Methodological Approach to Predicting Lower Limb Blood Flow Restriction Pressure Using Anthropometry and Hemodynamics
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Procedures
2.3.1. Anthropometric Measurements
2.3.2. Hemodynamic Measurements
2.3.3. Determination of the Arterial Occlusion Pressure
Determination of Arterial Occlusion Pressure (AOP)
2.3.4. Predictor Variables
2.3.5. Intra-Rater Reliability
2.4. Statistical Analysis
3. Results
- LOP (mmHg) = 90.326 (5.907 × SBP),
- LOP (mmHg) = 65.191 + (4.806 × SBP) + (1.679 × DBP) − (−0.689 × TC) + (2.682 × BMI).
4. Discussion
5. Conclusions
Limitations and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bittar, S.T.; Pfeiffer, P.S.; Santos, H.H.; Cirilo-Sousa, M.S. Effects of blood flow restriction exercises on bone metabolism: A systematic review. Clin. Physiol. Funct. Imaging 2018, 38, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Yagiz, G.; Akaras, E.; Kubis, H.-P.; Owen, J.A. The Effects of Resistance Training on Architecture and Volume of the Upper Extremity Muscles: A Systematic Review of Randomised Controlled Trials and Meta-Analyses. Appl. Sci. 2022, 12, 1593. [Google Scholar] [CrossRef]
- Jacobs, E.; Witvrouw, E.; Calders, P.; Stroobant, L.; Victor, J.; Schuermans, J.; Wezenbeek, E. Blood Flow Restriction Exercise as a Novel Conservative Standard in Patients with Knee Osteoarthritis—A Narrative Review. Appl. Sci. 2024, 14, 6150. [Google Scholar] [CrossRef]
- Fabero-Garrido, R.; Gragera-Vela, M.; del Corral, T.; Izquierdo-García, J.; Plaza-Manzano, G.; López-de-Uralde-Villanueva, I. Effects of Low-Load Blood Flow Restriction Resistance Training on Muscle Strength and Hypertrophy Compared with Traditional Resistance Training in Healthy Adults Older Than 60 Years: Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7389. [Google Scholar] [CrossRef]
- García-Sillero, M.; Maroto-Izquierdo, S.; Galván-García, M.; Benitez-Porres, J.; Vargas-Molina, S.; Jurado-Castro, J.M. Acute Effects of Blood Flow Restriction Training on Movement Velocity and Neuromuscular Signal during the Back Squat Exercise. J. Clin. Med. 2023, 12, 4824. [Google Scholar] [CrossRef]
- Pavlou, K.; Savva, C.; Korakakis, V.; Pamboris, G.M.; Karagiannis, C.; Ploutarchou, G.; Constantinou, A. Blood Flow Restriction Training in Nonspecific Shoulder Pain: Study Protocol of a Crossover Randomised Controlled Trial. Sports 2023, 11, 197. [Google Scholar] [CrossRef]
- Monteiro, E.R.; Pescatello, L.S.; Leitão, L.; de Miranda, M.J.C.; Marchetti, P.H.; Novaes, M.R.; da Silva Araújo, G.; Corrêa Neto, V.G.; da Silva Novaes, J. Muscular Performance and Blood Pressure After Different Pre-Strength Training Strategies in Recreationally Strength-Trained Women: Cross-Over Trial. J. Cardiovasc. Dev. Dis. 2025, 12, 7. [Google Scholar] [CrossRef]
- Hughes, L.; Paton, B.; Rosenblatt, B.; Gissane, C.; Patterson, S.D. Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 1003–1011. [Google Scholar] [CrossRef]
- Clarkson, M.J.; May, A.K.; Warmington, S.A. Chronic blood flow restriction exercise improves objective physical function: A systematic review. Front. Physiol. 2019, 10, 1058. [Google Scholar] [CrossRef]
- Gehlert, S.; Weinisch, P.; Römisch-Margl, W.; Jaspers, R.T.; Artati, A.; Adamski, J.; Dyar, K.A.; Aussieker, T.; Jacko, D.; Bloch, W.; et al. Effects of Acute and Chronic Resistance Exercise on the Skeletal Muscle Metabolome. Metabolites 2022, 12, 445. [Google Scholar] [CrossRef]
- Thomas, K. Blood Flow Restriction and Other Innovations in Musculoskeletal Rehabilitation. In Endurance Sports Medicine: A Clinical Guide; Springer International Publishing: Cham, Switzerland, 2023; pp. 237–266. [Google Scholar]
- Zhang, Y. Application of blood flow restriction training in lower limb rehabilitation. Theor. Nat. Sci. 2024, 50, 24–33. [Google Scholar] [CrossRef]
- Machek, S.B.; Harris, D.R.; Heileson, J.L.; Wilburn, D.T.; Forsse, J.S.; Willoughby, D.S. Impacts of Varying Blood Flow Restriction Cuff Size and Material on Arterial, Venous and Calf Muscle Pump-Mediated Blood Flow. Oxygen 2023, 3, 190–202. [Google Scholar] [CrossRef]
- Hunt, J.E.; Galea, D.; Tufft, G.; Bunce, D.; Ferguson, R.A. Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J. Appl. Physiol. 2013, 115, 403–411. [Google Scholar] [CrossRef]
- Spranger, M.D.; Krishnan, A.C.; Levy, P.D.; O’Leary, D.S.; Smith, S.A. Blood flow restriction training and the exercise pressor reflex: A call for concern. Am. J. Physiol.-Heart Circ. Physiol. 2015, 309, H1440–H1452. [Google Scholar] [CrossRef]
- Smith, N.D.; Scott, B.R.; Girard, O.; Peiffer, J.J. Aerobic training with blood flow restriction for endurance athletes: Potential benefits and considerations of implementation. J. Strength Cond. Res. 2022, 36, 3541–3550. [Google Scholar] [CrossRef]
- Brandner, C.R.; May, A.K.; Clarkson, M.J.; Warmington, S.A. Reported side-effects and safety considerations for the use of blood flow restriction during exercise in practice and research. Tech. Orthop. 2018, 33, 114–121. [Google Scholar] [CrossRef]
- Murray, J.; Bennett, H.; Boyle, T.; Williams, M.; Davison, K. Approaches to determining occlusion pressure for blood flow restricted exercise training: Systematic review. J. Sports Sci. 2021, 39, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Pesova, P.; Jiravska Godula, B.; Jiravsky, O.; Jelinek, L.; Sovova, M.; Moravcova, K.; Ozana, J.; Gajdusek, L.; Miklik, R.; Sknouril, L.; et al. Exercise-Induced Blood Pressure Dynamics: Insights from the General Population and the Athletic Cohort. J. Cardiovasc. Dev. Dis. 2023, 10, 480. [Google Scholar] [CrossRef]
- Chang, H.; Yang, X.; Chen, B.; Zhang, J. Effects of Different Blood Flow Restriction Training Modes on Body Composition and Maximal Strength of Untrained Individuals. Life 2024, 14, 1666. [Google Scholar] [CrossRef] [PubMed]
- Pişkin, N.E.; Yavuz, G.; Aktuğ, Z.B.; Aldhahi, M.I.; Al-Mhanna, S.B.; Gülü, M. The Effect of Combining Blood Flow Restriction with the Nordic Hamstring Exercise on Hamstring Strength: Randomized Controlled Trial. J. Clin. Med. 2024, 13, 2035. [Google Scholar] [CrossRef]
- Vervloet, G.; Fregosi, L.; Gauthier, A.; Grenot, P.; Balestra, C. Impact of Five Weeks of Strengthening Under Blood Flow Restriction (BFR) or Supplemental Oxygen Breathing (Normobaric Hyperoxia) on the Medial Gastrocnemius. J. Funct. Morphol. Kinesiol. 2024, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Abe, T.; Brechue, W.F.; Iida, H.; Takano, H.; Meguro, K.; Nakajima, T. Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism 2010, 59, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.R.; Loenneke, J.P.; Slattery, K.M.; Dascombe, B.J. Exercise with Blood Flow Restriction: An Updated Evidence-Based Approach for Enhanced Muscular Development. Sports Med. 2014, 45, 313–325. [Google Scholar] [CrossRef]
- Shimizu, R.; Hotta, K.; Yamamoto, S.; Matsumoto, T.; Kamiya, K.; Kato, M.; Hamazaki, N.; Kamekawa, D.; Akiyama, A.; Kamada, Y.; et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur. J. Appl. Physiol. 2016, 116, 749–757. [Google Scholar] [CrossRef]
- Pignanelli, C.; Christiansen, D.; Burr, J.F. Blood flow restriction training and the high-performance athlete: Science to application. J. Appl. Physiol. 2021, 130, 1163. [Google Scholar] [CrossRef]
- Maga, M.; Wachsmann-Maga, A.; Batko, K.; Włodarczyk, A.; Kłapacz, P.; Krężel, J.; Szopa, N.; Sliwka, A. Impact of Blood-Flow-Restricted Training on Arterial Functions and Angiogenesis—A Systematic Review with Meta-Analysis. Biomedicines 2023, 11, 1601. [Google Scholar] [CrossRef]
- Akgül, M.Ş.; Uysal, H.Ş.; Keskin, N.K.; Çetin, T.; Başdemirci, M.; Akgül, M.N.; Yıldız, Z.; Çiftçi, E.; Soslu, R. Effects of Blood Flow Restriction Resistance Exercise Versus Traditional Resistance Exercise in Voluntary Exhaustion on Quadriceps Muscle Adaptations in Untrained Young Males: A Randomized Trial. Medicina 2025, 61, 804. [Google Scholar] [CrossRef]
- Angelopoulos, P.; Tsekoura, M.; Mylonas, K.; Tsigkas, G.; Billis, E.; Tsepis, E.; Fousekis, K. The effectiveness of blood flow restriction training in cardiovascular disease patients: A scoping review. J. Frailty Sarcopenia Falls 2023, 8, 107. [Google Scholar] [CrossRef]
- Cahalin, L.P.; Formiga, M.F.; Owens, J.; Anderson, B.; Hughes, L. Beneficial role of blood flow restriction exercise in heart disease and heart failure using the muscle hypothesis of chronic heart failure and a growing literature. Front. Physiol. 2022, 13, 924557. [Google Scholar] [CrossRef]
- Pinto, R.R.; Polito, M.D. Haemodynamic Responses during Resistance Exercise with Blood Flow Restriction in Hypertensive Subjects. Clin. Physiol. Funct. Imaging 2016, 36, 407–413. [Google Scholar] [CrossRef]
- Weatherholt, A.M.; Vanwye, W.R.; Lohmann, J.; Owens, J.G. The Effect of Cuff Width for Determining Limb Occlusion Pressure: A Comparison of Blood Flow Restriction Devices. Int. J. Exerc. Sci. 2019, 12, 136–143. [Google Scholar] [CrossRef]
- Patterson, S.D.; Hughes, L.; Head, P.; Warmington, S.A.; Brandner, C.R. Blood flow restriction training: A novel approach to augment clinical rehabilitation: How to do it. Br. J. Sports Med. 2017, 51, 1648. [Google Scholar] [CrossRef]
- Thomas, K. The Benefits of Blood Flow Restriction Training for Rehabilitation. Co-Kinet. J. 2019, 79, 24–31. [Google Scholar]
- Van Cant, J.; Dawe-Coz, A.; Aoun, E.; Esculier, J.-F. Quadriceps Strengthening with Blood Flow Restriction for the Rehabilitation of Patients with Knee Conditions: A Systematic Review with Meta-Analysis. J. Back Musculoskelet. Rehabil. 2020, 33, 529–544. [Google Scholar] [CrossRef]
- Chulvi-Medrano, I.; Cortell-Tormo, J.M.; Hernández-Sánchez, S.; Picón-Martínez, M.; Rolnick, N. Blood flow restriction training in clinical rehabilitation: Occlusion pressure methods relative to the limb occlusion pressure. J. Sport Rehabil. 2023, 32, 361–368. [Google Scholar] [CrossRef]
- Ohta, H.; Kurosawa, H.; Ikeda, H.; Iwase, Y.; Satou, N.; Nakamura, S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop. Scand. 2003, 74, 62–68. [Google Scholar] [CrossRef]
- Hughes, L.; Rosenblatt, B.; Paton, B.; Patterson, S.D. Blood flow restriction training in rehabilitation following anterior cruciate ligament reconstructive surgery: A review. Tech. Orthop. 2018, 33, 106–113. [Google Scholar] [CrossRef]
- Kacin, A.; Drobnič, M.; Marš, T.; Miš, K.; Petrič, M.; Weber, D.; Žargi, T.T.; Martinčič, D.; Pirkmajer, S. Functional and molecular adaptations of quadriceps and hamstring muscles to blood flow restricted training in patients with ACL rupture. Scand. J. Med. Sci. Sports 2021, 31, 1636–1646. [Google Scholar] [CrossRef]
- Lorenz, D.S.; Bailey, L.; Wilk, K.E.; Mangine, R.E.; Head, P.; Grindstaff, T.L.; Morrison, S. Blood flow restriction training. J. Athl. Train. 2021, 56, 937–944. [Google Scholar] [CrossRef]
- Tennent, D.J.; Hylden, C.M.; Johnson, A.E.; Burns, T.C.; Wilken, J.M.; Owens, J.G. Blood flow restriction training after knee arthroscopy: A randomized controlled pilot study. Clin. J. Sport Med. 2017, 27, 245–252. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Xie, W.Q.; Chen, L.; Xu, G.D.; Wu, L.; Li, Y.S.; Wu, Y.X. Blood flow restriction training for the intervention of sarcopenia: Current stage and future perspective. Front. Med. 2022, 9, 894996. [Google Scholar] [CrossRef]
- Sultan, A.A.E.; Sayed, A.A.E.A.; El-Maleh, D.M.M.; Mehmed, S. Restricted Blood Flow versus Resisted Training in Elderly Women with Sarcopenia. Egypt. J. Hosp. Med. 2024, 95, 1920–1925. [Google Scholar] [CrossRef]
- Madarame, H.; Sasaki, K.; Ishii, N. Endocrine responses to upper-and lower-limb resistance exercises with blood flow restriction. Acta Physiol. Hung. 2010, 97, 192–200. [Google Scholar] [CrossRef]
- Kim, E.; Gregg, L.D.; Kim, L.; Sherk, V.D.; Bemben, M.G.; Bemben, D.A. Hormone responses to an acute bout of low intensity blood flow restricted resistance exercise in college-aged females. J. Sports Sci. Med. 2014, 13, 91. [Google Scholar]
- Sharifi, S.; Monazzami, A.; Nikousefat, Z.; Heyrani, A.; Yari, K. The acute and chronic effects of resistance training with blood flow restriction on hormonal responses in untrained young men: A comparison of frequency. Cell. Mol. Biol. 2020, 66, 1–8. [Google Scholar] [CrossRef]
- Bemben, D.A.; Sherk, V.D.; Buchanan, S.R.; Kim, S.; Sherk, K.; Bemben, M.G. Acute and chronic bone marker and endocrine responses to resistance exercise with and without blood flow restriction in young men. Front. Physiol. 2022, 13, 837631. [Google Scholar] [CrossRef]
- Vilaça-Alves, J.; Magalhães, P.S.; Rosa, C.V.; Reis, V.M.; Garrido, N.D.; Payan-Carreira, R.; Costa, P.B. Acute hormonal responses to multi-joint resistance exercises with blood flow restriction. J. Funct. Morphol. Kinesiol. 2022, 8, 3. [Google Scholar] [CrossRef]
- Rolnick, N.; Schöenfeld, B.J. Blood Flow Restriction Training and the Physique Athlete: A Practical Research-Based Guide to Maximizing Muscle Size. Strength Cond. J. 2020, 42, 22. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef]
- Hwang, P.S.; Willoughby, D.S. Mechanisms behind blood flow–restricted training and its effect toward muscle growth. J. Strength Cond. Res. 2019, 33, S167–S179. [Google Scholar] [CrossRef] [PubMed]
- McEwen, J.A.; Owens, J.G.; Jeyasurya, J. Why is it crucial to use personalized occlusion pressures in blood flow restriction (BFR) rehabilitation? J. Med. Biol. Eng. 2019, 39, 173–177. [Google Scholar] [CrossRef]
- Aniceto, R.R.; da Silva Leandro, L. Practical blood flow restriction training: New methodological directions for practice and research. Sports Med.-Open 2022, 8, 87. [Google Scholar] [CrossRef]
- Das, A.; Paton, B. Is there a minimum effective dose for vascular occlusion during blood flow restriction training? Front. Physiol. 2022, 13, 838115. [Google Scholar] [CrossRef]
- Gronlund, C.; Christoffersen, K.S.; Thomsen, K.; Masud, T.; Jepsen, D.B.; Ryg, J. Effect of blood-flow restriction exercise on falls and fall related risk factors in older adults 60 years or above: A systematic review. J. Musculoskelet. Neuronal Interact. 2020, 20, 513. [Google Scholar]
- Williams, N.; Russell, M.; Cook, C.J.; Kilduff, L.P. The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players. J. Sci. Med. Sport 2018, 21, 1095–1099. [Google Scholar] [CrossRef]
- Northey, J.M.; Rattray, B.; Argus, C.K.; Etxebarria, N.; Driller, M.W. Vascular occlusion and sequential compression for recovery after resistance exercise. J. Strength Cond. Res. 2016, 30, 533–539. [Google Scholar] [CrossRef]
- Fahs, C.A.; Loenneke, J.P.; Rossow, L.M.; Tiebaud, R.S.; Bemben, M.G. Methodological considerations for blood flow restricted resistance exercise. J. Trainology 2012, 1, 14. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Allen, K.M.; Mouser, J.G.; Thiebaud, R.S.; Kim, D.; Abe, T.; Bemben, M.G. Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur. J. Appl. Physiol. 2015, 115, 397–405. [Google Scholar] [CrossRef]
- Hornikel, B.; Saffold, K.S.; Mota, J.A.; Esco, M.R.; Fedewa, M.V.; Wind, S.A.; Winchester, L.J. Acute blood flow responses to varying blood flow restriction pressures in the lower limb. Int. J. Exerc. Sci. 2023, 16, 118. [Google Scholar] [CrossRef]
- Pavlou, K.; Korakakis, V.; Whiteley, R.; Karagiannis, C.; Ploutarchou, G.; Savva, C. The effects of upper body blood flow restriction training on muscles located proximal to the applied occlusive pressure: A systematic review with meta-analysis. PLoS ONE 2023, 18, e0283309. [Google Scholar] [CrossRef]
- Rolnick, N.; Kimbrell, K.; Cerqueira, M.S.; Weatherford, B.; Brandner, C. Perceived barriers to blood flow restriction training. Front. Rehabil. Sci. 2021, 2, 697082. [Google Scholar] [CrossRef]
- Chang, H.; Yan, J.; Lu, G.; Chen, B.; Zhang, J. Muscle strength adaptation between high-load resistance training versus low-load blood flow restriction training with different cuff pressure characteristics: A systematic review and meta-analysis. Front. Physiol. 2023, 14, 1244292. [Google Scholar] [CrossRef]
- Moreno, E.N.; Figueroa, E.C.; Heath, A.W.; Buckner, S.L. An examination of acute physiological and perceptual responses following blood flow restriction exercise using a traditional research device or novel, automated system. Physiol. Meas. 2024, 45, 065007. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Fahs, C.A.; Rossow, L.M.; Sherk, V.D.; Thiebaud, R.S.; Abe, T.; Bemben, M.G. Effects of cuff width on arterial occlusion: Implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 2012, 112, 2903–2912. [Google Scholar] [CrossRef]
- Jessee, M.B.; Buckner, S.L.; Dankel, S.J.; Counts, B.R.; Abe, T.; Loenneke, J.P. The influence of cuff width, sex, and race on arterial occlusion: Implications for blood flow restriction research. Sports Med. 2016, 46, 913–921. [Google Scholar] [CrossRef]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.R.; Owens, J.; Clark, D. Blood flow restriction exercise: Considerations of methodology, application, and safety. Front. Physiol. 2019, 10, 533. [Google Scholar] [CrossRef]
- Laurentino, G.C.; Ugrinowitsch, C.; Aihara, A.Y.; Fernandes, A.R.; Parcell, A.C.; Ricard, M.; Tricoli, V. Effects of strength training with blood flow restriction on muscle power and hypertrophy in well-trained athletes. J. Strength Cond. Res. 2018, 32, 2902–2910. [Google Scholar] [CrossRef]
- Counts, B.R.; Dankel, S.J.; Barnett, B.E.; Kim, D.; Mouser, J.G.; Allen, K.M.; Loenneke, J.P. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve 2018, 57, 463–471. [Google Scholar] [CrossRef]
- Mouser, J.G.; Dankel, S.J.; Jessee, M.B.; Mattocks, K.T.; Buckner, S.L.; Loenneke, J.P. A tale of three cuffs: The hemodynamics of blood flow restriction. Eur. J. Appl. Physiol. 2017, 117, 1493–1499. [Google Scholar] [CrossRef]
- Zeng, Z.; Centner, C.; Gollhofer, A.; König, D. Blood-Flow-Restriction Training: Validity of Pulse Oxi-metry to Assess Arterial Occlusion Pressure. Int. J. Sports Physiol. Perform. 2019, 14, 1408–1414. [Google Scholar] [CrossRef]
- Kilgas, M.A.; McDaniel, J.; Stavres, J.; Pollock, B.S.; Singer, T.J.; Elmer, S.J. Limb blood flow and tissue perfusion during exercise with blood flow restriction. Eur. J. Appl. Physiol. 2019, 119, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Ferguson, R.A.; Warmington, S.A. The role of blood flow restriction training for applied practitioners: Strength and conditioning, rehabilitation, and beyond. Front. Sports Act. Living 2020, 2, 569678. [Google Scholar] [CrossRef]
Variables | Mean ± SD | Min–Max |
---|---|---|
Age (years) | 22.22 ± 1.81 | 18–27 |
Body mass (kg) | 75.29 ± 11.34 | 47.4–105.7 |
Body fat (%) | 18.84 ± 5.88 | 6.20 ± 33.80 |
Height (cm) | 176.79 ± 6.89 | 153.20–190.20 |
BMI (kg/m2) | 24.06 ± 3.18 | 16.99–34.51 |
TC (cm) | 54.47 ± 4.85 | 44.00–68.00 |
SBP (mmHg) | 123.0 ± 12 | 100–159 |
DBP (mmHg) | 69.6 ± 9.6 | 50–90 |
LOP (mmHg) | 211.04 ± 32.86 | 160–255 |
Predictor Variables | ||||||
---|---|---|---|---|---|---|
Predicted Variable LOP | SBP (mmHg) | DBP (mmHg) | TC (cm) | BMI (kg/m2) | BFP (%) | |
LOP | r | 0.309 | 0.228 | 0.130 | 0.302 | 0.149 |
p | 0.000 | 0.002 | 0.049 | 0.000 | 0.031 |
Model Blocks | |||||||
---|---|---|---|---|---|---|---|
Block 1 | |||||||
Stand. B | p | Part | 95% CI Lower | 95% CI Upper | |||
SBP | 5.907 | <0.001 | 0.309 | 1.25 | 6.04 | ||
R | R2 | SEE | Mean Square Eror | Sig F change | |||
0.95 | 0.90 | 21.577 | 465.578 | <0.001 | |||
Block 2 | |||||||
Stand. B | p-value | Part | 95% CI Lower | 95% CI Upper | |||
SBP | 4.997 | 0.004 | 0.233 | 0.49 | 5.22 | ||
DBP | 2.129 | 0.310 | 0.077 | −2.88 | 4.20 | ||
R | R2 | SEE | Mean Square Eror | Sig F change | |||
0.101 | 0.090 | 21.575 | 465.469 | 0.310 | |||
Block 3 | |||||||
Stand. B | p-value | Part | 95% CI Lower | 95% CI Upper | |||
SBP | 5.106 | 0.003 | 0.227 | 0.54 | 6.21 | ||
DBP | 1.678 | 0.427 | 0.072 | −3.02 | 3.98 | ||
TC | 0.509 | 0.156 | 0.108 | 0.13 | 1.21 | ||
R | R2 | SEE | Mean Square Eror | Sig F change | |||
0.113 | 0.096 | 21.504 | 462.414 | 0.156 | |||
Block 4 | |||||||
Stand. B | p-value | Part | 95% CI Lower | 95% CI Upper | |||
SBP | 4.806 | 0.004 | 0.214 | 0.45 | 6.13 | ||
DBP | 1.679 | 0.408 | 0.060 | −3.01 | 3.99 | ||
TC | −0.689 | 0.156 | −0.107 | −0.148 | 1.16 | ||
BMI | 2.682 | <0.001 | 0.274 | −0.47 | 1.28 | ||
R | R2 | SEE | Mean Square Eror | Sig F change | |||
0.188 | 0.167 | 20.639 | 425.951 | <0.001 | |||
Block 5 | |||||||
Stand. B | p-value | Part | 95% CI Lower | 95% CI Upper | |||
SBP | 5.371 | 0.002 | 0.233 | 0.46 | 6.20 | ||
DBP | 1.878 | 0.353 | 0.067 | −2.99 | 4.09 | ||
TC | −0.683 | 0.143 | −0.106 | −0.146 | 1.16 | ||
BMI | 3.233 | <0.001 | 0.297 | −0.48 | 1.34 | ||
BFP | −0.557 | 0.116 | −0.114 | −0.55 | 0.432 | ||
R | R2 | SEE | Mean Square Eror | Sig F change | |||
0.201 | 0.175 | 20.539 | 421.832 | 0.116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaşar, O.M.; Gürses, V.V.; Ciğerci, A.E.; Güler, Ö.; Turğut, M.; Gürkan, O.; Baş, M.; Özdenk, S.; Şahin, F.N.; Ceylan, L.; et al. Methodological Approach to Predicting Lower Limb Blood Flow Restriction Pressure Using Anthropometry and Hemodynamics. Life 2025, 15, 1267. https://doi.org/10.3390/life15081267
Yaşar OM, Gürses VV, Ciğerci AE, Güler Ö, Turğut M, Gürkan O, Baş M, Özdenk S, Şahin FN, Ceylan L, et al. Methodological Approach to Predicting Lower Limb Blood Flow Restriction Pressure Using Anthropometry and Hemodynamics. Life. 2025; 15(8):1267. https://doi.org/10.3390/life15081267
Chicago/Turabian StyleYaşar, Onur Mutlu, Veli Volkan Gürses, Ali Erdem Ciğerci, Özkan Güler, Murat Turğut, Oğuz Gürkan, Mustafa Baş, Serhat Özdenk, Fatma Neşe Şahin, Levent Ceylan, and et al. 2025. "Methodological Approach to Predicting Lower Limb Blood Flow Restriction Pressure Using Anthropometry and Hemodynamics" Life 15, no. 8: 1267. https://doi.org/10.3390/life15081267
APA StyleYaşar, O. M., Gürses, V. V., Ciğerci, A. E., Güler, Ö., Turğut, M., Gürkan, O., Baş, M., Özdenk, S., Şahin, F. N., Ceylan, L., & Küçük, H. (2025). Methodological Approach to Predicting Lower Limb Blood Flow Restriction Pressure Using Anthropometry and Hemodynamics. Life, 15(8), 1267. https://doi.org/10.3390/life15081267