Ruta chalepensis L. In Vitro Cultures as a Source of Bioactive Furanocoumarins and Furoquinoline Alkaloids
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Cultures
2.2. Extraction
2.3. HPLC Analyses
2.4. Statistical Analysis
3. Results
3.1. In Vitro Cultures
3.2. HPLC Analyses
3.2.1. Production of Linear Furanocoumarins
3.2.2. Production of Furoquinoline Alkaloids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunaydin, K.; Savci, S. Phytochemical studies on Ruta chalepensis (Lam.) Lamarck. Nat. Prod. Res. 2005, 19, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Engler, A. Syllabus der Pflanzenfamilien, 12th ed.; Gebruder Borntraeger Verlag: Berlin, Germany, 1964. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A. Flora Europea; University Press Cambridge: Cambridge, UK, 1968; Volume 2. [Google Scholar]
- Kacem, M.; Kacem, I.; Simon, G.; Mansourd, A.B.; Chaabouni, S.; Elfeki, A.; Bouaziz, M. Phytochemicals and biological activities of Ruta chalepensis L. growing in Tunisia. Food Biosci. 2015, 12, 73–83. [Google Scholar] [CrossRef]
- Ouerghemmi, I.; Bettaieb, R.I.; Rahali, F.Z.; Bourgou, S.; Pistelli, L.; Ksouri, R.; Marzouk, B.; Tounsi, M.S. Antioxidant and antimicrobial phenolic compounds from extracts of cultivated and wild-grown Tunisian Ruta chalepensis. J. Food Drug Anal. 2017, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Tounsi, M.S.; Wannes, W.A.; Ouerghemmi, I.; Msaada, K.; Smaoui, A.; Marzouk, B. Variation in essential oil and fatty acid composition in different organs of cultivated and growing wild Ruta chalepensis L. Ind. Crops Prod. 2011, 33, 617–623. [Google Scholar] [CrossRef]
- Mejri, J.; Abderrabba, M.; Mejri, M. Chemical composition of the essential oil of Ruta chalepensis L: Influence of drying, hydro-distillation duration and plant parts. Ind. Crops Prod. 2010, 32, 671–673. [Google Scholar] [CrossRef]
- Pollio, A.; De Natale, A.; Appetiti, E.; Aliotta, G.; Touwaide, A. Continuity and change in the Mediterranean medical tradition: Ruta spp. (Rutaceae) in Hippocratic medicine and present practices. J. Ethnopharmacol. 2008, 116, 469–488. [Google Scholar] [CrossRef]
- Fakhfakh, N.; Zouari, S.; Zouari, M.; Loussayef, C.; Zouari, N. Chemical composition of volatile compounds and antioxidant activities of essential oil, aqueous and ethanol extracts of wild Tunisian Ruta chalepensis L. (Rutacea). J. Med. Plants Res. 2012, 6, 593–600. [Google Scholar]
- Gali, L.; Bedjou, F. Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions and total alkaloids from the cultivated Ruta chalepensis. S. Afr. J. Bot. 2019, 120, 163–169. [Google Scholar] [CrossRef]
- Khadhri, A.; Bouali, I.; Belkhir, S.; Mokded, R.; Smiti, S.; Falé, P.; Araújo, M.E.M.; Serralheiro, M.L.M. In vitro digestion, antioxidant and antiacetylcholinesterase activities of two species of Ruta: Ruta chalepensis and Ruta montana. Pharm. Biol. 2017, 55, 101–107. [Google Scholar] [CrossRef]
- Althaher, A.R.; Oran, S.A.; Bustanji, Y.K. Phytochemical Analysis, In vitro Assessment of Antioxidant Properties and Cytotoxic Potential of Ruta chalepensis L. Essential Oil. J. Essent. Oil Bear. Plants 2020, 23, 1409–1421. [Google Scholar] [CrossRef]
- Alotaibi, S.M.; Saleem, M.S.; Al-humaidi, J.G. Phytochemical contents and biological evaluation of Ruta chalepensis L. growing in Saudi Arabia. Saudi Pharm. J. 2018, 26, 504–508. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Falco, T.; Bonesi, M.; Sicari, V.; Tundis, R.; Bruno, M. Ruta chalepensis L. (Rutaceae) leaf extract: Chemical composition, antioxidant and hypoglycemic activities. Nat. Prod. Res. 2018, 32, 521–528. [Google Scholar] [CrossRef]
- Roelandts, R. Photo(chemo) therapy for vitiligo. Photodermatol Photoimmunol Photomed 2003, 19, 1–4. [Google Scholar] [CrossRef]
- Wolf, P. Psoralen-ultraviolet A endures as one of the most powerful treatments in dermatology: Reinforcement of this ‘triple-product therapy’ by the 2016 British guidelines. Br. J. Dermatol. 2016, 174, 11–14. [Google Scholar] [CrossRef]
- Wollenberg, A.; Kinberger, M.; Arents, B.; Aszodi, N.; Avila Valle, G.; Barbarot, S.; Bieber, T.; Brough, H.A.; Calzavara Pinton, P.; Christen-Zäch, S.; et al. European guideline (EuroGuiDerm) on atopic eczema–Part II: Non-systemic treatments and treatment recommendations for special AE patient populations. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1904–1926. [Google Scholar] [CrossRef]
- Damiani, G.; Pacifico, A.; Chu, S.; Chi, C.; Young Dermatologists Italian Network (YDIN). Frequency of phototherapy for treating psoriasis: A systematic review. Ital. J. Dermatol. Venereol. 2021, 157, 215–219. [Google Scholar] [CrossRef]
- Milesi, S.; Massot, B.; Gontier, E.; Bourgaud, F.; Guckert, A. Ruta graveolens L.: A promising species for the production of furanocoumarins. Plant Sci. 2001, 161, 189–199. [Google Scholar] [CrossRef]
- Juneja, K.; Beuerle, T.; Sircar, D. Enhanced Accumulation of Biologically Active Coumarin and Furanocoumarins in Callus Culture and Field-grown Plants of Ruta chalepensis Through LED Light-treatment. Photochem. Photobiol. 2022, 98, 1100–1109. [Google Scholar] [CrossRef]
- Murugan, N.; Srinivasan, R.; Murugan, A.; Kim, M.; Natarajan, D. Glycosmis pentaphylla (Rutaceae): A Natural Candidate for the Isolation of Potential Bioactive Arborine and Skimmianine Compounds for Controlling Multidrug-Resistant Staphylococcus aureus. Front. Public Health 2020, 8, 176. [Google Scholar] [CrossRef]
- Adamska-Szewczyk, A.; Głowniak, K.; Baj, T. Furochinoline alkaloids in plants from Rutaceae family–A review. Curr. Issues Pharm. Med. Sci. 2016, 29, 33–38. [Google Scholar] [CrossRef]
- Karuppusamy, S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plants Res. 2009, 3, 1222–1239. [Google Scholar]
- Shah, H.; Mtewa, A.G.; Egbuna, C.; Godwin, A.; Sesaazi, D.C. Biotechnology Approach to the Production of Phytochemicals: An Introduction. In Phytochemistry, Marine Sources, Industrial Applications, and Recent Advances; Egbuna, C., Ifemeje, J.C., Kumar, S., Sharif, N., Eds.; Apple Academic Press: Oakville, ON, Canada, 2019; Volume 3, pp. 107–130. [Google Scholar]
- Szewczyk, A.; Marino, A.; Molinari, J.; Ekiert, H.; Miceli, N. Phytochemical Characterization, and Antioxidant and Antimicrobial Properties of Agitated Cultures of Three Rue Species: Ruta chalepensis, Ruta corsica, and Ruta graveolens. Antioxidants 2022, 11, 592. [Google Scholar] [CrossRef] [PubMed]
- Linsmaier, E.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 1965, 18, 100–127. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Maślanka, A.; Szewczyk, A.; Muszyńska, B. Physiologically active compounds in four species of Phellinus. Nat. Prod. Commun. 2017, 12, 363–366. [Google Scholar] [CrossRef]
- Baumert, A.; Gröger, D.; Kuzovkina, I.N.; Reisch, J. Secondary metabolites produced by callus cultures of various Ruta species. Plant Cell Tissue Organ Cult. 1992, 28, 159–162. [Google Scholar] [CrossRef]
- Fischer, H.; Römer, A.; Ulbrich, B.; Arens, H. A new biscoumarin glucoside ester from Ruta chalepensis cell cultures. Planta Med. 1988, 54, 398–400. [Google Scholar] [CrossRef]
- Szopa, A.; Kokotkiewicz, A.; Luczkiewicz, M.; Ekiert, H. Schisandra lignans production regulated by different bioreactor type. J. Biotechnol. 2017, 247, 11–17. [Google Scholar] [CrossRef]
- Skrzypczak-Pietraszek, E.; Piska, K.; Pietraszek, J. Enhanced production of the pharmaceutically important polyphenolic compounds in Vitex agnus castus L. shoot cultures by precursor feeding strategy. Eng. Life Sci. 2018, 18, 287–297. [Google Scholar] [CrossRef]
- Ptak, A.; Morańska, E.; Skrzypek, E.; Warchoł, M.; Spina, R.; Laurain-Mattar, D.; Simlat, M. Carbohydrates stimulated Amaryllidaceae alkaloids biosynthesis in Leucojum aestivum L. plants cultured in RITA® bioreactor. PeerJ 2020, 8, e8688. [Google Scholar] [CrossRef]
- Coimbra, A.T.; Ferreira, S.; Duarte, A.P. Genus Ruta: A natural source of high value products with biological and pharmacological properties. J. Ethnopharmacol. 2020, 260, 113076. [Google Scholar] [CrossRef]
- Petit-Paly, G.; Ramawat, K.G.; Chenieux, J.C.; Rideau, M. Ruta graveolens: In Vitro Production of Alkaloids and Medicinal Compounds. In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants II. Biotechnol. Agric. For. 1989, 7, 488–505. [Google Scholar] [CrossRef]
- Ekiert, H.; Gomółka, E. Effect of light on contents of coumarin compounds in shoots of Ruta graveolens L. cultivated in vitro. Acta Soc. Bot. Pol. 1999, 68, 197–200. [Google Scholar] [CrossRef]
- Orlita, A.; Sidwa-Gorycka, M.; Kumirska, J. Identification of Ruta graveolens L. metabolites accumulated in the presence of abiotic elicitors. Biotechnol. Prog. 2008, 24, 128–133. [Google Scholar] [CrossRef]
- Orlita, A.; Sidwa-Gorycka, M.; Paszkiewicz, M.; Maliński, E.; Kumirska, J.; Siedlecka, E.M.; Łojkowska, E.; Stepnowski, P. Applicationof chitin and chitosan as elicitors of coumarins and furoquinolone alkaloids in Ruta graveolens L. (common rue). Biotechnol. Appl. Biochem. 2008, 51, 91–96. [Google Scholar] [CrossRef]
- Orlita, A.; Sidwa-Gorycka, M.; Malinski, E. Effective biotic elicitation of Ruta graveolens L. shoot cultures by lysates from Pectobacterium atrosepticum and Bacillus sp. Biotechnol. Lett. 2007, 30, 541–545. [Google Scholar] [CrossRef]
- Szewczyk, A.; Paździora, W.; Ekiert, H. The Influence of Exogenous Phenylalanine on the Accumulation of Secondary Metabolites in Agitated Shoot Cultures of Ruta graveolens L. Molecules 2023, 28, 727. [Google Scholar] [CrossRef]
LS Medium Variant | Dry Weight [g] | |
---|---|---|
NAA/BAP mg/L | 4-Week Growth Cycle | 5-Week Growth Cycle |
0.5/1.0 | 3.56 ± 0.26 | 3.66 ± 0.12 |
0.1/0.1 | 3.97 ± 0.46 | 3.93 ± 0.12 |
1.0/1.0 | 3.17 ± 0.14 | 3.46 ± 0.16 |
Metabolite | LS Medium Variant | Content [mg/100 g DW] | |
---|---|---|---|
NAA/BAP mg/L | 4-Week Growth Cycle | 5-Week Growth Cycle | |
Xanthotoxin | 0.5/1.0 | 592.57 ± 68.05 a | 425.23 ± 45.48 bcd |
0.1/0.1 | 603.96 ± 22.33 a | 486.72 ± 34.18 cd | |
1.0/1.0 | 375.43 ± 25.46 bc | 444.87 ± 28.55 bcd | |
Bergapten | 0.5/1.0 | 244.76 ± 25.73 a | 136.17 ± 12.94 c |
0.1/0.1 | 196.89 ± 6.08 b | 129.81 ± 6.67 c | |
1.0/1.0 | 135.81 ± 7.09 c | 147.85 ± 3.28 c | |
Isopimpinellin | 0.5/1.0 | 54.97 ± 4.81 a | 29.09 ± 4.23 c |
0.1/0.1 | 55.66 ± 11.44 a | 36.37 ± 2.66 c | |
1.0/1.0 | 75.58 ± 7.58 b | 84.48 ± 13.22 b | |
Psoralen | 0.5/1.0 | 222.29 ± 32.73 a | 208.31 ± 52.47 a |
0.1/0.1 | 217.83 ± 12.56 a | 218.54 ± 9.97 a | |
1.0/1.0 | 125.88 ± 12.14 b | 119.58 ± 5.14 b | |
Isoimperatorin | 0.5/1.0 | 54.46 ± 7.97 ab | 42.09 ± 6.32 bc |
0.1/0.1 | 50.28 ± 6.69 abc | 49.61 ± 7.78 abc | |
1.0/1.0 | 43.59 ± 2.41 abc | 50.56 ± 7.44 abc | |
Total furanocoumarins | 0.5/1.0 | 1169.05 ± 127.51 a | 840.89 ± 90.67 bcd |
0.1/0.1 | 1124.62 ± 49.85 a | 921.05 ± 57.29 cd | |
1.0/1.0 | 756.29 ± 33.94 bc | 847.34 ± 46.07 bcd |
Metabolite | LS Medium Variant | Content [mg/100 g DW] | |
---|---|---|---|
NAA/BAP mg/L | 4-Week Growth Cycle | 5-Week Growth Cycle | |
Skimmianine | 0.5/1.0 | 143.18 ± 4.89 a | 192.64 ± 19.26 d |
0.1/0.1 | 122.44 ± 16.27 b | 291.59 ± 3.95 e | |
1.0/1.0 | 74.30 ± 4.99 c | 213.53 ± 3.41 f | |
γ-fagarine | 0.5/1.0 | 135.44 ± 9.47 ac | 98.97 ± 11.48 cd |
0.1/0.1 | 186.88 ± 34.50 b | 143.84 ± 10.90 ac | |
1.0/1.0 | 124.47 ± 14.09 acd | 136.73 ± 15.36 ac | |
7-isopentenyloxy-γ-fagarine | 0.5/1.0 | 13.25 ± 2.94 ac | 13.04 ± 0.37 ac |
0.1/0.1 | 16.79 ± 1.11 bc | 13.23 ± 2.47 ac | |
1.0/1.0 | 15.45 ± 0.49 abc | 15.45 ± 1.00 abc | |
Total furoquinoline alkaloids | 0.5/1.0 | 291.88 ± 9.01 ab | 304.64 ± 28.91 ab |
0.1/0.1 | 326.10 ± 42.07 abe | 448.66 ± 12.86 d | |
1.0/1.0 | 214.22 ± 13.52 c | 365.70 ± 17.41 be |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szewczyk, A.; Grabowski, M.; Zych, D. Ruta chalepensis L. In Vitro Cultures as a Source of Bioactive Furanocoumarins and Furoquinoline Alkaloids. Life 2023, 13, 457. https://doi.org/10.3390/life13020457
Szewczyk A, Grabowski M, Zych D. Ruta chalepensis L. In Vitro Cultures as a Source of Bioactive Furanocoumarins and Furoquinoline Alkaloids. Life. 2023; 13(2):457. https://doi.org/10.3390/life13020457
Chicago/Turabian StyleSzewczyk, Agnieszka, Mariusz Grabowski, and Dominika Zych. 2023. "Ruta chalepensis L. In Vitro Cultures as a Source of Bioactive Furanocoumarins and Furoquinoline Alkaloids" Life 13, no. 2: 457. https://doi.org/10.3390/life13020457
APA StyleSzewczyk, A., Grabowski, M., & Zych, D. (2023). Ruta chalepensis L. In Vitro Cultures as a Source of Bioactive Furanocoumarins and Furoquinoline Alkaloids. Life, 13(2), 457. https://doi.org/10.3390/life13020457