Arrhythmias in Rheumatoid Arthritis: A Call for a Multidisciplinary Team
Abstract
1. Introduction
2. Materials and Methods
3. Epidemiology of Arrhythmias in Rheumatoid Arthritis
3.1. General Prevalence of Arrhythmias in Rheumatoid Arthritis
3.2. Autoantibody-Associated Arrhythmias in Rheumatoid Arthritis
4. Pathophysiology of Arrhythmias in Rheumatoid Arthritis
4.1. Atrial and Ventricular Remodelling
4.2. Autonomic Nervous System
4.3. Renin–Angiotensin System
4.4. Endothelial Dysfunction
4.5. Epicardial Tissue Adiposity and Inflammation
5. Effects of Antirheumatic Drugs on Cardiac Rhythm
5.1. csDMARDs
5.1.1. Methotrexate
5.1.2. Leflunomide
5.1.3. Antimalarials
Authors/Year | Type of Study | Number of Patients | Data and Conclusions |
---|---|---|---|
Mercedes E Quiñones et al. (2023) [37] | Retrospective, propensity score–matched cohort safety study | 8852 | The current study includes 8852 Veterans with newly diagnosed RA (4426 treated with HCQ and 4426 treated with other DMARDs), balanced on 87 baseline characteristics. The primary outcome was LQTS over 19 years. Incident LQTS was rare, 0.09% vs. 0.11% at 2 years and 0.38% vs. 0.14% at 5 years (HCQ vs. other DMARDs, HR 2.17 over 10 years). HCQ use was not linked to an increased risk of LQTS during the first two years of treatment. A higher risk was reported after five years, though the absolute risk remained low, with a minimal difference between those taking HCQ and non-users. The risk decreased with longer follow-up, supporting the long-term safety of HCQ in RA patients [37]. |
M Rashedul Hoque et al. (2023) [38] | Retrospective cohort study | 23,036 | Based on data from 1996 to 2014, the cohort included 11,518 HCQ initiators and non-initiators. Over a follow-up of eight years, 1610 patients in the HCQ group developed arrhythmias and 1646 in the non-HCQ group, with crude incidence rates of 17.5 and 18.1 per 1000 person-years, respectively. HCQ initiation was not associated with an increased risk of arrhythmia [38]. |
Chien-Hsien Lo et al. (2021) [39] | Retrospective cohort study | 2883 | This study analyzed a cohort of patients aged ≥20 years with newly diagnosed RA, enrolled between 2000 and 2012. Patients were divided into three groups: non-HCQ (1606 patients; 48 arrhythmia cases), <400 mg HCQ (1079 patients; 29 cases), and >400 mg HCQ (198 patients; 4 cases). HCQ use was not associated with an increased overall risk of cardiac arrhythmias, including ventricular arrhythmias, with adjusted hazard ratios of 0.94 (p = 0.800) for <400 mg and 0.70 (p = 0.389) for >400 mg, regardless of dose or treatment duration [39]. |
Duygu Eryavuz Onmaz et al. (2021) [40] | Observational, analytical study | 70 | The current study showed that Blood levels of HCQ and its metabolites were positively correlated with the QTc interval, which had a mean value of 390 ms. Measured concentrations were as follows: Desethylchloroquine 69.1 ng/mL, Bidesethylchloroquine 253 ng/mL, and Desethylhydroxychloroquine 310 ng/mL, yielding a total metabolite concentration of 641 ng/mL. Therefore, there was a significant relationship between QTc interval and especially blood desethylchloroquine levels [40]. |
5.1.4. Sulfasalazine
5.2. bDMARDs and tsDMARDs
TNF-A inhibitors | Etanercept | Key Message | Supporting Data |
Cardioprotective in patients without HF. Reduces arterial stiffness, LV mass index, and overall CV morbidity in RA. |
| ||
Infliximab | May be associated with life-threatening tachyarrhythmia and bradyarrhythmia. Improves arterial stiffness and vascular function in RA patients. |
| |
Adalimumab | Inconclusive evidence. One study showed increased thrombotic events, but no study confirmed an arrhythmic risk. |
| |
Certolizumab pegol | Isolated case reports of arrhythmias. Favourable CV profile due to reduced systemic inflammation. |
| |
Golimumab | Cardioprotective effects in the GO-BEFORE and GO-FORWARD trials through improved cardiovascular markers–however, caution is advised in patients with HF. |
| |
Interleukine-6 Inhibitors | Tocilizumab | Potential antiarrhythmic effect—normalizes the QTc interval by dampening systemic inflammation. |
|
CD-20 monoclonal antibody | Rituximab | May be associated with arrhythmias. |
|
Selective T-cell co-stimulation inhibitor | Abatacept | Most of the currently available data on cardiovascular safety address HF, arterial stiffness, lipid profiles, and major adverse cardiovascular events, rather than cardiac rhythm disorders. | |
JAK inhibitors | Tofacitinib | May increase the risk of cardiovascular adverse events, particularly in older patients or those with pre-existing heart conditions. No current evidence of a direct link between JAK inhibitors and specific arrhythmias. |
|
Baricitinib | |||
Upadacitinib |
| ||
Filgotinib |
|
5.3. Complementary Therapies
5.3.1. Corticosteroids
5.3.2. Sinomenine
6. Diagnostic of Arrhythmias in Rheumatoid Arthritis
7. Management of Arrhythmias in Rheumatoid Arthritis
Class | Mechanism of Action and Indications | Examples | Safety Considerations in RA |
---|---|---|---|
Class I (Sodium channels blockers) | |||
Ia |
| Quinidine, Procainamide, Disopyramide | Due to the potential of quinidine to cause lupus-like syndrome, its use should be carefully evaluated [73]. Irizarry-Caro reported that procainamide is a lupus-inducing drug, promoting NET formation via neutrophil muscarinic receptor activation and calcium flux, highlighting innate immune involvement in DILE [74]. Rhupus syndrome, an overlap of RA and systemic lupus erythematosus, occurs in approximately 0.01–2% of rheumatic disease cases and the use of lupus-inducing drugs needs to be restricted [75]. There are no reports about autoimmunity induced by disopyramide or side effects that can impact RA patients. |
Ib |
| Lidocaine, Mexiletine | Lidocaine is metabolized in the liver. This is especially relevant, as RA patients often use hepatotoxic drugs such as MTX, which can impair liver function and reduce lidocaine clearance, increasing the risk of toxicity [76]. Mexiletine use is associated with various side effects, mostly related to the gastrointestinal and nervous system, but also hematological. The most prevalent symptoms are nausea, abdominal pain or discomfort, tremors, headaches, dizziness, and thrombocytopenia [77]. |
Ic |
| Flecainide, Propafenone | Patients with RA are at elevated risk for interstitial lung disease. Flecainide has been linked to drug-induced interstitial pneumonitis or diffuse alveolar damage [78]. Propafenone is recognized as a very low-risk drug for drug-induced lupus, with <0.1% incidence for routinely used doses [73]. |
Class II (β-adrenergic receptor blockers) | |||
| Metoprolol, Atenolol, Esmolol | Beta-blocker use was independently associated with a lower likelihood of achieving remission [79]. In 1986, FDA reports described several cases of joint pain linked to metoprolol, which resolved within a few days after drug administration was ceased [80]. Atenolol can cause vasculitis and drug-induced lupus erythematosus [81]. There are no studies on the effects of Esmolol on RA disease activity. | |
Class III (Potassium channel blockers) | |||
| Amiodarone, Sotalol, Dofetilide, Ibutilide | Patients with preexisting pulmonary disease are particularly vulnerable to amiodarone, with reports of diffuse alveolar hemorrhage syndrome [82]. Sotalol can induce vasculitis [81]. Dofetilide is primarily excreted through the kidneys, while approximately 20- 30% is metabolized in the liver via the CYP3A4 enzyme pathway. Therefore, dose adjustments are necessary for RA patients with impaired kidney function [83]. There are no reports of Ibutilide on RA disease activity. | |
Class IV (Calcium channel blockers) | |||
| Verapamil, Diltiazem | Calcium channel blockers, specifically diltiazem and verapamil, have been well established as strong inhibitors of CYP3A4, with most major drug interactions linked to these two medications [84]. Tofacitinib, a JAK inhibitor, is also metabolized by the CYP3A4 pathway. In these cases, co-administration needs to be carefully evaluated [85]. | |
Others | |||
| Adenosine, Digoxin, Ivabradine | Digoxin was well tolerated in RA patients and demonstrated significant immunomodulatory and anti-inflammatory effects. Additionally, it may possess anti-angiogenic properties, suggesting that it could serve as an effective complementary therapy to csDMARDs in the treatment of RA [86]. There are no studies about Adenosine or Ivabradine linked to negative effects on RA disease activity. |
8. Future Perspectives of Arrhythmias in Rheumatoid Arthritis
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
β1AR | Β1-Adrenergic Receptor |
ACE | Angiotensin-Converting Enzyme |
ACE 2 | Angiotensin-Converting Enzyme 2 |
ACPA | Anti-Citrullinated Protein Antibodies |
AF | Atrial Fibrillation |
AFl | Atrial Flutter |
Ang II | Angiotensin II |
anti-MCV | Anti-Modified Citrullinated Vimentin Antibodies |
bDMARDs | Biologic Disease-Modifying Antirheumatic Drugs |
cGMP | Cyclic Guanosine Monophosphate |
csDMARDs | Conventional Synthetic Disease-Modifying Antirheumatic Drugs |
CV | Cardiovascular |
CQ | Chloroquine |
DILE | Drug-Induced Lupus Erythematosus |
EAT | Epicardial Adipose Tissue |
ELISA | Enzyme-Linked Immunosorbent Assay |
E-selectin | Endothelial Selectin |
ESR | Erythrocyte Sedimentation Rate. |
GCs | Glucocorticoids |
GRK2 | G Protein-Coupled Receptor Kinase 2 |
HCQ | Hydroxychloroquine |
HF | Heart Failure |
ICAM-1 | Intercellular Adhesion Molecule-1 |
ICD | Implantable Cardioverter–Defibrillator |
IKr | Rectifier K+ Current |
JAK | Janus Kinase |
LA | Left Atrial |
LEF | Leflunomide |
LQTS | Long QT Syndrome |
LV | Left Ventricular |
MCP-1 | Monocyte Chemoattractant Protein-1 |
MHCII | Major Histocompatibility Complex Class Ii |
MTX | Methotrexate |
RyR2 | Ryanodine Receptor Type 2 |
NETs | Neutrophil Extracellular Traps |
NSAIDs | Nonsteroidal Anti-Inflammatory Drugs |
Pd | P-Wave Dispersion |
PKG | Protein Kinase G |
PSVT/SVT | Paroxysmal Supraventricular Tachycardia/Supraventricular Tachycardia |
QTcd | Corrected Qt Dispersion |
QTd | QT Dispersion |
RA | Rheumatoid Arthritis |
RAAS | Renin–Angiotensin–Aldosterone System |
RAS | The Renin–Angiotensin System |
RF | Rheumatoid Factor |
SBRT | Cardiac Stereotactic Body Radiotherapy |
tsDMARDs | Targeted Synthetic Disease-Modifying Antirheumatic Drugs |
VCAM-1 | Vascular Cell Adhesion Molecule-1 |
VT | Ventricular Tachycardia |
WPW | Wolff-Parkinson-White Syndrome |
References
- Gülkesen, A.; Uslu, E.Y.; Akgöl, G.; Alkan, G.; Kobat, M.A.; Gelen, M.A.; Uslu, M.F. Is the Development of Arrhythmia Predictable in Rheumatoid Arthritis? Arch. Rheumatol. 2024, 39, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Grune, J.; Yamazoe, M.; Nahrendorf, M. Electroimmunology and Cardiac Arrhythmia. Nat. Rev. Cardiol. 2021, 18, 547–564. [Google Scholar] [CrossRef]
- Lindhardsen, J.; Ahlehoff, O.; Gislason, G.H.; Madsen, O.R.; Olesen, J.B.; Svendsen, J.H.; Torp-Pedersen, C.; Hansen, P.R. Risk of Atrial Fibrillation and Stroke in Rheumatoid Arthritis: Danish Nationwide Cohort Study. BMJ 2012, 344, e1257. [Google Scholar] [CrossRef]
- Khan, M.Z.; Patel, K.; Patel, K.A.; Doshi, R.; Shah, V.; Adalja, D.; Waqar, Z.; Franklin, S.; Gupta, N.; Gul, M.H.; et al. Burden of Atrial Fibrillation in Patients with Rheumatic Diseases. World J. Clin. Cases 2021, 9, 3252–3264. [Google Scholar] [CrossRef]
- Hannawi, S.M.; Hannawi, H.; Al Salmi, I. Cardiovascular Risk in Rheumatoid Arthritis: Literature Review. Oman Med. J. 2021, 36, e262. [Google Scholar] [CrossRef]
- Song, Q.; Shang, L.; Zhang, Y.; Cui, Y.; Du, J.; Hou, Y. Rheumatoid Arthritis and Risk of Atrial Fibrillation: Results from Pooled Cohort Studies and Mendelian Randomization Analysis. Cardiovasc. Innov. Appl. 2024, 9, 976. [Google Scholar] [CrossRef]
- Plastiras, S.C.; Moutsopoulos, H.M. Arrhythmias and Conduction Disturbances in Autoimmune Rheumatic Disorders. Arrhythmia Electrophysiol. Rev. 2021, 10, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Khalid, Y.; Dasu, K.; Gabriel, N.; Roy, T.; Umrani, R.; Lee, M.; Dasu, N.R. Prevalence and Outcomes of Arrhythmias in Patients with Rheumatoid Arthritis. Heart Rhythm 2023, 20, S181. [Google Scholar] [CrossRef]
- Patel, K.H.K.; Jones, T.N.; Sattler, S.; Mason, J.C.; Ng, F.S. Proarrhythmic Electrophysiological and Structural Remodeling in Rheumatoid Arthritis. Am. J. Physiol.-Heart Circ. Physiol. 2020, 319, H1008–H1020. [Google Scholar] [CrossRef] [PubMed]
- Steiner, G.; Toes, R.E.M. Autoantibodies in Rheumatoid Arthritis—Rheumatoid Factor, Anticitrullinated Protein Antibodies and Beyond. Curr. Opin. Rheumatol. 2024, 36, 217. [Google Scholar] [CrossRef]
- Salma, K.; Nessrine, A.; Krystel, E.; Khaoula, E.K.; Noura, N.; Khadija, E.; Taoufik, H. Rheumatoid Arthritis: Seropositivity versus Seronegativity; A Comparative Cross-Sectional Study Arising from Moroccan Context. Curr. Rheumatol. Rev. 2020, 16, 143–148. [Google Scholar] [CrossRef]
- Spitsina, S.; Mozgovaya, E.; Trofimenko, A.; Bedina, S.; Mamus, M. Electrocardiographic Manifestations in Patients with Seropositive Rheumatoid Arthritis. Ann. Rheum. Dis. 2021, 80, 1108. [Google Scholar] [CrossRef]
- Kumar, A.; Vasdev, V.; Patnaik, S.K.; Bhatt, S.; Singh, R.; Bhayana, A.; Hegde, A.; Kumar, A. The Diagnostic Utility of Rheumatoid Factor and Anticitrullinated Protein Antibody for Rheumatoid Arthritis in the Indian Population. Med. J. Armed Forces India 2022, 78, S69–S74. [Google Scholar] [CrossRef]
- Iyengar, K.P.; Vaish, A.; Nune, A. Anti-Cyclic Citrullinated Peptide Antibody (ACPA) and Rheumatoid Arthritis: Clinical Relevance. J. Clin. Orthop. Trauma 2022, 24, 101729. [Google Scholar] [CrossRef] [PubMed]
- Van Steendam, K.; Tilleman, K.; Deforce, D. The Relevance of Citrullinated Vimentin in the Production of Antibodies against Citrullinated Proteins and the Pathogenesis of Rheumatoid Arthritis. Rheumatology 2011, 50, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, S.; Javinani, A.; Aminorroaya, A.; Masoumi, M. Anti-Modified Citrullinated Vimentin Antibody: A Novel Biomarker Associated with Cardiac Systolic Dysfunction in Patients with Rheumatoid Arthritis. BMC Cardiovasc. Disord. 2020, 20, 390. [Google Scholar] [CrossRef]
- Lazzerini, P.E.; Acampa, M.; Hammoud, M.; Maffei, S.; Capecchi, P.L.; Selvi, E.; Bisogno, S.; Guideri, F.; Galeazzi, M.; Pasini, F.L. Arrhythmic Risk During Acute Infusion of Infliximab: A Prospective, Single-Blind, Placebo-Controlled, Crossover Study in Patients with Chronic Arthritis. J. Rheumatol. 2008, 35, 1958–1965. [Google Scholar]
- Wang, X.; Fan, H.; Wang, Y.; Yin, X.; Liu, G.; Gao, C.; Li, X.; Liang, B. Elevated Peripheral T Helper Cells Are Associated With Atrial Fibrillation in Patients With Rheumatoid Arthritis. Front. Immunol. 2021, 12, 744254. [Google Scholar] [CrossRef]
- Park, E.; Ito, K.; Depender, C.; Giles, J.T.; Bathon, J. Left Ventricular Remodeling in Rheumatoid Arthritis Patients without Clinical Heart Failure. Arthritis Res. Ther. 2023, 25, 124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, M.; Tai, Y.; Tao, J.; Zhou, W.; Han, Y.; Wei, W.; Wang, Q. Triggers of Cardiovascular Diseases in Rheumatoid Arthritis. Curr. Probl. Cardiol. 2022, 47, 100853. [Google Scholar] [CrossRef] [PubMed]
- Braz, N.F.T.; Pinto, M.R.C.; Vieira, É.L.M.; Souza, A.J.; Teixeira, A.L.; Simões-e-Silva, A.C.; Kakehasi, A.M. Renin–Angiotensin System Molecules are Associated with Subclinical Atherosclerosis and Disease Activity in Rheumatoid Arthritis. Mod. Rheumatol. 2021, 31, 119–126. [Google Scholar] [CrossRef]
- Qian, Y.; Fei, Z.; Nian, F. The Association Between Rheumatoid Arthritis and Atrial Fibrillation: Epidemiology, Pathophysiology and Management. Int. J. Gen. Med. 2023, 16, 1899–1908. [Google Scholar] [CrossRef]
- Kacsándi, D.; Fagyas, M.; Horváth, Á.; Végh, E.; Pusztai, A.; Czókolyová, M.; Soós, B.; Szabó, A.Á.; Hamar, A.; Pethő, Z.; et al. Effect of Tofacitinib Therapy on Angiotensin Converting Enzyme Activity in Rheumatoid Arthritis. Front. Med. 2023, 10, 1226760. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.H.K.; Hwang, T.; Se Liebers, C.; Ng, F.S. Epicardial Adipose Tissue as a Mediator of Cardiac Arrhythmias. Am. J. Physiol.-Heart Circ. Physiol. 2022, 322, H129–H144. [Google Scholar] [CrossRef]
- Yao, H.; Chen, J.; Li, X.; Zhang, X. Relationship Between Epicardial Adipose Tissue Volume and Atrial Fibrillation in Patients with Rheumatoid Arthritis. Front. Cardiovasc. Med. 2025, 12, 1508025. [Google Scholar] [CrossRef] [PubMed]
- Ernault, A.C.; Meijborg, V.M.F.; Coronel, R. Modulation of Cardiac Arrhythmogenesis by Epicardial Adipose Tissue. JACC 2021, 78, 1730–1745. [Google Scholar] [CrossRef]
- Packer, M. Characterization, Pathogenesis, and Clinical Implications of Inflammation-Related Atrial Myopathy as an Important Cause of Atrial Fibrillation. J. Am. Heart Assoc. 2020, 9, e015343. [Google Scholar] [CrossRef]
- Radu, A.-F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef]
- Vassilopoulos, D.; Aslanidis, S.; Boumpas, D.; Kitas, G.; Nikas, S.N.; Patrikos, D.; Sfikakis, P.P.; Sidiropoulos, P. Updated Greek Rheumatology Society Guidelines for the Management of Rheumatoid Arthritis. Mediterr. J. Rheumatol. 2020, 31, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Hua, Z.; Luo, X.; Li, Y.; Yu, L.; Li, M.; Lu, C.; Zhao, T.; Liu, Y. Application and Pharmacological Mechanism of Methotrexate in Rheumatoid Arthritis. Biomed. Pharmacother. 2022, 150, 113074. [Google Scholar] [CrossRef]
- Hloch, K.; Doseděl, M.; Duintjer Tebbens, J.; Žaloudková, L.; Medková, H.; Vlček, J.; Soukup, T.; Pávek, P. Higher Risk of Cardiovascular Diseases in Rheumatoid Arthritis Patients Without Methotrexate Treatment. Front. Pharmacol. 2021, 12, 703279. [Google Scholar] [CrossRef]
- Tekeoglu, S. Prevalence and Risk Factors of Cardiovascular Disease in Rheumatoid Arthritis Patients: A Comparative Analysis of Real-World Data. Int. J. Gen. Med. 2024, 17, 5859–5868. [Google Scholar] [CrossRef]
- Sunkara, P.; Garikipati, N.A.; Nimmagadda, R.; Cherukuri, A.M.K.; Anne, H.; Chakilam, R.; Yadav, D.; Sunkara, P.; Garikipati, N.A.; Nimmagadda, R.; et al. Cardiovascular Outcomes of Disease-Modifying Antirheumatic Drugs in Rheumatoid Arthritis: A Review of the Current Evidence. Cureus 2025, 17, e82269. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Han, M.; Jung, I.; Ahn, S.S. New-Onset Atrial Fibrillation in Seropositive Rheumatoid Arthritis: Association with Disease-Modifying Anti-Rheumatic Drugs Treatment. Rheumatology 2024, 63, 630–638. [Google Scholar] [CrossRef]
- Farhat, H.; Kassab, C.J.; Tlaiss, Y.; Gutlapalli, S.D.; Ganipineni, V.D.P.; Paramsothy, J.; Tedesco, S.; Kailayanathan, T.; Abdulaal, R.; Otterbeck, P. Hydroxychloroquine and the Associated Risk of Arrhythmias. Glob. Cardiol. Sci. Pr. 2024, 2024, e202417. [Google Scholar] [CrossRef]
- Nikolic, R.P.A.; Virk, M.K.; Buhler, K.A.; Costenbader, K.H.; Choi, M.Y.; Weber, B.N. Hydroxychloroquine and Chloroquine-Induced Cardiac Arrhythmias and Sudden Cardiac Death in Patients With Systemic Autoimmune Rheumatic Diseases: A Systematic Review and Meta-Analysis. J. Cardiovasc. Pharmacol. 2024, 84, 158–169. [Google Scholar] [CrossRef]
- Quiñones, M.E.; Joseph, J.K.; Dowell, S.; Moore, H.J.; Karasik, P.E.; Fonarow, G.C.; Fletcher, R.D.; Cheng, Y.; Zeng-Treitler, Q.; Arundel, C.; et al. Hydroxychloroquine and Risk of Long QT Syndrome in Rheumatoid Arthritis: A Veterans Cohort Study With Nineteen-Year Follow-Up. Arthritis Care Res. 2023, 75, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.R.; Lu, L.; Daftarian, N.; Esdaile, J.M.; Xie, H.; Aviña-Zubieta, J.A. Risk of Arrhythmia Among New Users of Hydroxychloroquine in Rheumatoid Arthritis and Systemic Lupus Erythematosus: A Population-Based Study. Arthritis Rheumatol. 2023, 75, 475–484. [Google Scholar] [CrossRef]
- Lo, C.-H.; Wei, J.C.-C.; Wang, Y.-H.; Tsai, C.-F.; Chan, K.-C.; Li, L.-C.; Lo, T.-H.; Su, C.-H. Hydroxychloroquine Does Not Increase the Risk of Cardiac Arrhythmia in Common Rheumatic Diseases: A Nationwide Population-Based Cohort Study. Front. Immunol. 2021, 12, 631869. [Google Scholar] [CrossRef] [PubMed]
- Eryavuz Onmaz, D.; Tezcan, D.; Abusoglu, S.; Yilmaz, S.; Yerlikaya, F.H.; Onmaz, M.; Abusoglu, G.; Unlu, A. Effects of Hydroxychloroquine and its Metabolites in Patients with Connective Tissue Diseases. Inflammopharmacology 2021, 29, 1795–1805. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, Y.; Yin, G.; Xu, C.; Wang, J.; Wang, L.; Zhao, G.; Ni, S.; Zhang, H.; Zhou, B.; et al. Sulfasalazine Promotes Ferroptosis Through AKT-ERK1/2 and P53-SLC7A11 in Rheumatoid Arthritis. Inflammopharmacology 2024, 32, 1277–1294. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, X.; Zheng, C.; Gao, Z.; Jiang, X.; Bai, Y.; Meng, Y. Sulfasalazine Exacerbates Angiotensin II-Induced Cardiac Remodelling by Activating Akt Signal Pathway. Clin. Exp. Pharmacol. Physiol. 2022, 49, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y. Recent Progress in Treatments of Rheumatoid Arthritis: An Overview of Developments in Biologics and Small Molecules, and Remaining Unmet Needs. Rheumatology 2021, 60, vi12–vi20. [Google Scholar] [CrossRef]
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St.Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res. 2021, 73, 924–939. [Google Scholar] [CrossRef]
- Aromolaran, A.S.; Srivastava, U.; Alí, A.; Chahine, M.; Lazaro, D.; El-Sherif, N.; Capecchi, P.L.; Laghi-Pasini, F.; Lazzerini, P.E.; Boutjdir, M. Interleukin-6 Inhibition of hERG Underlies Risk for Acquired Long QT in Cardiac and Systemic Inflammation. PLoS ONE 2018, 13, e0208321. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kobayashi, Y.; Yokoe, I.; Kitamura, N.; Nishiwaki, A.; Takei, M.; Giles, J.T. Heart Rate–Corrected QT Interval Duration in Rheumatoid Arthritis and Its Reduction with Treatment with the Interleukin 6 Inhibitor Tocilizumab. J. Rheumatol. 2018, 45, 1620–1627. [Google Scholar] [CrossRef]
- Patil, V.B.; Lunge, S.B.; Doshi, B.R. Cardiac Side Effect of Rituximab. Indian J. Drugs Dermatol. 2020, 6, 49. [Google Scholar] [CrossRef]
- Dubois, E.A.; Cohen, A.F. Abatacept. Br. J. Clin. Pharmacol. 2009, 68, 480–481. [Google Scholar] [CrossRef]
- Yamada, Z.; Muraoka, S.; Kawazoe, M.; Hirose, W.; Kono, H.; Yasuda, S.; Sugihara, T.; Nanki, T. Long-Term Effects of Abatacept on Atherosclerosis and Arthritis in Older vs. Younger Patients with Rheumatoid Arthritis: 3-Year Results of a Prospective, Multicenter, Observational Study. Arthritis Res. Ther. 2024, 26, 87. [Google Scholar] [CrossRef] [PubMed]
- Sandra Deson Disease-Modifying Antirheumatic Drugs (Dmards): Revolutionizing Rheumatic Disease Management. Int. J. Clin. Rheumatol. 2024, 19, 208–210. Available online: https://www.openaccessjournals.com/articles/diseasemodifying-antirheumatic-drugs-dmards-revolutionizing-rheumatic-disease-management.pdf (accessed on 10 September 2025).
- Manilall, A.; Mokotedi, L.; Gunter, S.; Le Roux, R.; Fourie, S.; Flanagan, C.A.; Millen, A.M.E. Inflammation-induced Left Ventricular Fibrosis Is Partially Mediated by Tumor Necrosis Factor-α. Physiol. Rep. 2021, 9, e15062. [Google Scholar] [CrossRef]
- Senel, S.; Cobankara, V.; Taskoylu, O.; Karasu, U.; Karapinar, H.; Erdis, E.; Evrengul, H.; Kaya, M.G. The Safety and Efficacy of Etanercept on Cardiac Functions and Lipid Profile in Patients with Active Rheumatoid Arthritis. J. Investig. Med. 2012, 60, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Cai, J.; Chen, H.; Feng, Z.; Yang, G. Cardiovascular Adverse Events Associated with Tumor Necrosis Factor-Alpha Inhibitors: A Real-World Pharmacovigilance Analysis. J. Atheroscler. Thromb. 2024, 31, 1733–1747. [Google Scholar] [CrossRef]
- Talotta, R.; Atzeni, F.; Batticciotto, A.; Ventura, D.; Sarzi-Puttini, P. Possible Relationship between Certolizumab Pegol and Arrhythmias: Report of Two Cases. Reumatismo 2016, 68, 104–108. [Google Scholar] [CrossRef][Green Version]
- Weinblatt, M.E.; Westhovens, R.; Mendelsohn, A.M.; Kim, L.; Lo, K.H.; Sheng, S.; Noonan, L.; Lu, J.; Xu, Z.; Leu, J.; et al. Radiographic Benefit and Maintenance of Clinical Benefit with Intravenous Golimumab Therapy in Patients with Active Rheumatoid Arthritis despite Methotrexate Therapy: Results up to 1 Year of the Phase 3, Randomised, Multicentre, Double Blind, Placebo Controlled GO-FURTHER Trial. Ann. Rheum. Dis. 2014, 73, 2152–2159. [Google Scholar] [CrossRef]
- Smolen, J.S.; Kay, J.; Landewé, R.B.M.; Matteson, E.L.; Gaylis, N.; Wollenhaupt, J.; Murphy, F.T.; Zhou, Y.; Hsia, E.C.; Doyle, M.K. Golimumab in Patients with Active Rheumatoid Arthritis Who Have Previous Experience with Tumour Necrosis Factor Inhibitors: Results of a Long-Term Extension of the Randomised, Double-Blind, Placebo-Controlled GO-AFTER Study Through Week 160. Ann. Rheum. Dis. 2012, 71, 1671–1679. [Google Scholar] [CrossRef]
- Dijkshoorn, B.; Raadsen, R.; Nurmohamed, M.T. Cardiovascular Disease Risk in Rheumatoid Arthritis Anno 2022. J. Clin. Med. 2022, 11, 2704. [Google Scholar] [CrossRef]
- Zhong, X.; Luo, J.; Huang, Y.; Wang, S.; Huang, Y. Cardiovascular Safety of Janus Kinase Inhibitors: A Pharmacovigilance Study from 2012–2023. PLoS ONE 2025, 20, e0322849. [Google Scholar] [CrossRef] [PubMed]
- Khosrow-Khavar, F.; Kim, S.C.; Lee, H.; Lee, S.B.; Desai, R.J. Tofacitinib and Risk of Cardiovascular Outcomes: Results from the Safety of TofAcitinib in Routine Care Patients with Rheumatoid Arthritis (STAR-RA) study. Ann. Rheum. Dis. 2022, 81, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.L.; Kontaridis, M.I. Cardio-rheumatology: The Cardiovascular, Pharmacological, and Surgical Risks Associated with Rheumatological Diseases in Women. Can. J. Physiol. Pharmacol. 2024, 102, 511–522. [Google Scholar] [CrossRef]
- Conaghan, P.G.; Mysler, E.; Tanaka, Y.; Da Silva-Tillmann, B.; Shaw, T.; Liu, J.; Ferguson, R.; Enejosa, J.V.; Cohen, S.; Nash, P.; et al. Upadacitinib in Rheumatoid Arthritis: A Benefit–Risk Assessment Across a Phase III Program. Drug Saf. 2021, 44, 515–530. [Google Scholar] [CrossRef]
- Mariette, X.; Borchmann, S.; Aspeslagh, S.; Szekanecz, Z.; Charles-Schoeman, C.; Schreiber, S.; Choy, E.H.; Peyrin-Biroulet, L.; Schmalzing, M.; Tanaka, Y.; et al. Major Adverse Cardiovascular, Thromboembolic and Malignancy Events in the Filgotinib Rheumatoid Arthritis and Ulcerative Colitis Clinical Development Programmes. RMD Open 2025, 11, e005033. [Google Scholar] [CrossRef]
- Anderson, K.; Xin, Y.; Zheng, H.; Yun, C.; Kwan, E.; Qin, A.; Namour, F.; Kearney, B.P.; Mathias, A. Filgotinib, a JAK1 Inhibitor, Has No Effect on QT Interval in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2020, 9, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Coburn, B.W.; Baker, J.F.; Hsu, J.Y.; Wu, Q.; Xie, F.; Curtis, J.R.; George, M.D. Association of Cardiovascular Outcomes With Low-Dose Glucocorticoid Prescription in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2024, 76, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Gawałko, M.; Peller, M.; Balsam, P.; Grabowski, M.; Kosiuk, J. Management of Cardiac Arrhythmias in Patients with Autoimmune Disease—Insights from EHRA Young Electrophysiologists. Pacing Clin. Electrophis 2020, 43, 1194–1198. [Google Scholar] [CrossRef]
- Tisdale, J.E.; Chung, M.K.; Campbell, K.B.; Hammadah, M.; Joglar, J.A.; Leclerc, J.; Rajagopalan, B. On behalf of the American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing Drug-Induced Arrhythmias: A Scientific Statement From the American Heart Association. Circulation 2020, 142, E214–E233. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Sekiguchi, A.; Kato, T.; Yamashita, T. Glucocorticoid Induces Atrial Arrhythmogenesis via Modification of Ion Channel Gene Expression in Rats: Molecular Evidence for Stress-Induced Atrial Fibrillation. Int. Heart J. 2022, 63, 375–383. [Google Scholar] [CrossRef]
- Zhang, M.-W.; Wang, X.-H.; Shi, J.; Yu, J.-G. Sinomenine in Cardio-Cerebrovascular Diseases: Potential Therapeutic Effects and Pharmacological Evidences. Front. Cardiovasc. Med. 2021, 8, 749113. [Google Scholar] [CrossRef]
- Saramet, E.E.; Negru, R.D.; Oancea, A.; Constantin, M.M.L.; Ancuta, C. 24 h Holter ECG Monitoring of Patients with Rheumatoid Arthritis-A Potential Role for a Precise Evaluation of QT Interval Duration and Associated Arrhythmic Complications. Diagnostics 2022, 12, 638. [Google Scholar] [CrossRef]
- Adams, C. Autoimmunity and Biological Therapies in Cardiac Arrhythmias. Med. Res. Arch. 2024, 12, 6. [Google Scholar] [CrossRef]
- Trujillo, T.C.; Nolan, P.E. Antiarrhythmic Agents: Drug Interactions of Clinical Significance. Drug Saf. 2000, 23, 509–532. [Google Scholar] [CrossRef]
- Rujirachun, P.; Wattanachayakul, P.; Taveeamornrat, S.; Ungprasert, P.; Tokavanich, N.; Jongnarangsin, K. Atrial Fibrillation Recurrence Risk After Catheter Ablation in Patients With Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Clin. Cardiol. 2025, 48, e70021. [Google Scholar] [CrossRef]
- Chang, C.; Gershwin, M.E. Drug-Induced Lupus Erythematosus: Incidence, Management and Prevention. Drug Saf. 2011, 34, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Irizarry-Caro, J.A.; Carmona-Rivera, C.; Schwartz, D.M.; Khaznadar, S.S.; Kaplan, M.J.; Grayson, P.C. Brief Report: Drugs Implicated in Systemic Autoimmunity Modulate Neutrophil Extracellular Trap Formation. Arthritis Rheumatol. 2018, 70, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, S.; Agarwal, M.; Upadhyaya, A.; Pathania, M.; Dhar, M. Rhupus Syndrome: A Diagnostic Dilemma. Cureus 2022, 14, e29018. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Kovačević, M.; Vezmar-Kovačević, S.; Palibrk, I.; Bjelanović, J.; Miljković, B.; Vučićević, K. Lidocaine Clearance as Pharmacokinetic Parameter of Metabolic Hepatic Activity in Patients with Impaired Liver. J. Med. Biochem. 2023, 42, 304–310. [Google Scholar] [CrossRef]
- Alhourani, N.; Wolfes, J.; Könemann, H.; Ellermann, C.; Frommeyer, G.; Güner, F.; Lange, P.S.; Reinke, F.; Köbe, J.; Eckardt, L. Relevance of Mexiletine in the Era of Evolving Antiarrhythmic Therapy of Ventricular Arrhythmias. Clin. Res. Cardiol. 2024, 113, 791–800. [Google Scholar] [CrossRef]
- Johri, M.; Stewart, C. Flecainide as a Fatal Cause of Diffuse Alveolar Damage. Chest 2023, 164, A3276–A3277. [Google Scholar] [CrossRef]
- Abuhelwa, A.Y.; Foster, D.J.R.; Manning-Bennett, A.; Sorich, M.J.; Proudman, S.; Wiese, M.D.; Hopkins, A.M. Concomitant Beta-Blocker Use Is Associated with a Reduced Rate of Remission in Patients with Rheumatoid Arthritis Treated with Disease-Modifying Anti-Rheumatic Drugs: A Post Hoc Multicohort Analysis. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X211009020. [Google Scholar] [CrossRef]
- Sills, J.M.; Bosco, L. Arthralgia Associated with Beta-Adrenergic Blockade. JAMA 1986, 255, 198–199. [Google Scholar]
- Tatu, A.L.; Elisei, A.M.; Chioncel, V.; Miulescu, M.; Nwabudike, L.C. Immunologic Adverse Reactions of β-Blockers and the Skin. Exp. Ther. Med. 2019, 18, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Assad, A.; Alkhaldi, M.; Abrahamian, A.; Yonel, B.; Assaly, R.; Altorok, N. Diffuse Alveolar Hemorrhage Synergistically Induced by Amiodarone and Rheumatoid Arthritis. J. Investig. Med. High Impact Case Rep. 2023, 11, 23247096231196698. [Google Scholar] [CrossRef] [PubMed]
- Shenasa, F.; Shenasa, M. Dofetilide: Electrophysiologic Effect, Efficacy, and Safety in Patients with Cardiac Arrhythmias. Card. Electrophysiol. Clin. 2016, 8, 423–436. [Google Scholar] [CrossRef]
- Fravel, M.A.; Ernst, M. Drug Interactions with Antihypertensives. Curr. Hypertens. Rep. 2021, 23, 14. [Google Scholar] [CrossRef]
- Ye, Z.; Xia, H.; Hu, J.; Liu, Y.-N.; Wang, A.; Cai, J.-P.; Hu, G.-X.; Xu, R.-A. CYP3A4 and CYP2C19 Genetic Polymorphisms and Myricetin Interaction on Tofacitinib Metabolism. Biomed. Pharmacother. 2024, 175, 116421. [Google Scholar] [CrossRef]
- El-Mahdy, N.A.; Tadros, M.G.; El-Masry, T.A.; Binsaleh, A.Y.; Alsubaie, N.; Alrossies, A.; Abd Elhamid, M.I.; Osman, E.Y.; Shalaby, H.M.; Saif, D.S. Efficacy of the Cardiac Glycoside Digoxin as an Adjunct to csDMARDs in Rheumatoid Arthritis Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Front. Pharmacol. 2024, 15, 1445708. [Google Scholar] [CrossRef]
- Yoo, S.; Geist, G.E.; Pfenniger, A.; Rottmann, M.; Arora, R. Recent Advances in Gene Therapy for Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2021, 32, 2854–2864. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungurean, V.; Costan, D.E.; Dobos, M.C.; Ouatu, A.; Morariu, P.C.; Oancea, A.F.; Godun, M.M.; Floria, D.-E.; Marcu, D.T.; Baroi, G.L.; et al. Arrhythmias in Rheumatoid Arthritis: A Call for a Multidisciplinary Team. Life 2025, 15, 1426. https://doi.org/10.3390/life15091426
Ungurean V, Costan DE, Dobos MC, Ouatu A, Morariu PC, Oancea AF, Godun MM, Floria D-E, Marcu DT, Baroi GL, et al. Arrhythmias in Rheumatoid Arthritis: A Call for a Multidisciplinary Team. Life. 2025; 15(9):1426. https://doi.org/10.3390/life15091426
Chicago/Turabian StyleUngurean, Veronica, Diana Elena Costan, Monica Claudia Dobos, Anca Ouatu, Paula Cristina Morariu, Alexandru Florinel Oancea, Maria Mihaela Godun, Diana-Elena Floria, Dragos Traian Marcu, Genoveva Livia Baroi, and et al. 2025. "Arrhythmias in Rheumatoid Arthritis: A Call for a Multidisciplinary Team" Life 15, no. 9: 1426. https://doi.org/10.3390/life15091426
APA StyleUngurean, V., Costan, D. E., Dobos, M. C., Ouatu, A., Morariu, P. C., Oancea, A. F., Godun, M. M., Floria, D.-E., Marcu, D. T., Baroi, G. L., Stanciu, S. M., Knieling, A., Tanase, D. M., Ancuta, C., & Floria, M. (2025). Arrhythmias in Rheumatoid Arthritis: A Call for a Multidisciplinary Team. Life, 15(9), 1426. https://doi.org/10.3390/life15091426