Randomized Controlled Trial of Patient Positioning and Operator Radiation Exposure During Lower Extremity Catheter Angiography
Abstract
1. Introduction
2. Materials and Methods
- Patients with an age ≥ 18 years referred for lower extremity CA;
- Diagnosis of CLTI.
- Incapacity or inability to hold the FF and/or HF supine position;
- History of major limb amputation;
- Contraindication to iodinated contrast agent.
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DSA | Digital subtraction angiography |
CLTI | Chronic limb-threatening ischemia |
TRA | Transradial access |
CA | Catheter angiography |
HF | Head-first |
FF | Feet-first |
TLD | Thermoluminescent dosimeters |
DAP | Dose area product |
ALARA | As low as reasonably achievable |
References
- Gornik, H.L.; Aronow, H.D.; Goodney, P.P.; Arya, S.; Brewster, L.P.; Byrd, L.; Chandra, V.; Drachman, D.E.; Eaves, J.M.; Ehrman, J.K.; et al. 2024 ACC/AHA/AACVPR/APMA/ABC/SCAI/SVM/SVN/SVS/SIR/VESS Guideline for the Management of Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1313–e1410. [Google Scholar] [CrossRef]
- Met, R.; Bipat, S.; Legemate, D.A.; Reekers, J.A.; Koelemay, M.J. Diagnostic performance of computed tomography angiography in peripheral arterial disease: A systematic review and meta-analysis. JAMA 2009, 301, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A.; et al. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases. Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar] [CrossRef]
- Kumar, J.; Jones, L.E.; Kollmeyer, K.R.; Feldtman, R.W.; Ferrara, C.A.; Moe, M.N.; Chen, J.F.; Richmond, J.L.; Ahn, S.S. Radial artery access for peripheral endovascular procedures. J. Vasc. Surg. 2017, 66, 820–825. [Google Scholar] [CrossRef]
- Castro-Dominguez, Y.; Li, J.; Lodha, A.; Parvathaneni, S.; Ratcliffe, J.; Srivastava, A.; Sethi, S.S.; Patel, M.; Krishna, V.; Shishehbor, M.H. Prospective, Multicenter Registry to Assess Safety and Efficacy of Radial Access for Peripheral Artery Interventions. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2 Pt A, 101107. [Google Scholar] [CrossRef]
- Sarkadi, H.; Bérczi, V.; Kollár, A.; Kiss, D.; Jakabfib, P.; Végh, E.M.; Nemes, B.; Merkely, B.; Hüttl, K.; Dósa, E. Safety, clinical outcome, and fracture rate of femoropopliteal stenting using a 4F compatible delivery system. Eur. J. Vasc. Endovasc. Surg. 2015, 49, 199–204. [Google Scholar] [CrossRef]
- Scalise, R.F.M.; Salito, A.M.; Polimeni, A.; Garcia-Ruiz, V.; Virga, V.; Frigione, P.; Andò, G.; Tumscitz, C.; Costa, F. Radial Artery Access for Percutaneous Cardiovascular Interventions: Contemporary Insights and Novel Approaches. J. Clin. Med. 2019, 8, 1727. [Google Scholar] [CrossRef]
- Korabathina, R.; Yadav, S.S.; Coppola, J.T.; Staniloae, C.S. Transradial approach to lower extremity interventions. Vasc. Health Risk Manag. 2010, 6, 503–509. [Google Scholar] [CrossRef][Green Version]
- Bertrand, F.; Rao, S.V.; Pancholy, S.; Jolly, S.S.; Rodés-Cabau, J.; Larose, É.; Costerousse, O.; Hamon, M.; Mann, T. Transradial Approach for Coronary Angiography and Interventions. JACC Cardiovasc. Interv. 2010, 3, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, A.; Saadeddin, Z.; Avgerinos, E.D.; Al-Khoury, G.E.; Hager, E.S.; Eslami, M.H. Utilization and Outcomes of Radial Artery Access for Lower Extremity Endovascular Intervention. Ann. Vasc. Surg. 2021, 77, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Bompotis, G.C.; Giannopoulos, G.; Karakanas, A.I.; Meletidou, M.; Vrachatis, D.; Lazaridis, I.; Toutouzas, K.P.; Styliadis, I.; Tziakas, D.; Deftereos, S.G. Left Distal Radial Artery Access for Coronary Angiography and Interventions: A 12-Month All-Comers Study. J. Invasive Cardiol. 2022, 34, E505–E509. [Google Scholar] [CrossRef]
- Klein, L.W.; Miller, D.L.; Balter, S.; Laskey, W.; Haines, D.; Norbash, A.; Mauro, M.A.; Goldstein, J.A.; Joint Inter-Society Task Force on Occupational Hazards in the Interventional Laboratory. Occupational health hazards in the interventional laboratory: Time for a safer environment. J. Vasc. Interv. Radiol. 2009, 20 (Suppl. S7), S278–S283. [Google Scholar] [CrossRef]
- Cousins, C.; Miller, D.L.; Bernardi, G.; Rehani, M.M.; Schofield, P.; Vañó, E.; Einstein, A.J.; Geiger, B.; Heintz, P.; Padovani, R.; et al. ICRP PUBLICATION 120: Radiological protection in cardiology. Ann. ICRP 2013, 42, 1–125. [Google Scholar] [CrossRef]
- Khong, P.-L.; Ringertz, H.; Donoghue, V.; Frush, D.; Rehani, M.; Appelgate, K.; Sanchez, R. ICRP Publication 121: Radiological Protection in Paediatric Diagnostic and Interventional Radiology. Ann. ICRP 2013, 42, 1–63. [Google Scholar] [CrossRef]
- Gerić, M.; Popić, J.; Gajski, G.; Garaj-Vrhovac, V. Cytogenetic status of interventional radiology unit workers occupationally exposed to low-dose ionising radiation: A pilot study. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 843, 46–51. [Google Scholar] [CrossRef]
- Martin, J.; Magee, J.S. Assessment of eye and body dose for interventional radiologists, cardiologists, and other interventional staff. J. Radiol. Prot. 2013, 33, 445. [Google Scholar] [CrossRef] [PubMed]
- Bohari, A.; Hashim, S.; Mohd Mustafa, S.N. Scatter Radiation in the Fluoroscopy-Guided Interventional Room. Radiat. Prot. Dosim. 2020, 188, 397–402. [Google Scholar] [CrossRef]
- Leyton, F.; Nogueira, M.S.; Gubolino, L.A.; Pivetta, M.R.; Ubeda, C. Correlation between scatter radiation dose at height of operator’s eye and dose to patient for different angiographic projections. Appl. Radiat. Isot. 2016, 117, 100–105. [Google Scholar] [CrossRef]
- Yang, S.J.; Yoon, J.T.; Ryu, J.C.; Kim, B.J.; Kim, M.H.; Kwon, B.; Lee, D.H.; Song, Y. Impact of Patient Head Posture on Lens Radiation Exposure During Cerebral Angiography. AJNR Am. J. Neuroradiol. 2025, 46, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Monastiriotis, S.; Comito, M.; Labropoulos, N. Radiation exposure in endovascular repair of abdominal and thoracic aortic aneurysms. J. Vasc. Surg. 2015, 62, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Forbrig, R.; Ozpeynirci, Y.; Grasser, M.; Dorn, F.; Liebig, T.; Trumm, C.G. Correction to: Radiation dose and fluoroscopy time of modern endovascular treatment techniques in patients with saccular unruptured intracranial aneurysms. Eur. Radiol. 2021, 31, 8817. [Google Scholar] [CrossRef]
- Wilson-Stewart, K.S.; Fontanarosa, D.; Malacova, E.; Trapp, J.V. Radiation dose to nurses, cardiologists, and patients during coronary angiography: A comparison of femoral and radial access. Eur. J. Cardiovasc. Nurs. 2022, 21, 325–331. [Google Scholar] [CrossRef]
- Qureshi, F.; Ramprasad, A.; Derylo, B. Radiation Monitoring Using Personal Dosimeter Devices in Terms of Long-Term Compliance and Creating a Culture of Safety. Cureus 2022, 14, e27999. [Google Scholar] [CrossRef] [PubMed]
- Zelikman, M.I.; Kruchinin, S.A. Calibration of Thermoluminescent Dosimeters for Measuring Effective Dose in Computer Tomography. Biomed Eng. 2013, 46, 186–189. [Google Scholar] [CrossRef]
- Martin, J. Personal dosimetry for interventional operators: When and how should monitoring be done? Br. J. Radiol. 2011, 84, 639–648. [Google Scholar] [CrossRef]
- Kuriyama, T.; Moritake, T.; Nakagami, K.; Morota, K.; Hitomi, G.; Kitamura, H. Background Factors Affecting the Radiation Exposure of the Lens of the Eye among Nurses in Interventional Radiology: A Quantitative Observational Study. Nurs. Rep. 2024, 14, 413–427. [Google Scholar] [CrossRef]
- Roh, Y.; Kim, J.; Park, H.; Kim, J.; Ryu, D.; Chun, K.; Seo, J.; Lee, B.; Cho, B.; Yoon, Y. Effect of Exposure Angulation on the Occupational Radiation Exposure during Cardiac Angiography: Simulation Study. Int. J. Environ. Res. Public Health 2021, 18, 8097. [Google Scholar] [CrossRef]
- Mottareale, R.; Manna, F.; Carmosino, P.A.; Fiore, F.; Correra, M.; Stilo, S.; Tarotto, L.; Pugliese, M. Exposure Time Dependence of Operators’ Head Entrance Air Kerma in Interventional Radiology Measured by TLD-100H Chips. Sensors 2025, 25, 3666. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.; Shindo, R.; Konta, S.; Yamamoto, K.; Inaba, Y.; Chida, K. Radiation Exposure to the Brains of Interventional Radiology Staff: A Phantom Study. Bioengineering 2024, 11, 1083. [Google Scholar] [CrossRef]
- Larsen, A.S.; Osterås, B.H. Step back from the patient: Reduction of radiation dose to the operator by the systematic use of an automatic power injector for contrast media in an interventional angiography suite. Acta Radiol. 2012, 53, 330–334. [Google Scholar] [CrossRef]
Variable | HF Mean (±SD) | FF Mean (±SD) | p-Value |
---|---|---|---|
Height (cm) | 168 (6.4) | 168 (9.6) | 0.98 |
Weight (kg) | 84.2 (21.14) | 79.42 (23.37) | 0.67 |
BMI (kg/m) | 29.73 (6.56) | 27.74 (5.69) | 0.44 |
Duration of procedure (min) | 5.50 (1.83) | 6.92 (2.43) | 0.18 |
Fluoroscopy time (s) | 118.3 (34.56) | 160.75 (100.43) | 0.23 |
Dose area product (mGym2) | 1889.00 (907.23) | 2034.83 (1398.48) | 0.80 |
Entrance skin dose (mGy) | 69.95 (40.34) | 77.13 (61.07) | 0.77 |
Contrast volume (ml) | 112.33 (24.87) | 117 (16.71) | 0.65 |
TLD Position | Head-First (±SD) | Feet-First (±SD) | p-Value |
---|---|---|---|
Body (µSv) | 976 (586) | 990 (594) | 0.95 |
Eye (µSv) | 914 (548) | 887 (532) | 0.90 |
Finger (µSv) | 777 (466) | 1111 (667) | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bérczi, Á.; Szablics, F.É.; Simon, A.N.; Taba, G.; Papp, D.Á.; György, R.; Pataki, Á.A.; Hüttl, A.; Nemes, B.; Csobay-Novák, C. Randomized Controlled Trial of Patient Positioning and Operator Radiation Exposure During Lower Extremity Catheter Angiography. Life 2025, 15, 1433. https://doi.org/10.3390/life15091433
Bérczi Á, Szablics FÉ, Simon AN, Taba G, Papp DÁ, György R, Pataki ÁA, Hüttl A, Nemes B, Csobay-Novák C. Randomized Controlled Trial of Patient Positioning and Operator Radiation Exposure During Lower Extremity Catheter Angiography. Life. 2025; 15(9):1433. https://doi.org/10.3390/life15091433
Chicago/Turabian StyleBérczi, Ákos, Fanni Éva Szablics, Anita Nelli Simon, Gabriella Taba, Dóra Ágota Papp, Réka György, Ákos András Pataki, Artúr Hüttl, Balázs Nemes, and Csaba Csobay-Novák. 2025. "Randomized Controlled Trial of Patient Positioning and Operator Radiation Exposure During Lower Extremity Catheter Angiography" Life 15, no. 9: 1433. https://doi.org/10.3390/life15091433
APA StyleBérczi, Á., Szablics, F. É., Simon, A. N., Taba, G., Papp, D. Á., György, R., Pataki, Á. A., Hüttl, A., Nemes, B., & Csobay-Novák, C. (2025). Randomized Controlled Trial of Patient Positioning and Operator Radiation Exposure During Lower Extremity Catheter Angiography. Life, 15(9), 1433. https://doi.org/10.3390/life15091433