Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies
Abstract
1. Introduction
2. Veterinary Hosts and Their Role in Transmission
2.1. Pigs as Amplifiers and Birds as Reservoirs
2.2. Infection Mechanism and Clinical Presentation in Hosts
2.3. Transmission Pathway from Animals to Humans
3. Surveillance Systems and Public Health Implications
3.1. National Animal Surveillance Strategies
3.2. Predictive Value for Human Risk
3.3. Limitations and Innovations
4. Vaccination Strategies in Animals and Humans
4.1. Vaccine Types and Implementation
4.2. Indirect Protection Through Pig Vaccination
4.3. Duration of Immunity and Cost-Effectiveness
5. Integrated One Health Control Approaches
5.1. Cross-Sector Integration Examples
5.2. Overcoming Fragmented Responses
5.3. Climate Change and Vector Expansion
5.4. Policy-Relevant, Actionable Recommendations
6. Challenges and Future Directions
6.1. Viral Evolution and Vaccine Escape
6.2. Surveillance Inequity
6.3. Building Integrated Response Systems
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Turtle, L.; Solomon, T. Japanese encephalitis—The prospects for new treatments. Nat. Rev. Neurol. 2018, 14, 298–313. [Google Scholar] [CrossRef]
- Filgueira, L.; Lannes, N. Review of Emerging Japanese Encephalitis Virus: New Aspects and Concepts about Entry into the Brain and Inter-Cellular Spreading. Pathogens 2019, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Levesque, Z.A.; Walsh, M.G.; Webb, C.E.; Zadoks, R.N.; Brookes, V.J. A scoping review of evidence of naturally occurring Japanese encephalitis infection in vertebrate animals other than humans, ardeid birds and pigs. PLoS Negl. Trop. Dis. 2024, 18, e0012510. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.M. The current burden of Japanese encephalitis and the estimated impacts of vaccination: Combining estimates of the spatial distribution and transmission intensity of a zoonotic pathogen. PLoS Negl. Trop. Dis. 2021, 15, e0009385. [Google Scholar] [CrossRef] [PubMed]
- Van den Eynde, C.; Sohier, C.; Matthijs, S.; De Regge, N. Japanese Encephalitis Virus Interaction with Mosquitoes: A Review of Vector Competence, Vector Capacity and Mosquito Immunity. Pathogens 2022, 11, 317. [Google Scholar] [CrossRef]
- Arai, S.; Kuwata, R.; Higa, Y.; Maekawa, Y.; Tsuda, Y.; Roychoudhury, S.; Bertuso, A.G.; Phong, T.V.; Yen, N.T.; Etoh, T.; et al. Two hidden taxa in the Japanese encephalitis vector mosquito, Culex tritaeniorhynchus, and the potential for long-distance migration from overseas to Japan. PLoS Negl. Trop. Dis. 2022, 16, e0010543. [Google Scholar] [CrossRef]
- Park, S.L.; Huang, Y.S.; Vanlandingham, D.L. Re-Examining the Importance of Pigs in the Transmission of Japanese Encephalitis Virus. Pathogens 2022, 11, 575. [Google Scholar] [CrossRef]
- Ladreyt, H.; Durand, B.; Dussart, P.; Chevalier, V. How Central Is the Domestic Pig in the Epidemiological Cycle of Japanese Encephalitis Virus? A Review of Scientific Evidence and Implications for Disease Control. Viruses 2019, 11, 949. [Google Scholar] [CrossRef]
- Erlanger, T.E.; Weiss, S.; Keiser, J.; Utzinger, J.; Wiedenmayer, K. Past, present, and future of Japanese encephalitis. Emerg. Infect. Dis. 2009, 15, 1–7. [Google Scholar] [CrossRef]
- Matsui, K.; Yamaya, M.; Takase, M.; Morita, K.; Tajima, S.; Lim, C.K.; Saijo, M.; Daibata, M.; Nagayasu, S.; Takasaki, T. Japanese Encephalitis Virus Genotypes 1 and 3 Isolation in Kochi, Japan. Jpn. J. Infect. Dis. 2023, 76, 151–154. [Google Scholar] [CrossRef]
- Fan, Y.C.; Chen, Y.Y.; Chen, J.M.; Huang, C.; Huang, M.; Chiou, S.S. Effectiveness of Live-Attenuated Genotype III Japanese Encephalitis Viral Vaccine against Circulating Genotype I Viruses in Swine. Viruses 2022, 14, 114. [Google Scholar] [CrossRef]
- Schuh, A.J.; Ward, M.J.; Leigh Brown, A.J.; Barrett, A.D. Dynamics of the emergence and establishment of a newly dominant genotype of Japanese encephalitis virus throughout Asia. J. Virol. 2014, 88, 4522–4532. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, Q.; Wang, H.; Liang, G. The reemerging and outbreak of genotypes 4 and 5 of Japanese encephalitis virus. Front. Cell Infect. Microbiol. 2023, 13, 1292693. [Google Scholar] [CrossRef] [PubMed]
- Takhampunya, R.; Kim, H.C.; Tippayachai, B.; Kengluecha, A.; Klein, T.A.; Lee, W.J.; Grieco, J.; Evans, B.P. Emergence of Japanese encephalitis virus genotype V in the Republic of Korea. Virol. J. 2011, 8, 449. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; Williams, D.T.; van den Hurk, A.F.; Smith, D.W.; Currie, B.J. Japanese Encephalitis Virus: The Emergence of Genotype IV in Australia and Its Potential Endemicity. Viruses 2022, 14, 2480. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Gao, T.; Wang, Z.; Zhang, J.; Cui, B.; Shen, X.; Zhou, A.; Zhang, Y.; Zhao, J.; Liu, H.; et al. Re-Emerged Genotype IV of Japanese Encephalitis Virus Is the Youngest Virus in Evolution. Viruses 2023, 15, 626. [Google Scholar] [CrossRef]
- Kim, J.D.; Lee, A.R.; Moon, D.H.; Chung, Y.U.; Hong, S.Y.; Cho, H.J.; Kang, T.H.; Jang, Y.H.; Sohn, M.H.; Seong, B.L.; et al. Efficacy of genotype-matched vaccine against re-emerging genotype V Japanese encephalitis virus. Emerg. Microbes Infect. 2024, 13, 2343910. [Google Scholar] [CrossRef]
- Do, L.P.; Bui, T.M.; Phan, N.T. Mechanism of Japanese encephalitis virus genotypes replacement based on human, porcine and mosquito-originated cell lines model. Asian Pac. J. Trop. Med. 2016, 9, 333–336. [Google Scholar] [CrossRef]
- Moore, K.T.; Mangan, M.J.; Linnegar, B.; Athni, T.S.; McCallum, H.I.; Trewin, B.J.; Skinner, E. Australian vertebrate hosts of Japanese encephalitis virus: A review of the evidence. Trans. R. Soc. Trop. Med. Hyg. 2025, 119, 189–202. [Google Scholar] [CrossRef]
- Walsh, M.G.; Pattanaik, A.; Vyas, N.; Saxena, D.; Webb, C.; Sawleshwarkar, S.; Mukhopadhyay, C. High-risk landscapes of Japanese encephalitis virus outbreaks in India converge on wetlands, rain-fed agriculture, wild Ardeidae, and domestic pigs and chickens. Int. J. Epidemiol. 2022, 51, 1408–1418. [Google Scholar] [CrossRef]
- van den Hurk, A.F.; Ritchie, S.A.; Mackenzie, J.S. Ecology and geographical expansion of Japanese encephalitis virus. Annu. Rev. Entomol. 2009, 54, 17–35. [Google Scholar] [CrossRef]
- Redant, V.; Favoreel, H.W.; Dallmeier, K.; Van Campe, W.; De Regge, N. Efficient control of Japanese encephalitis virus in the central nervous system of infected pigs occurs in the absence of a pronounced inflammatory immune response. J. Neuroinflammation 2020, 17, 315. [Google Scholar] [CrossRef]
- Ricklin, M.E.; Garcìa-Nicolàs, O.; Brechbühl, D.; Python, S.; Zumkehr, B.; Posthaus, H.; Oevermann, A.; Summerfield, A. Japanese encephalitis virus tropism in experimentally infected pigs. Vet. Res. 2016, 47, 34. [Google Scholar] [CrossRef]
- Hick, P.M.; Finlaison, D.S.; Parrish, K.; Gu, X.; Hayton, P.; O’Connor, T.; Read, A.; Zhang, J.; Spiers, Z.B.; Pinczowski, P.; et al. Experimental Infections of Pigs with Japanese Encephalitis Virus Genotype 4. Microorganisms 2024, 12, 2163. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Yang, Y.; Zhang, Y.; Zhou, L.; Ma, X.; Xiao, C.; Zhang, J.; Li, Z.; Liu, K.; Li, B.; et al. Shift in dominant genotypes of Japanese encephalitis virus and its impact on current vaccination strategies. Front. Microbiol. 2023, 14, 1302101. [Google Scholar] [CrossRef] [PubMed]
- Mulvey, P.; Duong, V.; Boyer, S.; Burgess, G.; Williams, D.T.; Dussart, P.; Horwood, P.F. The Ecology and Evolution of Japanese Encephalitis Virus. Pathogens 2021, 10, 1534. [Google Scholar] [CrossRef] [PubMed]
- Hameed, M.; Wahaab, A.; Nawaz, M.; Khan, S.; Nazir, J.; Liu, K.; Wei, J.; Ma, Z. Potential Role of Birds in Japanese Encephalitis Virus Zoonotic Transmission and Genotype Shift. Viruses 2021, 13, 357. [Google Scholar] [CrossRef]
- Mansfield, K.L.; Hernández-Triana, L.M.; Banyard, A.C.; Fooks, A.R.; Johnson, N. Japanese encephalitis virus infection, diagnosis and control in domestic animals. Vet. Microbiol. 2017, 201, 85–92. [Google Scholar] [CrossRef]
- Karna, A.K.; Bowen, R.A. Experimental Evaluation of the Role of Ecologically-Relevant Hosts and Vectors in Japanese Encephalitis Virus Genotype Displacement. Viruses 2019, 11, 32. [Google Scholar] [CrossRef]
- Saito, M.; Osa, Y.; Asakawa, M. Antibodies to flaviviruses in wild ducks captured in Hokkaido, Japan: Risk assessment of invasive flaviviruses. Vector Borne Zoonotic Dis. 2009, 9, 253–258. [Google Scholar] [CrossRef]
- Kuwata, R.; Torii, S.; Shimoda, H.; Supriyono, S.; Phichitraslip, T.; Prasertsincharoen, N.; Takemae, H.; Bautista, R.; Ebora, V.; Abella, J.A.C.; et al. Distribution of Japanese Encephalitis Virus, Japan and Southeast Asia, 2016–2018. Emerg. Infect. Dis. 2020, 26, 125–128. [Google Scholar] [CrossRef]
- Dixon, A.L.; Oliveira, A.R.S.; Cohnstaedt, L.W.; Mitzel, D.; Mire, C.; Cernicchiaro, N. Revisiting the risk of introduction of Japanese encephalitis virus (JEV) into the United States—An updated semi-quantitative risk assessment. One Health 2024, 19, 100879. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.J.; Jackson, S.A.; Suen, W.W.; Payne, J.; Beveridge, D.; Hargreaves, M.; Gillies, D.; Wang, J.; Blasdell, K.R.; Dunn, M.; et al. Australian Culex annulirostris mosquitoes are competent vectors for Japanese encephalitis virus genotype IV. Emerg. Microbes Infect. 2024, 13, 2429628. [Google Scholar] [CrossRef] [PubMed]
- van-den-Hurk, A.F.; Ritchie, S.A.; Johansen, C.A.; Mackenzie, J.S.; Smith, G.A. Domestic pigs and Japanese encephalitis virus infection, Australia. Emerg. Infect. Dis. 2008, 14, 1736–1738. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.I.; Lee, Y.M. Japanese encephalitis: The virus and vaccines. Hum. Vaccin. Immunother. 2014, 10, 263–279. [Google Scholar] [CrossRef]
- Le Flohic, G.; Porphyre, V.; Barbazan, P.; Gonzalez, J.P. Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus ecology. PLoS Negl. Trop. Dis. 2013, 7, e2208. [Google Scholar] [CrossRef]
- Baylis, M.; Barker, C.M.; Caminade, C.; Joshi, B.R.; Pant, G.R.; Rayamajhi, A.; Reisen, W.K.; Impoinvil, D.E. Emergence or improved detection of Japanese encephalitis virus in the Himalayan highlands? Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 209–211. [Google Scholar] [CrossRef]
- Pearce, J.C.; Learoyd, T.P.; Langendorf, B.J.; Logan, J.G. Japanese encephalitis: The vectors, ecology and potential for expansion. J. Travel. Med. 2018, 25, S16–S26. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Gubler, D.J.; Petersen, L.R. Emerging flaviviruses: The spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat. Med. 2004, 10, S98–S109. [Google Scholar] [CrossRef]
- Kardena, I.M.; Adi, A.; Astawa, I.N.M.; Oka, I.B.M.; Sahibzada, S.; Bruce, M.; O’Dea, M. Seroconversion, genotyping, and potential mosquito vector identification of Japanese encephalitis virus in pig sentinel settings in Bali, Indonesia. Vet. World 2024, 17, 89–98. [Google Scholar] [CrossRef]
- Yap, G.; Lim, X.F.; Chan, S.; How, C.B.; Humaidi, M.; Yeo, G.; Mailepessov, D.; Kong, M.; Lai, Y.L.; Okumura, C.; et al. Serological evidence of continued Japanese encephalitis virus transmission in Singapore nearly three decades after end of pig farming. Parasit. Vectors 2019, 12, 244. [Google Scholar] [CrossRef]
- Heffelfinger, J.D.; Li, X.; Batmunkh, N.; Grabovac, V.; Diorditsa, S.; Liyanage, J.B.; Pattamadilok, S.; Bahl, S.; Vannice, K.S.; Hyde, T.B.; et al. Japanese Encephalitis Surveillance and Immunization—Asia and Western Pacific Regions, 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 579–583. [Google Scholar] [CrossRef]
- Nitatpattana, N.; Le Flohic, G.; Thongchai, P.; Nakgoi, K.; Palaboodeewat, S.; Khin, M.; Barbazan, P.; Yoksan, S.; Gonzalez, J.P. Elevated Japanese encephalitis virus activity monitored by domestic sentinel piglets in Thailand. Vector Borne Zoonotic Dis. 2011, 11, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Chiou, S.S.; Chen, J.M.; Chen, Y.Y.; Chia, M.Y.; Fan, Y.C. The feasibility of field collected pig oronasal secretions as specimens for the virologic surveillance of Japanese encephalitis virus. PLoS Negl. Trop. Dis. 2021, 15, e0009977. [Google Scholar] [CrossRef] [PubMed]
- Takashima, I.; Hashimoto, N.; Watanabe, T.; Rosen, L. Mosquito collection in endemic areas of Japanese encephalitis in Hokkaido, Japan. Nihon Juigaku Zasshi 1989, 51, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.K.; Oh, Y.I.; Kim, H.R.; Lee, Y.J.; Moon, O.K.; Yoon, H.; Kim, B.; Lee, K.W.; Song, J.Y. Serosurveillance for Japanese encephalitis virus in wild birds captured in Korea. J. Vet. Sci. 2011, 12, 373–377. [Google Scholar] [CrossRef]
- Sunwoo, J.S.; Jung, K.H.; Lee, S.T.; Lee, S.K.; Chu, K. Reemergence of Japanese Encephalitis in South Korea, 2010–2015. Emerg. Infect. Dis. 2016, 22, 1841–1843. [Google Scholar] [CrossRef]
- Deng, X.; Yan, J.Y.; He, H.Q.; Yan, R.; Sun, Y.; Tang, X.W.; Zhou, Y.; Pan, J.H.; Mao, H.Y.; Zhang, Y.J.; et al. Serological and molecular epidemiology of Japanese Encephalitis in Zhejiang, China, 2015–2018. PLoS Negl. Trop. Dis. 2020, 14, e0008574. [Google Scholar] [CrossRef]
- Bharati, K.; Vrati, S. Japanese encephalitis: Development of new candidate vaccines. Expert. Rev. Anti Infect. Ther. 2006, 4, 313–324. [Google Scholar] [CrossRef]
- Ruget, A.S.; Beck, C.; Gabassi, A.; Trevennec, K.; Lecollinet, S.; Chevalier, V.; Cappelle, J. Japanese encephalitis circulation pattern in swine of northern Vietnam and consequences for swine’s vaccination recommendations. Transbound. Emerg. Dis. 2018, 65, 1485–1492. [Google Scholar] [CrossRef]
- Lindahl, J.F.; Ståhl, K.; Chirico, J.; Boqvist, S.; Thu, H.T.; Magnusson, U. Circulation of Japanese encephalitis virus in pigs and mosquito vectors within Can Tho city, Vietnam. PLoS Negl. Trop. Dis. 2013, 7, e2153. [Google Scholar] [CrossRef] [PubMed]
- Kuwata, R.; Nga, P.T.; Yen, N.T.; Hoshino, K.; Isawa, H.; Higa, Y.; Hoang, N.V.; Trang, B.M.; Loan do, P.; Phong, T.V.; et al. Surveillance of Japanese encephalitis virus infection in mosquitoes in Vietnam from 2006 to 2008. Am. J. Trop. Med. Hyg. 2013, 88, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Matsunaga, Y.; Takasaki, T.; Tanaka-Taya, K.; Taniguchi, K.; Okabe, N.; Kurane, I. Japanese encephalitis: Surveillance and elimination effort in Japan from 1982 to 2004. Jpn. J. Infect. Dis. 2008, 61, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Kuwata, R.; Sugiyama, H.; Yonemitsu, K.; Van Dung, N.; Terada, Y.; Taniguchi, M.; Shimoda, H.; Takano, A.; Maeda, K. Isolation of Japanese encephalitis virus and a novel insect-specific flavivirus from mosquitoes collected in a cowshed in Japan. Arch. Virol. 2015, 160, 2151–2159. [Google Scholar] [CrossRef]
- Uchil, P.D.; Satchidanandam, V. Phylogenetic analysis of Japanese encephalitis virus: Envelope gene based analysis reveals a fifth genotype, geographic clustering, and multiple introductions of the virus into the Indian subcontinent. Am. J. Trop. Med. Hyg. 2001, 65, 242–251. [Google Scholar] [CrossRef]
- Dhanalakshmi, M.; Dhanze, H.; Mote, A.; Narmatha, N.; Thomas, K.S.; Nithiaselvi, R.; Mehta, D.; Kumar, M.S.; Bhilegaonkar, K.N. Unique humoral immune response of pigs to repeated natural Japanese encephalitis virus infections: An amplifying host perspective. Arch. Virol. 2025, 170, 30. [Google Scholar] [CrossRef]
- Yen, N.T.; Duffy, M.R.; Hong, N.M.; Hien, N.T.; Fischer, M.; Hills, S.L. Surveillance for Japanese encephalitis in Vietnam, 1998-2007. Am. J. Trop. Med. Hyg. 2010, 83, 816–819. [Google Scholar] [CrossRef]
- Ompusunggu, S.; Hills, S.L.; Maha, M.S.; Moniaga, V.A.; Susilarini, N.K.; Widjaya, A.; Sasmito, A.; Suwandono, A.; Sedyaningsih, E.R.; Jacobson, J.A. Confirmation of Japanese encephalitis as an endemic human disease through sentinel surveillance in Indonesia. Am. J. Trop. Med. Hyg. 2008, 79, 963–970. [Google Scholar] [CrossRef]
- Tang, Q.; Deng, Z.; Tan, S.; Song, G.; Zhang, H.; Ge, L. Prevalence and Genetic Characteristics of Japanese Encephalitis Virus among Mosquitoes and Pigs in Hunan Province, China from 2019 to 2021. J. Microbiol. Biotechnol. 2022, 32, 1120–1125. [Google Scholar] [CrossRef]
- Dhanze, H.; Kumar, M.S.; Singh, V.; Gupta, M.; Bhilegaonkar, K.N.; Kumar, A.; Mishra, B.P.; Singh, R.K. Detection of recent infection of Japanese encephalitis virus in swine population using IgM ELISA: A suitable sentinel to predict infection in humans. J. Immunol. Methods 2020, 486, 112848. [Google Scholar] [CrossRef]
- Liu, X.T.; Jiang, L.D.; Lin, Y.T.; Zhao, R.; Wang, Q.; Zhang, S.Y.; Ata, E.B.; Liu, X.; Wang, Y.; Liu, Z.X.; et al. Prevalence of Japanese encephalitis in pigs in Mainland China during 2000-2024: A systemic review and meta-analysis. Front. Vet. Sci. 2025, 12, 1534114. [Google Scholar] [CrossRef]
- Quan, T.M.; Thao, T.T.N.; Duy, N.M.; Nhat, T.M.; Clapham, H. Estimates of the global burden of Japanese encephalitis and the impact of vaccination from 2000-2015. Elife 2020, 9, e51027. [Google Scholar] [CrossRef]
- Baruah, A.; Hazarika, R.A.; Barman, N.N.; Islam, S.; Gulati, B.R. Mosquito abundance and pig seropositivity as a correlate of Japanese encephalitis in human population in Assam, India. J. Vector Borne Dis. 2018, 55, 291–296. [Google Scholar] [CrossRef]
- Geevarghese, G.; Shaikh, B.H.; Jacog, P.G.; Bhat, H.R. Monitoring Japanese encephalitis virus activity using domestic sentinel pigs in Mandya district, Karnataka state (India). Indian. J. Med. Res. 1991, 93, 140–142. [Google Scholar]
- Edache, S.; Dixon, A.L.; Oliveira, A.R.S.; Cohnstaedt, L.W.; Mitzel, D.; Mire, C.E.; Cernicchiaro, N. Mosquito vector competence for Japanese encephalitis virus: A systematic review and meta-analysis update. Parasit. Vectors 2025, 18, 191. [Google Scholar] [CrossRef] [PubMed]
- Paul, W.S.; Moore, P.S.; Karabatsos, N.; Flood, S.P.; Yamada, S.; Jackson, T.; Tsai, T.F. Outbreak of Japanese encephalitis on the island of Saipan, 1990. J. Infect. Dis. 1993, 167, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Li, B.; Wang, R.; Nie, K.; Fu, S.; Xu, S.; Li, F.; Cui, Q.; Liu, D.; Wang, H.; et al. Spatiotemporal Distribution and Host-Vector Dynamics of Japanese Encephalitis Virus. Viruses 2025, 17, 815. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Khan, S.A.; Khan, A.M.; Borah, J.; Sarmah, C.K.; Mahanta, J. The effect of insecticide-treated mosquito nets (ITMNs) on Japanese encephalitis virus seroconversion in pigs and humans. Am. J. Trop. Med. Hyg. 2011, 84, 466–472. [Google Scholar] [CrossRef]
- Wilson, A.L.; Dhiman, R.C.; Kitron, U.; Scott, T.W.; van den Berg, H.; Lindsay, S.W. Benefit of insecticide-treated nets, curtains and screening on vector borne diseases, excluding malaria: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2014, 8, e3228. [Google Scholar] [CrossRef]
- Dhanze, H.; Singh, B.B.; Walsh, M.; Kumar, M.S.; Kumar, A.; Bhilegaonkar, K.N.; Brookes, V.J. Spatio-temporal epidemiology of Japanese encephalitis virus infection in pig populations of eastern Uttar Pradesh, India, 2013–2022. Zoonoses Public Health 2024, 71, 429–441. [Google Scholar] [CrossRef]
- Pham, T.T.; Meng, S.; Sun, Y.; Lv, W.; Bahl, J. Inference of Japanese encephalitis virus ecological and evolutionary dynamics from passive and active virus surveillance. Virus Evol. 2016, 2, vew009. [Google Scholar] [CrossRef] [PubMed]
- Kading, R.C.; Abworo, E.O.; Hamer, G.L. Rift Valley Fever Virus, Japanese Encephalitis Virus, and African Swine Fever Virus: Three Transboundary, Vector-Borne, Veterinary Biothreats with Diverse Surveillance, and Response Capacity Needs. Front. Vet. Sci. 2019, 6, 458. [Google Scholar] [CrossRef] [PubMed]
- Hills, S.; Dabbagh, A.; Jacobson, J.; Marfin, A.; Featherstone, D.; Hombach, J.; Namgyal, P.; Rani, M.; Solomon, T. Evidence and rationale for the World Health Organization recommended standards for Japanese encephalitis surveillance. BMC Infect. Dis. 2009, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Lien, J.C.; Huang, W.C.; Cross, J.H. Japanese encephalitis virus surveillance in the Taipei area, Taiwan in 1978. Southeast Asian J. Trop. Med. Public Health 1980, 11, 177–183. [Google Scholar]
- Zhang, H.; Rehman, M.U.; Li, K.; Luo, H.; Lan, Y.; Nabi, F.; Zhang, L.; Iqbal, M.K.; Zhu, S.; Javed, M.T.; et al. Epidemiologic Survey of Japanese Encephalitis Virus Infection, Tibet, China, 2015. Emerg. Infect. Dis. 2017, 23, 1023–1024. [Google Scholar] [CrossRef]
- van den Hurk, A.F.; Pyke, A.T.; Mackenzie, J.S.; Hall-Mendelin, S.; Ritchie, S.A. Japanese Encephalitis Virus in Australia: From Known Known to Known Unknown. Trop. Med. Infect. Dis. 2019, 4, 38. [Google Scholar] [CrossRef]
- Abe, M.; Shiosaki, K.; Hammar, L.; Sonoda, K.; Xing, L.; Kuzuhara, S.; Kino, Y.; Holland Cheng, R. Immunological equivalence between mouse brain-derived and Vero cell-derived Japanese encephalitis vaccines. Virus Res. 2006, 121, 152–160. [Google Scholar] [CrossRef]
- Paulke-Korinek, M.; Kollaritsch, H. Japanese encephalitis and vaccines: Past and future prospects. Wien Klin. Wochenschr. 2008, 120, 15–19. [Google Scholar] [CrossRef]
- Monath, T.P.; Guirakhoo, F.; Nichols, R.; Yoksan, S.; Schrader, R.; Murphy, C.; Blum, P.; Woodward, S.; McCarthy, K.; Mathis, D.; et al. Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax-JE): Phase 2 clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. J. Infect. Dis. 2003, 188, 1213–1230. [Google Scholar] [CrossRef]
- Misra, U.K.; Kalita, J. Overview: Japanese encephalitis. Prog. Neurobiol. 2010, 91, 108–120. [Google Scholar] [CrossRef]
- Hoke, C.H.; Nisalak, A.; Sangawhipa, N.; Jatanasen, S.; Laorakapongse, T.; Innis, B.L.; Kotchasenee, S.; Gingrich, J.B.; Latendresse, J.; Fukai, K.; et al. Protection against Japanese encephalitis by inactivated vaccines. N. Engl. J. Med. 1988, 319, 608–614. [Google Scholar] [CrossRef]
- Fischer, M.; Lindsey, N.; Staples, J.E.; Hills, S. Japanese encephalitis vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2010, 59, 1–27. [Google Scholar]
- Miyazaki, C.; Okada, K.; Ozaki, T.; Hirose, M.; Iribe, K.; Yokote, H.; Ishikawa, Y.; Togashi, T.; Ueda, K. Phase III clinical trials comparing the immunogenicity and safety of the vero cell-derived Japanese encephalitis vaccine Encevac with those of mouse brain-derived vaccine by using the Beijing-1 strain. Clin. Vaccine Immunol. 2014, 21, 188–195. [Google Scholar] [CrossRef] [PubMed]
- McArthur, M.A.; Holbrook, M.R. Japanese Encephalitis Vaccines. J. Bioterror. Biodef. 2011, S1, 2. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.F.; Yu, Y.X.; Jia, L.L.; Putvatana, R.; Zhang, R.; Wang, S.; Halstead, S.B. Immunogenicity of live attenuated SA14-14-2 Japanese encephalitis vaccine—A comparison of 1- and 3-month immunization schedules. J. Infect. Dis. 1998, 177, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Hennessy, S.; Strom, B.L.; Tsai, T.F.; Wan, C.M.; Tang, S.C.; Xiang, C.F.; Bilker, W.B.; Pan, X.P.; Yao, Y.J.; et al. Short-term safety of live attenuated Japanese encephalitis vaccine (SA14-14-2): Results of a randomized trial with 26,239 subjects. J. Infect. Dis. 1997, 176, 1366–1369. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, X.; Wang, Y.; Cui, M.; Wang, R.; Yin, C. Immune responses and protective effects against Japanese encephalitis induced by a DNA vaccine encoding the prM/E proteins of the attenuated SA14-14-2 strain. Infect. Genet. Evol. 2020, 85, 104443. [Google Scholar] [CrossRef]
- Erra, E.O.; Kantele, A. The Vero cell-derived, inactivated, SA14-14-2 strain-based vaccine (Ixiaro) for prevention of Japanese encephalitis. Expert. Rev. Vaccines 2015, 14, 1167–1179. [Google Scholar] [CrossRef]
- Jelinek, T. IXIARO updated: Overview of clinical trials and developments with the inactivated vaccine against Japanese encephalitis. Expert. Rev. Vaccines 2013, 12, 859–869. [Google Scholar] [CrossRef]
- Firbas, C.; Jilma, B. Product review on the JE vaccine IXIARO. Hum. Vaccin. Immunother. 2015, 11, 411–420. [Google Scholar] [CrossRef]
- Yun, K.W.; Lee, H.J.; Park, J.Y.; Cho, H.K.; Kim, Y.J.; Kim, K.H.; Kim, N.H.; Hong, Y.J.; Kim, D.H.; Kim, H.M.; et al. Long-term immunogenicity of an initial booster dose of an inactivated, Vero cell culture-derived Japanese encephalitis vaccine (JE-VC) and the safety and immunogenicity of a second JE-VC booster dose in children previously vaccinated with an inactivated, mouse brain-derived Japanese encephalitis vaccine. Vaccine 2018, 36, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Chokephaibulkit, K.; Sirivichayakul, C.; Thisyakorn, U.; Pancharoen, C.; Boaz, M.; Bouckenooghe, A.; Feroldi, E. Long-term follow-up of Japanese encephalitis chimeric virus vaccine: Immune responses in children. Vaccine 2016, 34, 5664–5669. [Google Scholar] [CrossRef]
- Mills, D.J.; Gyawali, N.; Nammunige, N.A.; Mills, C.; Devine, G.J.; Lau, C.L.; Furuya-Kanamori, L. Long-term immunogenicity of a single-dose live recombinant chimeric Japanese encephalitis vaccine in adults. J. Travel. Med. 2025, 32, taaf006. [Google Scholar] [CrossRef]
- Nasveld, P.E.; Ebringer, A.; Elmes, N.; Bennett, S.; Yoksan, S.; Aaskov, J.; McCarthy, K.; Kanesa-thasan, N.; Meric, C.; Reid, M. Long term immunity to live attenuated Japanese encephalitis chimeric virus vaccine: Randomized, double-blind, 5-year phase II study in healthy adults. Hum. Vaccin. 2010, 6, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Imoto, J.; Ishikawa, T.; Yamanaka, A.; Konishi, M.; Murakami, K.; Shibahara, T.; Kubo, M.; Lim, C.K.; Hamano, M.; Takasaki, T.; et al. Needle-free jet injection of small doses of Japanese encephalitis DNA and inactivated vaccine mixture induces neutralizing antibodies in miniature pigs and protects against fetal death and mummification in pregnant sows. Vaccine 2010, 28, 7373–7380. [Google Scholar] [CrossRef] [PubMed]
- Young, C.L.; Lyons, A.C.; Hsu, W.W.; Vanlandingham, D.L.; Park, S.L.; Bilyeu, A.N.; Ayers, V.B.; Hettenbach, S.M.; Zelenka, A.M.; Cool, K.R.; et al. Protection of swine by potent neutralizing anti-Japanese encephalitis virus monoclonal antibodies derived from vaccination. Antivir. Res. 2020, 174, 104675. [Google Scholar] [CrossRef]
- Sohn, Y.M.; Park, M.S.; Rho, H.O.; Chandler, L.J.; Shope, R.E.; Tsai, T.F. Primary and booster immune responses to SA14-14-2 Japanese encephalitis vaccine in Korean infants. Vaccine 1999, 17, 2259–2264. [Google Scholar] [CrossRef]
- Halstead, S.B.; Thomas, S.J. Japanese encephalitis: New options for active immunization. Clin. Infect. Dis. 2010, 50, 1155–1164. [Google Scholar] [CrossRef]
- Chen, H.L.; Chang, J.K.; Tang, R.B. Current recommendations for the Japanese encephalitis vaccine. J. Chin. Med. Assoc. 2015, 78, 271–275. [Google Scholar] [CrossRef]
- Bista, M.B.; Banerjee, M.K.; Shin, S.H.; Tandan, J.B.; Kim, M.H.; Sohn, Y.M.; Ohrr, H.C.; Tang, J.L.; Halstead, S.B. Efficacy of single-dose SA 14-14-2 vaccine against Japanese encephalitis: A case control study. Lancet 2001, 358, 791–795. [Google Scholar] [CrossRef]
- Chotpitayasunondh, T.; Sohn, Y.M.; Yoksan, S.; Min, J.; Ohrr, H. Immunizing children aged 9 to 15 months with live attenuated SA14-14-2 Japanese encephalitis vaccine in Thailand. J. Med. Assoc. Thai 2011, 94 (Suppl. S3), S195–S203. [Google Scholar]
- Wang, Y.; Dong, D.; Cheng, G.; Zuo, S.; Liu, D.; Du, X. Post-marketing surveillance of live-attenuated Japanese encephalitis vaccine safety in China. Vaccine 2014, 32, 5875–5879. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Iwasa, T.; Namazue, J.; Akechi, M.; Ueda, S. Safety and immunogenicity of a freeze-dried, cell culture-derived Japanese encephalitis vaccine (Inactivated) (JEBIK®V) in children. Vaccine 2012, 30, 5967–5972. [Google Scholar] [CrossRef]
- Li, X.; Ma, S.J.; Liu, X.; Jiang, L.N.; Zhou, J.H.; Xiong, Y.Q.; Ding, H.; Chen, Q. Immunogenicity and safety of currently available Japanese encephalitis vaccines: A systematic review. Hum. Vaccin. Immunother. 2014, 10, 3579–3593. [Google Scholar] [CrossRef] [PubMed]
- Kollaritsch, H.; Paulke-Korinek, M.; Dubischar-Kastner, K. IC51 Japanese encephalitis vaccine. Expert. Opin. Biol. Ther. 2009, 9, 921–931. [Google Scholar] [CrossRef]
- Dubischar-Kastner, K.; Eder, S.; Buerger, V.; Gartner-Woelfl, G.; Kaltenboeck, A.; Schuller, E.; Tauber, E.; Klade, C. Long-term immunity and immune response to a booster dose following vaccination with the inactivated Japanese encephalitis vaccine IXIARO, IC51. Vaccine 2010, 28, 5197–5202. [Google Scholar] [CrossRef]
- Eder, S.; Dubischar-Kastner, K.; Firbas, C.; Jelinek, T.; Jilma, B.; Kaltenboeck, A.; Knappik, M.; Kollaritsch, H.; Kundi, M.; Paulke-Korinek, M.; et al. Long term immunity following a booster dose of the inactivated Japanese Encephalitis vaccine IXIARO®, IC51. Vaccine 2011, 29, 2607–2612. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Use of Japanese encephalitis vaccine in children: Recommendations of the advisory committee on immunization practices, 2013. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 898–900. [Google Scholar]
- Monath, T.P.; McCarthy, K.; Bedford, P.; Johnson, C.T.; Nichols, R.; Yoksan, S.; Marchesani, R.; Knauber, M.; Wells, K.H.; Arroyo, J.; et al. Clinical proof of principle for ChimeriVax: Recombinant live, attenuated vaccines against flavivirus infections. Vaccine 2002, 20, 1004–1018. [Google Scholar] [CrossRef]
- Monath, T.P.; Soike, K.; Levenbook, I.; Zhang, Z.X.; Arroyo, J.; Delagrave, S.; Myers, G.; Barrett, A.D.; Shope, R.E.; Ratterree, M.; et al. Recombinant, chimaeric live, attenuated vaccine (ChimeriVax) incorporating the envelope genes of Japanese encephalitis (SA14-14-2) virus and the capsid and nonstructural genes of yellow fever (17D) virus is safe, immunogenic and protective in non-human primates. Vaccine 1999, 17, 1869–1882. [Google Scholar] [CrossRef]
- Vu, T.D.; Nguyen, Q.D.; Tran, H.T.A.; Bosch-Castells, V.; Zocchetti, C.; Houillon, G. Immunogenicity and safety of a single dose of a live attenuated Japanese encephalitis chimeric virus vaccine in Vietnam: A single-arm, single-center study. Int. J. Infect. Dis. 2018, 66, 137–142. [Google Scholar] [CrossRef]
- Glud, H.A.; George, S.; Skovgaard, K.; Larsen, L.E. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs. Apmis 2021, 129, 675–693. [Google Scholar] [CrossRef]
- Tizard, I.R. Vaccination against coronaviruses in domestic animals. Vaccine 2020, 38, 5123–5130. [Google Scholar] [CrossRef]
- Borah, J.; Dutta, P.; Khan, S.A.; Mahanta, J. Epidemiological concordance of Japanese encephalitis virus infection among mosquito vectors, amplifying hosts and humans in India. Epidemiol. Infect. 2013, 141, 74–80. [Google Scholar] [CrossRef]
- Bielefeldt-Ohmann, H.; Prow, N.A.; Wang, W.; Tan, C.S.; Coyle, M.; Douma, A.; Hobson-Peters, J.; Kidd, L.; Hall, R.A.; Petrovsky, N. Safety and immunogenicity of a delta inulin-adjuvanted inactivated Japanese encephalitis virus vaccine in pregnant mares and foals. Vet. Res. 2014, 45, 130. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Salje, H.; Hannan, A.; Islam, M.A.; Bhuyan, A.A.; Islam, M.A.; Rahman, M.Z.; Nahar, N.; Hossain, M.J.; Luby, S.P.; et al. Dynamics of Japanese encephalitis virus transmission among pigs in Northwest Bangladesh and the potential impact of pig vaccination. PLoS Negl. Trop. Dis. 2014, 8, e3166. [Google Scholar] [CrossRef] [PubMed]
- Tandan, J.B.; Ohrr, H.; Sohn, Y.M.; Yoksan, S.; Ji, M.; Nam, C.M.; Halstead, S.B. Single dose of SA 14-14-2 vaccine provides long-term protection against Japanese encephalitis: A case-control study in Nepalese children 5 years after immunization. Vaccine 2007, 25, 5041–5045. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Okada, K.; Hayashida, K.; Matsuo, F.; Shiosaki, K.; Miyazaki, C.; Ueda, K.; Kino, Y. Duration of neutralizing antibody titer after Japanese encephalitis vaccination. Microbiol. Immunol. 2007, 51, 609–616. [Google Scholar] [CrossRef]
- Hu, Y.L.; Lee, P.I. Safety of Japanese encephalitis vaccines. Hum. Vaccin. Immunother. 2021, 17, 4259–4264. [Google Scholar] [CrossRef]
- Bista, M.B.; Shrestha, J.M. Epidemiological situation of Japanese encephalitis in Nepal. JNMA J. Nepal. Med. Assoc. 2005, 44, 51–56. [Google Scholar] [CrossRef]
- Touch, S.; Suraratdecha, C.; Samnang, C.; Heng, S.; Gazley, L.; Huch, C.; Sovann, L.; Chhay, C.S.; Soeung, S.C. A cost-effectiveness analysis of Japanese encephalitis vaccine in Cambodia. Vaccine 2010, 28, 4593–4599. [Google Scholar] [CrossRef]
- Putri, W.; Sawitri, A.A.S.; Yuliyatni, P.C.D.; Ariawan, I.M.D.; Meyta, H.; Labiba, S.U.; Suwarba, I.; Sutarsa, I.N. Cost-effectiveness analysis of Japanese Encephalitis (JE) vaccination program in Bali Province, Indonesia. Vaccine 2023, 41, 6930–6940. [Google Scholar] [CrossRef]
- Ding, D.; Kilgore, P.E.; Clemens, J.D.; Wei, L.; Zhi-Yi, X. Cost-effectiveness of routine immunization to control Japanese encephalitis in Shanghai, China. Bull. World Health Organ. 2003, 81, 334–342. [Google Scholar]
- Cho, K.H.; Kim, H.J.; Kim, D.Y.; Yoo, D.; Nah, J.J.; Kim, Y.J.; Kang, H.E. Surveillance of ASF-infected pig farms from September to October 2019 in South Korea. J. Vet. Sci. 2021, 22, e26. [Google Scholar] [CrossRef]
- Kim, B.; Lee, Y.J.; Lee, H.I.; Kwak, D.; Seo, M.G. Surveillance of Vector-Borne Zoonotic Diseases in South Korea: Uncovering Novel Pathogen Carriers Among Rodents and Mites Nationwide. Transbound. Emerg. Dis. 2024, 2024, 5544660. [Google Scholar] [CrossRef] [PubMed]
- Liverani, M.; Teng, S.; Le, M.S.; Coker, R. Sharing public health data and information across borders: Lessons from Southeast Asia. Global Health 2018, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- McNeil, C.; Divi, N.; Bargeron Iv, C.T.; Capobianco Dondona, A.; Ernst, K.C.; Gupta, A.S.; Fasominu, O.; Keatts, L.; Kelly, T.; Leal Neto, O.B.; et al. Data Parameters from Participatory Surveillance Systems in Human, Animal, and Environmental Health From Around the Globe: Descriptive Analysis. JMIR Public Health Surveill. 2025, 11, e55356. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, A. Control of Japanese encephalitis in Japan: Immunization of humans and animals, and vector control. Curr. Top. Microbiol. Immunol. 2002, 267, 139–152. [Google Scholar] [CrossRef]
- Park, S.L.; Huang, Y.S.; Lyons, A.C.; Ayers, V.B.; Hettenbach, S.M.; McVey, D.S.; Noronha, L.E.; Burton, K.R.; Higgs, S.; Vanlandingham, D.L. Infection of Feral Phenotype Swine with Japanese Encephalitis Virus. Vector Borne Zoonotic Dis. 2023, 23, 645–652. [Google Scholar] [CrossRef]
- Win, A.Y.N.; Wai, K.T.; Harries, A.D.; Kyaw, N.T.T.; Oo, T.; Than, W.P.; Lin, H.H.; Lin, Z. The burden of Japanese encephalitis, the catch-up vaccination campaign, and health service providers’ perceptions in Myanmar: 2012-2017. Trop. Med. Health 2020, 48, 13. [Google Scholar] [CrossRef]
- Diptyanusa, A.; Herini, E.S.; Indarjulianto, S.; Satoto, T.B.T. Estimation of Japanese encephalitis virus infection prevalence in mosquitoes and bats through nationwide sentinel surveillance in Indonesia. PLoS ONE 2022, 17, e0275647. [Google Scholar] [CrossRef]
- Wu, Y.; Ling, F.; Hou, J.; Guo, S.; Wang, J.; Gong, Z. Will integrated surveillance systems for vectors and vector-borne diseases be the future of controlling vector-borne diseases? A practical example from China. Epidemiol. Infect. 2016, 144, 1895–1903. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, S.; Wang, C.; Qiang, N.; Xiu, L.; Hu, Q.; Wu, W.; Zhang, X.; Han, L.; Feng, X.; et al. Integrated surveillance and early warning system of emerging infectious diseases in China at community level: Current status, gaps and perspectives. Sci. One Health 2025, 4, 100102. [Google Scholar] [CrossRef] [PubMed]
- Chala, B.; Hamde, F. Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front. Public Health 2021, 9, 715759. [Google Scholar] [CrossRef] [PubMed]
- Pendrey, C.G.A.; Martin, G.E. Japanese encephalitis clinical update: Changing diseases under a changing climate. Aust. J. Gen. Pract. 2023, 52, 275–280. [Google Scholar] [CrossRef]
- Bellone, R.; Lechat, P.; Mousson, L.; Gilbart, V.; Piorkowski, G.; Bohers, C.; Merits, A.; Kornobis, E.; Reveillaud, J.; Paupy, C.; et al. Climate change and vector-borne diseases: A multi-omics approach of temperature-induced changes in the mosquito. J. Travel. Med. 2023, 30, taad062. [Google Scholar] [CrossRef]
- Rakotoarinia, M.R.; Blanchet, F.G.; Gravel, D.; Lapen, D.R.; Leighton, P.A.; Ogden, N.H.; Ludwig, A. Effects of land use and weather on the presence and abundance of mosquito-borne disease vectors in a urban and agricultural landscape in Eastern Ontario, Canada. PLoS ONE 2022, 17, e0262376. [Google Scholar] [CrossRef]
- Madzokere, E.T.; Hallgren, W.; Sahin, O.; Webster, J.A.; Webb, C.E.; Mackey, B.; Herrero, L.J. Integrating statistical and mechanistic approaches with biotic and environmental variables improves model predictions of the impact of climate and land-use changes on future mosquito-vector abundance, diversity and distributions in Australia. Parasit. Vectors 2020, 13, 484. [Google Scholar] [CrossRef]
- Mahmud, A.S.; Martinez, P.P.; He, J.; Baker, R.E. The Impact of Climate Change on Vaccine-Preventable Diseases: Insights From Current Research and New Directions. Curr. Environ. Health Rep. 2020, 7, 384–391. [Google Scholar] [CrossRef]
- Le Breton, C.; Laporta, G.Z.; Sallum, M.A.M.; Hesse, H.; Salgado-Lynn, M.; Manin, B.O.; Fornace, K. Advancing canopy-level entomological surveillance to monitor vector-borne and zoonotic disease dynamics. Trends Parasitol. 2025, 41, 150–161. [Google Scholar] [CrossRef]
- Lee, A.R.; Kim, W.J.; Choi, H.; Kim, S.H.; Hong, S.Y.; Shim, S.M.; Lee, H.I.; Song, J.M.; Kim, S.J.; Ishikawa, T.; et al. Genotype III-Based Japanese Encephalitis Vaccines Exhibit Diminished Neutralizing Response to Reemerging Genotype V. J. Infect. Dis. 2025, 231, 1281–1289. [Google Scholar] [CrossRef]
- Lee, A.R.; Song, J.M.; Seo, S.U. Emerging Japanese Encephalitis Virus Genotype V in Republic of Korea. J. Microbiol. Biotechnol. 2022, 32, 955–959. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Zhang, J.; Guo, S.; Pang, L.; Shi, K.; Liu, K.; Shao, D.; Qiu, Y.; Liu, L.; et al. Partial cross-protection between Japanese encephalitis virus genotype I and III in mice. PLoS Negl. Trop. Dis. 2019, 13, e0007601. [Google Scholar] [CrossRef]
- Hills, S.L.; Netravathi, M.; Solomon, T. Japanese Encephalitis among Adults: A Review. Am. J. Trop. Med. Hyg. 2023, 108, 860–864. [Google Scholar] [CrossRef]
- Granerod, J.; Huang, Y.; Davies, N.W.S.; Sequeira, P.C.; Mwapasa, V.; Rupali, P.; Michael, B.D.; Solomon, T.; Easton, A. Global Landscape of Encephalitis: Key Priorities to Reduce Future Disease Burden. Clin. Infect. Dis. 2023, 77, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Wild, H.; Wren, S.M. High-Quality Data Collection in Low-Resource Settings: An Imperative to Improving Global Surgical Care. World J. Surg. 2023, 47, 1397–1398. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Wang, R.; Yuan, J.; Lv, X.; Yan, W.; Liu, Q.; Qin, C.; Xiang, N.; Zhu, L.; Liang, W.; et al. Trends and disparities in 44 national notifiable infectious diseases in China: An analysis of national surveillance data from 2010 to 2019. J. Med. Virol. 2023, 95, e28353. [Google Scholar] [CrossRef] [PubMed]
- Benda, N.C.; Zawtha, S.; Anderson, K.; Sharma, M.M.; Lin, P.B.; Zawtha, B.; Masterson Creber, R. Developing Population Health Surveillance Using mHealth in Low-Resource Settings: Qualitative Assessment and Pilot Evaluation. JMIR Form. Res. 2022, 6, e36260. [Google Scholar] [CrossRef]
- Deshpande, G.R.; Deshpande, K.; Kaur, M.; Vishwanathan, R.; Saka, S.; Srivastava, R.; Vidhate, S.; Khutwad, K.; Salunke, A.; Bhatt, V.; et al. External quality assurance of serological diagnosis of dengue, chikungunya and Japanese encephalitis virus infection. IJID Reg. 2023, 6, 113–119. [Google Scholar] [CrossRef]
- Roberts, A.; Dhanze, H.; Sharma, G.T.; Gandhi, S. Point-of-care detection of Japanese encephalitis virus biomarker in clinical samples using a portable smartphone-enabled electrochemical “Sensit” device. Bioeng. Transl. Med. 2023, 8, e10506. [Google Scholar] [CrossRef]
- Deng, J.; Pei, J.; Gou, H.; Ye, Z.; Liu, C.; Chen, J. Rapid and simple detection of Japanese encephalitis virus by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick. J. Virol. Methods 2015, 213, 98–105. [Google Scholar] [CrossRef]
- Beam, M.; Abdull Wahab, S.F.; Ramos, M. Point-of-Care Ultrasound in Resource-Limited Settings. Med. Clin. North. Am. 2025, 109, 313–324. [Google Scholar] [CrossRef]
- Morris, R.S.; Bingham, P.C. Japanese encephalitis virus: Epidemiology and risk-based surveillance approaches for New Zealand. New Zealand Vet. J. 2023, 71, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Piamonte, B.L.C.; Easton, A.; Wood, G.K.; Davies, N.W.S.; Granerod, J.; Michael, B.D.; Solomon, T.; Thakur, K.T. Addressing vaccine-preventable encephalitis in vulnerable populations. Curr. Opin. Neurol. 2023, 36, 185–197. [Google Scholar] [CrossRef]
- Bordier, M.; Uea-Anuwong, T.; Binot, A.; Hendrikx, P.; Goutard, F.L. Characteristics of One Health surveillance systems: A systematic literature review. Prev. Vet. Med. 2020, 181, 104560. [Google Scholar] [CrossRef]
- Impoinvil, D.E.; Baylis, M.; Solomon, T. Japanese encephalitis: On the One Health agenda. Curr. Top. Microbiol. Immunol. 2013, 365, 205–247. [Google Scholar] [CrossRef]
- Ghai, R.R.; Wallace, R.M.; Kile, J.C.; Shoemaker, T.R.; Vieira, A.R.; Negron, M.E.; Shadomy, S.V.; Sinclair, J.R.; Goryoka, G.W.; Salyer, S.J.; et al. A generalizable one health framework for the control of zoonotic diseases. Sci. Rep. 2022, 12, 8588. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Z.; Shu, Y.; Ren, L.; Kang, M.; Kong, D.; Shi, X.; Lv, Q.; Chen, Z.; Li, Y.; et al. Expert consensus on One Health for establishing an enhanced and integrated surveillance system for key infectious diseases. Infect. Med. 2024, 3, 100106. [Google Scholar] [CrossRef]
- Leandro, A.S.; Lopes, R.D.; Martins, C.A.; Rivas, A.V.; da Silva, I.; Galvão, S.R.; Maciel-de-Freitas, R. The adoption of the One Health approach to improve surveillance of venomous animal injury, vector-borne and zoonotic diseases in Foz do Iguaçu, Brazil. PLoS Negl. Trop. Dis. 2021, 15, e0009109. [Google Scholar] [CrossRef]
- Wang, K.C.; Chang, C.L.; Wei, S.H.; Chang, C.C. The study on setting priorities of zoonotic agents for medical preparedness and allocation of research resources. PLoS ONE 2024, 19, e0299527. [Google Scholar] [CrossRef]
Country | Main Animal Surveillance Targets | Animal Surveillance Methods | Human Surveillance Methods | Responsible Agencies | Surveillance Frequency and Coverage | References |
---|---|---|---|---|---|---|
Japan | Pigs and mosquitoes | Serological testing in pigs, mosquito trapping, and virus isolation | National notifiable disease reporting and clinical surveillance | Ministry of Agriculture, Forestry and Fisheries; Ministry of Health | Year-round continuous monitoring focused on key regions | [44,45] |
South Korea | Pigs and wild birds | Pig antibody monitoring and PCR testing in wild birds | Mandatory disease reporting and clinical diagnosis | Korea Disease Control and Prevention Agency; Animal and Plant Quarantine Agency | Seasonal focused surveillance prioritizing high-risk areas | [46,47] |
China | Pigs, mosquitoes, and birds | Pig serology, mosquito virus isolation, and bird antibody testing | Hospital-based surveillance and local health reporting | National Health Commission; Ministry of Agriculture | Seasonal monitoring with regional variation | [48,49] |
Vietnam | Pigs and mosquitoes | Pig antibody testing and mosquito virus surveillance | Local health center reporting and clinical surveillance | Ministry of Health; Ministry of Agriculture and Rural Development | Seasonal surveillance focused on high-risk zones | [50,51,52] |
Vaccine Type | Target Population | Administration Route | Dosage and Schedule | Duration of Immunity | Cost-effectiveness and Characteristics | References |
---|---|---|---|---|---|---|
SA14-14-2 (Live–Attenuated) | Humans and pigs | Subcutaneous or intramuscular injection | Humans: 1–2 doses; pigs: seasonal vaccination recommended | Humans: over 5 years; pigs: 4–6 months | Low cost; strong immune response; standard vaccine in some countries | [1,85,86,87] |
Vero Cell-Derived Inactivated Vaccine | Humans | Intramuscular injection | 3-dose primary series with boosters recommended | Approximately 3–5 years | High safety profile; recommended for travelers and high-risk groups | [88,89,90] |
JE-CV (Live Chimeric Vaccine) | Humans | Subcutaneous injection | Single dose with long-lasting immunity | Over 5 years | Rapid immune response; fewer side effects; increasingly adopted | [91,92,93,94] |
Inactivated Animal Vaccine | Pigs | Intramuscular injection | Routine vaccination before production or reproduction | 4–6 months | Aimed at improving productivity; limited use in some regions | [95,96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-Y.; Lee, H.-M. Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies. Life 2025, 15, 1260. https://doi.org/10.3390/life15081260
Park J-Y, Lee H-M. Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies. Life. 2025; 15(8):1260. https://doi.org/10.3390/life15081260
Chicago/Turabian StylePark, Jae-Yeon, and Hye-Mi Lee. 2025. "Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies" Life 15, no. 8: 1260. https://doi.org/10.3390/life15081260
APA StylePark, J.-Y., & Lee, H.-M. (2025). Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies. Life, 15(8), 1260. https://doi.org/10.3390/life15081260