength and α-Glucosidase Inhibition. Nat. Prod. Commun. 2025, 20, 1–10. [Google Scholar] [CrossRef]
- Khalid, M.; Al-Rimawi, F.; Fawadleh, M.; Salah, Z.; Shammari, L.A.; Dhanarasu, S.; Ayyal Salman, H.; Al-Mazaideh, G.M. Evaluating the Antioxidant, Antimicrobial, and Anticancer Effects of Eminium spiculatum Plant Extracts. Nat. Prod. Commun. 2024, 19, 1–8. [Google Scholar] [CrossRef]
- Aldal`i, H.K.; Wedian, F.; Al-Mazaide, G.; Salm, H.A.; Al-Rimawi, F.; Alakhras, F.; Abu Lafi, S.; Al-Nadaf, A. Comparative analysis of phytochemical composition of ethanolic extract of Jordanian Silvia officinalis. Pak. J. Biol. Sci. 2020, 23, 989–994. [Google Scholar] [CrossRef]
- Barakat, H.H.; El-Mousallamy, A.M.D.; Souleman, A.M.A.; Awadalla, S. Flavonoids ofOchradenus baccatus. Phytochemistry 1991, 30, 3777–3779. [Google Scholar] [CrossRef]
- Alqasoumi, S.I.; Soliman, G.A.E.H.; Awaad, A.S.; Donia, A.E.R.M. Anti-inflammatory activity, safety and protective effects of Leptadenia pyrotechnica, Haloxylon salicornicum and Ochradenus baccatus in ulcerative colitis. Phytopharmacology 2012, 2, 58–71. [Google Scholar]
- Al-Omar, M.S.; Eldeeb, H.M.; Mobark, M.A.; Mohammed, H.A. Antimicrobial activity and histopathological safety evidence of Ochradenus baccatus Delile: A medicinally important plant growing in Saudi Arabia. Pharmacogn. Res. 2020, 12, 131. [Google Scholar] [CrossRef]
- Kruszka, J.; Martyński, J.; Szewczyk-Golec, K.; Woźniak, A.; Nuszkiewicz, J. The Role of Selected Flavonoids in Modulating Neuroinflammation in Alzheimer’s Disease: Mechanisms and Therapeutic Potential. Brain Sci. 2025, 15, 485. [Google Scholar] [CrossRef] [PubMed]
- Anwal, L. A comprehensive review on Alzheimer’s disease. World J. Pharm. Pharm. Sci. 2021, 10, 1170. [Google Scholar]
- Simunkova, M.; Alwasel, S.H.; Alhazza, I.M.; Jomova, K.; Kollar, V.; Rusko, M.; Valko, M. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch. Toxicol. 2019, 93, 2491–2513. [Google Scholar] [CrossRef]
- Kamalakannan, K.; Seetharaman, S.; Sockalingam, A.; VijayaRani, K.R.; Subramanian, K. Phytoflavonoids-A Future Perspective for the Therapeutic Potential of Alzheimer’s Disease. Pharmacogn. Res. 2025, 17, 788–795. [Google Scholar] [CrossRef]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci. 2019, 11, 155. [Google Scholar] [CrossRef]
- Food, C.; Kjeldahl, T.M.C. Changes in AOAC® official methods of analysis. J. AOAC Int. 2020, 79, 1060–3271. [Google Scholar]
- Vázquez, C.V.; Rojas, M.G.V.; Ramírez, C.A.; Chávez-Servín, J.L.; García-Gasca, T.; Martínez, R.A.F.; García, O.P.; Rosado, J.L.; López-Sabater, C.M.; Castellote, A.I. Total phenolic compounds in milk from different species. Design of an extraction technique for quantification using the Folin–Ciocalteu method. Food Chem. 2015, 176, 480–486. [Google Scholar] [CrossRef]
- Manurung, H.; Kustiawan, W.; Kusuma, I.W.; Marjenah. Total flavonoid content and antioxidant activity in leaves and stems extract of cultivated and wild tabat barito (Ficus deltoidea Jack). AIP Conf. Proc. 2017, 1813, 020007. [Google Scholar]
- Amorim, M.R.d.; Rinaldo, D.; Amaral, F.P.d.; Vilegas, W.; Magenta, M.A.G.; Vieira, G.M., Jr.; Santos, L.C.d. HPLC-DAD based method for the quantification of flavonoids in the hydroethanolic extract of Tonina fluviatilis Aubl. (Eriocaulaceae) and their radical scavenging activity. Química Nova 2014, 37, 1122–1127. [Google Scholar]
- Zhang, Z.-M.; Li, G.-K. A preliminary study of plant aroma profile characteristics by a combination sampling method coupled with GC–MS. Microchem. J. 2007, 86, 29–36. [Google Scholar] [CrossRef]
- Ullah, M.F. Hydro-alcoholic extract of Ochradenus baccatus exhibits anti-oxidative and anti-inflammatory properties and inhibits enzyme of uric acid metabolism: Implications for bioactive molecules. Emir. J. Food Agric. 2023, 34, 915–922. [Google Scholar]
- Arumugam, P.; Ramamurthy, P.; Santhiya, S.T.; Ramesh, A. Antioxidant activity measured in different solvent fractions obtained from Mentha spicata Linn.: An analysis by ABTS.+ decolorization assay. Asia Pac. J. Clin. Nutr. 2006, 15, 119. [Google Scholar]
- Benzie, I.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. Meas. Antioxid. Act. Capacit. Recent. Trends Appl. 2018, 77–106. [Google Scholar] [CrossRef]
- Gierse, J.; Nickols, M.; Leahy, K.; Warner, J.; Zhang, Y.; Cortes-Burgos, L.; Carter, J.; Seibert, K.; Masferrer, J. Evaluation of COX-1/COX-2 selectivity and potency of a new class of COX-2 inhibitors. Eur. J. Pharmacol. 2008, 588, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres Jr, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- LeVine, H. 3rd. Multiple ligand binding sites on Aβ (1–40) fibrils. Amyloid 2005, 12, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kim, D.H.; Jung, J.M.; Kim, J.M.; Cai, M.; Liu, X.; Hong, J.G.; Lee, C.H.; Lee, K.R.; Ryu, J.H. The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. Eur. J. Pharmacol. 2012, 676, 64–70. [Google Scholar] [CrossRef]
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.N. The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci. Biobehav. Rev. 2004, 28, 497–505. [Google Scholar] [CrossRef]
- Franklin, K.; Paxinos, G. The Mouse Brain in Stereotaxic Coordinates; Academic Press: San Diego, CA, USA, 1997. [Google Scholar]
- Schüz, A.; Palm, G. Density of neurons and synapses in the cerebral cortex of the mouse. J. Comp. Neurol. 1989, 286, 442–455. [Google Scholar] [CrossRef]
- Klunk, W.E.; Bacskai, B.J.; Mathis, C.A.; Kajdasz, S.T.; McLellan, M.E.; Frosch, M.P.; Debnath, M.L.; Holt, D.P.; Wang, Y.; Hyman, B.T. Imaging Aβ plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J. Neuropathol. Exp. Neurol. 2002, 61, 797–805. [Google Scholar] [CrossRef]
- Vignesh, A.; Sivalingam, R.; Selvakumar, S.; Vasanth, K. A review on ethnomedicinal and phytopharmacological potential of traditionally wild and endemic plant Berberis tinctoria Lesch. Thai J. Pharm. Sci. 2022, 46, 137–148. [Google Scholar] [CrossRef]
- Ali, M.A.; Farah, M.A.; Al-Hemaid, F.M.; Abou-Tarboush, F.M.; Al-Anazi, K.M.; Wabaidur, S.; Alothman, Z.; Lee, J. Assessment of biological activity and UPLC–MS based chromatographic profiling of ethanolic extract of Ochradenus arabicus. Saudi J. Biol. Sci. 2016, 23, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Qasim, M.; Abideen, Z.; Adnan, M.; Gulzar, S.; Gul, B.; Rasheed, M.; Khan, M. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot. 2017, 110, 240–250. [Google Scholar] [CrossRef]
- Pappolla, M.A.; Martins, R.N.; Poeggeler, B.; Omar, R.A.; Perry, G. Oxidative stress in Alzheimer’s disease: The shortcomings of antioxidant therapies. J. Alzheimer’s Dis. 2024, 101, S155–S178. [Google Scholar] [CrossRef]
- Coniglio, S.; Shumskaya, M.; Vassiliou, E. Unsaturated fatty acids and their immunomodulatory properties. Biology 2023, 12, 279. [Google Scholar] [CrossRef] [PubMed]
- Sanjay; Park, M.; Lee, H.-J. Roles of fatty acids in microglial polarization: Evidence from in vitro and in vivo studies on neurodegenerative diseases. Int. J. Mol. Sci. 2022, 23, 7300. [Google Scholar] [CrossRef]
- Beaulieu, J.; Costa, G.; Renaud, J.; Moitie, A.; Glemet, H.; Sergi, D.; Martinoli, M.-G. The neuroinflammatory and neurotoxic potential of palmitic acid is mitigated by oleic acid in microglial cells and microglial-neuronal co-cultures. Mol. Neurobiol. 2021, 58, 3000–3014. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Rehman, I.U.; Choe, K.; Ahmad, R.; Lee, H.J.; Kim, M.O. A triterpenoid lupeol as an antioxidant and anti-neuroinflammatory agent: Impacts on oxidative stress in Alzheimer’s disease. Nutrients 2023, 15, 3059. [Google Scholar] [CrossRef]
- Rahul; Siddique, Y.H. Neurodegenerative diseases and flavonoids: Special reference to kaempferol. CNS Neurol. Disord.-Drug Targets-CNS Neurol. Disord. 2021, 20, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Walczak-Nowicka, Ł.J.; Herbet, M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int. J. Mol. Sci. 2021, 22, 9290. [Google Scholar] [CrossRef]
- Jabir, N.R.; Khan, F.R.; Tabrez, S. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci. Ther. 2018, 24, 753–762. [Google Scholar] [CrossRef]
- Matos, A.M.; Cristovao, J.S.; Yashunsky, D.V.; Nifantiev, N.E.; Viana, A.S.; Gomes, C.M.; Rauter, A.P. Synthesis and effects of flavonoid structure variation on amyloid-β aggregation. Pure Appl. Chem. 2017, 89, 1305–1320. [Google Scholar] [CrossRef]
- Qi, Y.; Yi, P.; He, T.; Song, X.; Liu, Y.; Li, Q.; Zheng, J.; Song, R.; Liu, C.; Zhang, Z. Quercetin-loaded selenium nanoparticles inhibit amyloid-β aggregation and exhibit antioxidant activity. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125058. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Lee, H.-K.; Kim, J.-A.; Hong, S.-I.; Kim, H.-C.; Jo, T.-H.; Park, Y.-I.; Lee, C.-K.; Kim, Y.-B.; Lee, S.-Y. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol. 2010, 649, 210–217. [Google Scholar] [CrossRef]
- Ramezani, M.; Meymand, A.Z.; Khodagholi, F.; Kamsorkh, H.M.; Asadi, E.; Noori, M.; Rahimian, K.; Shahrbabaki, A.S.; Talebi, A.; Parsaiyan, H. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: A review of preclinical and clinical studies. Nutr. Neurosci. 2023, 26, 156–172. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, R.M.P.; Gómez, J.T. Narrative review: Edible plants as a source of valuable flavonoids and their role as neuroprotector agents. Curr. Nutr. Food Sci. 2023, 19, 442–460. [Google Scholar] [CrossRef]
- Salama, F.; Abd El-Ghani, M.; Sayed, S.; Abeed, A.; Kotp, A.; Abd El-Wahab, D. In vitro anticancer and antioxidant potency of leaves extract of Ochradenus baccatus Delile. Biosci. Res. 2021, 18, 77–89. [Google Scholar]
- Soliman, G.A.; Donia, A.E.R.M.; Awaad, A.S.; Alqasoumi, S.I.; Yusufoglu, H. Effect of Emex spinosa, Leptadenia pyrotechnica, Haloxylon salicornicum and Ochradenus baccatus extracts on the reproductive organs of adult male rats. Pharm. Biol. 2012, 50, 105–112. [Google Scholar] [CrossRef] [PubMed]
Plant Part | TPC (mg GAE/g Dry Extract) | TFC (mg QE/g Dry Extract) | p-Value |
---|---|---|---|
Leaves | 67.8 a ± 2.4 | 49.2 b ± 1.8 | <0.05 |
Roots | 53.6 b ± 1.9 | 40.1 c ± 1.5 | <0.05 |
Fruits | 46.7 c ± 1.7 | 52.6 a ± 2.1 | <0.05 |
Stems | 41.3 d ± 1.6 | 34.9 d ± 1.3 | <0.05 |
No. | Compound Name | Area % | RT | Height % | Medical Importance | Molecular Formula/Mol. Weight |
---|---|---|---|---|---|---|
1 | Trimethylsilylmethanol | 1.34 | 4.50 | 2 | Volatile alcohol derivative; minor irritant | C4H14OSi/106.24 g/mol |
2 | Acetin, bis-1,2trimethylsilyl ether | 16.5 | 5.48 | 17.52 | Polyol ester; potential neuroprotective agent | C10H26O4Si2/~266.49 g/mol |
3 | (Methoxymethyl)trimethyl silane | 1.25 | 7.86 | 1.91 | Volatile carrier compound; inert | C5H14OSi/118.25 g/mol |
4 | β-D-Galactofuranoside, ethyl 2,3,5,6-tetrakis-O(TMS) | 4.66 | 9.12 | 5.32 | Immunomodulatory sugar derivative | C20H46O7Si4/~510.93 g/mol |
5 | Gluconic acid, 2methoxime, tetra(TMS) ester | 0.25 | 10.93 | 0.91 | Antioxidant; potential metabolic regulator | C17H42NO8Si4/~499.90 g/mol |
6 | beta-D-(-)-Ribopyranose, 4TMS derivative | 0.54 | 11.48 | 1.38 | Antioxidant; supports gut microbiota (prebiotic) | C17H42O6Si4/~466.87 g/mol |
7 | L-(+)-Threose, tris(TMS) ethyloxime (isomer 1) | 0.17 | 12.87 | 0.83 | Rare sugar derivative; possible metabolic effect | C12H31NO5Si3/~369.66 g/mol |
8 | Palmitic Acid, TMS derivative | 43.21 | 13.87 | 43.87 | Anti-inflammatory; membrane-stabilizing effect | C19H40O2Si/~328.62 g/mol |
9 | 3-Methylcyclohexanol, (Z)-, TMS derivative | 1.68 | 16.16 | 2.34 | Antioxidant; potential CNS impact | C10H22OSi/~186.37 g/mol |
10 | 2-Oxopentanoic acid, TMS derivative | 1.21 | 16.51 | 1.87 | Metabolic intermediate in amino acid catabolism | C8H16O3Si/~188.30 g/mol |
11 | α-Ketoisovaleric acid, TMS derivative | 1.07 | 17.49 | 1.73 | Involved in branched-chain amino acid metabolism | C8H16O3Si/~188.30 g/mol |
12 | 1,3-Dioxane-5-carboxylic acid, TMS derivative | 0.31 | 18.73 | 0.97 | Antioxidant; cyclic ester | C8H14O4Si/~202.28 g/mol |
13 | 2-Oxopentanoic acid, TMS derivative | 0.16 | 19.70 | 0.82 | Same as compound #10 | C8H16O3Si/~188.30 g/mol |
14 | D-(-)-Erythrose, tris(TMS) ether, ethyloxime (isomer 2) | 1.54 | 20.31 | 2.2 | Antioxidant; possible CNS modulator | C12H31NO5Si3/~369.66 g/mol |
15 | 2-Oxopentanoic acid, TMS derivative | 1.32 | 20.82 | 1.98 | Repeated—same as #10 and #13 | C8H16O3Si/~188.30 g/mol |
16 | Carbitol, TMS derivative | 1.58 | 21.51 | 2.02 | Solvent; enhances dermal absorption | C6H16O3Si/~164.28 g/mol |
17 | 2-Oxopentanoic acid, TMS derivative | 1.4 | 23.01 | 2.06 | Same as #10 | C8H16O3Si/~188.30 g/mol |
18 | Butoxyacetic acid, TMS derivative | 0.15 | 23.41 | 0.81 | Mild solvent; limited biomedical use | C8H18O3Si/~190.31 g/mol |
19 | α-Ketoisovaleric acid, TMS derivative | 0.62 | 25 | 1.28 | Same as #11 | C8H16O3Si/~188.30 g/mol |
20 | [(TMS)O]tetradecanoic acid, bis(TMS) ester | 0.79 | 25.49 | 1.45 | Antimicrobial potential; fatty acid derivative | C20H46O2Si2/~390.76 g/mol |
21 | 1,3-Dioxane-5-carboxylic acid, 5-methyl-, TMS ester | 0.71 | 25.83 | 1.37 | Antioxidant; lactone derivative | C9H16O4Si/~232.30 g/mol |
22 | [(TMS)O]tetradecanoic acid, bis(TMS) ester | 0.54 | 26.02 | 1.4 | Same as #20 | C20H46O2Si2/~390.76 g/mol |
23 | Carbitol, TMS derivative | 0.08 | 27.35 | 0.74 | Same as #16 | C6H16O3Si/~164.28 g/mol |
24 | 3-Methyl-2-oxovaleric acid, TMS derivative | 1.33 | 28.11 | 1.99 | Intermediate in BCAA metabolism | C9H18O3Si/~202.32 g/mol |
25 | Methoxymethyltrimethylsil ane | 0.57 | 29.18 | 1.23 | Inert carrier agent; volatile | C5H14OSi/118.25 g/mol |
Compound | Leaves (mg/g DW) | Fruits (mg/g DW) | Significance |
---|---|---|---|
Rutin | 3.72 ± 0.11 | 2.64 ± 0.09 | Higher in leaves |
Quercetin | 2.15 ± 0.08 | 1.74 ± 0.07 | Moderate in both |
Kaempferol | 2.89 ± 0.10 | 3.26 ± 0.12 | Higher in fruits |
Lupeol | 1.56 ± 0.06 | 1.02 ± 0.05 | Present in both, higher in leaves |
Plant Part | COX-1 Inhibition (%) | COX-2 Inhibition (%) | Selectivity Index (COX-2/COX-1) | p-Value |
---|---|---|---|---|
Leaves | 68.2 ± 3.1 b | 75.4 ± 2.8 b | 1.11 ± 0.04 b | <0.05 |
Fruits | 58.7 ± 3.3 d | 61.2 ± 2.9 c | 1.04 ± 0.06 c | <0.05 |
Plant Part | DPPH IC50 (µg/mL) | ABTS (mM TEAC/g) | FRAP (µmol Fe2+/g) | TPC (mg GAE/g) |
---|---|---|---|---|
Leaves | 19.8 ± 1.3 a | 1.61 ± 0.12 a | 832 ± 25 a | 67.8 ± 2.4 a |
Fruits | 23.4 ± 1.5 b | 1.35 ± 0.11 b | 712 ± 24 b | 46.7 ± 1.7 c |
Plant Part | AChE IC50 (µg/mL) | Amyloid Reduction (%) | Neuronal Density Increase (%) |
---|---|---|---|
Leaves | 32.5 ± 2.1 (a,b) | 50 (a,c) | 30 (a,c) |
Fruits | 38.7 ± 2.8 (b) | 28 (c) | 15 (c) |
Group | Escape Latency (s) | Target Quadrant Time (s) | Significance (vs. Control) |
---|---|---|---|
Control | 15.2 ± 1.8 a | 35.4 ± 2.1 a | Reference |
Scopolamine | 42.7 ± 3.2 c | 15.3 ± 1.9 c | p < 0.001 |
Leaf Extract (200 mg/kg) | 22.5 ± 2.1 b | 28.6 ± 2.0 b | p < 0.05 |
Group | Spontaneous Alternation (%) | Total Arm Entries | Significance (vs. Control) |
---|---|---|---|
Control | 72.4 ± 4.1 a | 25.3 ± 2.5 a | Reference |
Scopolamine | 45.3 ± 3.8 c | 24.8 ± 2.7 a | p < 0.001 (alternation) |
Leaf Extract (200 mg/kg) | 65.7 ± 3.9 b | 26.1 ± 2.3 a | p < 0.05 (alternation) |
Region | Group | Mean Neuronal Density (cells/mm2) | ±SD | % Change vs. Scopolamine |
---|---|---|---|---|
CA3 | Control | 212 | 15 | 53.60% |
Scopolamine | 138 | 12 | — | |
Leaf Extract | 179 | 11 | 29.70% | |
DG | Control | 230 | 14 | 43.70% |
Scopolamine | 160 | 13 | — | |
Leaf Extract | 208 | 12 | 30.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saddeek, S. Exploring Ochradenus baccatus: A Novel Source of Bioactive Compounds and Phytochemical Insights for Uncharted Therapeutic Applications. Life 2025, 15, 1448. https://doi.org/10.3390/life15091448
Saddeek S. Exploring Ochradenus baccatus: A Novel Source of Bioactive Compounds and Phytochemical Insights for Uncharted Therapeutic Applications. Life. 2025; 15(9):1448. https://doi.org/10.3390/life15091448
Chicago/Turabian StyleSaddeek, Salma. 2025. "Exploring Ochradenus baccatus: A Novel Source of Bioactive Compounds and Phytochemical Insights for Uncharted Therapeutic Applications" Life 15, no. 9: 1448. https://doi.org/10.3390/life15091448
APA StyleSaddeek, S. (2025). Exploring Ochradenus baccatus: A Novel Source of Bioactive Compounds and Phytochemical Insights for Uncharted Therapeutic Applications. Life, 15(9), 1448. https://doi.org/10.3390/life15091448