Design and Validation of SPMSM with Step-Skew Rotor for EPS System Using Cycloid Curve
Abstract
1. Introduction
2. Analysis Model
3. Proposed Model for Magnet Shape
4. Validation
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, Y.; Yang, Y.; Zhang, Y. Configuration and parameter design of electrified propulsion systems for three dimensional transportation: A comprehensive review. Green Energy Intell. Transp. 2025. [Google Scholar] [CrossRef]
- Sankhwar, P. Application of Permanent Magnet Synchronous Motor for Electric Vehicle. Indian J. Des. Eng. 2024, 4, 1–6. [Google Scholar] [CrossRef]
- Yang, A.; Zang, Y.; Xu, L.; Li, L.; Tan, D. A systematic review and future development of automotive chassis control technology. Appl. Sci. 2023, 13, 11859. [Google Scholar] [CrossRef]
- Li, Y. Advanced X-by-Wire technologies in design, control and measurement for vehicular electrified chassis. World Electr. Veh. J. 2023, 14, 136. [Google Scholar] [CrossRef]
- EPS System. Available online: https://www.hlmando.com/en/solution/chassis/steering/electric-power/r-eps.do (accessed on 1 August 2025).
- Lee, C.S. Design and Validation of Magnet Shape for SPMSM with Cycloid Curve. Ph.D. Thesis, Hanyang University, Seoul, Republic of Korea, 2017. [Google Scholar]
- Choi, D.; Kim, D.; Han, D.; Kim, W. Design of a slotless structure for minimizing cogging torque and torque ripple in a column type EPS motor for vehicles. IEEE Trans. Magn. 2024, 60, 8700305. [Google Scholar] [CrossRef]
- Lee, Y.; Gil, J.; Kim, W. Velocity control for sideband harmonics compensation in permanent magnet synchronous motors with low switching frequency inverter. IEEE Trans. Ind. Electron. 2021, 68, 3434–3444. [Google Scholar] [CrossRef]
- Jung, W.-S.; Lee, H.-K.; Lee, Y.-K.; Kim, S.-M.; Lee, J.-I.; Choi, J.-Y. Analysis and comparison of permanent magnet synchronous motors according to rotor type under the same design specifications. Energies 2023, 16, 1306. [Google Scholar] [CrossRef]
- Wanjiku, J.; Khan, M.A.; Barendse, P.S.; Pilay, P. Influence of slot openings and tooth profile on cogging torque in axial-flux pm machines. IEEE Trans. Ind. Electron. 2015, 62, 7578–7589. [Google Scholar] [CrossRef]
- Hwang, M.; Lee, H.; Cha, H. Analysis of torque ripple and cogging torque reduction in electric vehicle traction platform applying rotor notched design. Energies 2018, 11, 3053. [Google Scholar] [CrossRef]
- Qian, H.; Guo, H.; Wu, Z.; Ding, X. Analytical solution for cogging torque in surface-mounted permanent-magnet motors with magnet imperfections and rotor eccentricity. IEEE Trans. Magn. 2014, 50, 8201615. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Meng, G.; Zhou, S.; Cao, Q. Analytical calculation of magnetic field and cogging torque in surface-mounted permanent-magnet machines accounting for any eccentric rotor shape. IEEE Trans. Ind. Electron. 2015, 62, 3438–3447. [Google Scholar] [CrossRef]
- Zhang, G.; Hou, P. Optimization Design of Cogging Torque for Electric Power Steering Motors. Machines 2024, 12, 517. [Google Scholar] [CrossRef]
- Lee, C.-S.; Jung, K.-T.; Hong, J.-P.; Kim, H.-J.; Kim, Y.-K. Design of brushless permanent machine with skewed stator for electrical power steering system. J. Korean Magn. Soc. 2015, 25, 189–197. [Google Scholar] [CrossRef]
- Jiang, J.W.; Bilgin, B.; Yang, Y.; Sathyan, A.; Dadkhah, H.; Emadi, A. Rotor skew pattern design and optimization for cogging torque reduction. IET Electr. Syst. Transp. 2015, 6, 126–135. [Google Scholar] [CrossRef]
- Said, S.M.; Nur, T.; Herlina, H. The Application of Magnet Structures to Reduce the Cogging Torque Associated with Fractional Slot Number in Permanent Magnet Generators. Energies 2024, 17, 2505. [Google Scholar] [CrossRef]
- Ying, H.; Zhang, Z.; Gong, J.; Huang, S.; Ding, X. Application for Step-skewing of Rotor of IPM Motors Used in EV. World Electr. Veh. J. 2010, 4, 532–536. [Google Scholar] [CrossRef]
- Ozcelik, N.G.; Sen, I.; Ergene, L.T. A Case Study: An Approach to Decrease Voltage Distortion and Enhance Field Weakening Capability in BMW i3 Traction Motor. IEEE Access 2024, 12, 145881–145892. [Google Scholar] [CrossRef]
- Blum, J.; Merwerth, J.; Herzog, H.G. Investigation of the Segment Order in Step-Skewed Synchronous Machines on Noise and Vibration. In Proceedings of the 2014 4th International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 30 September–1 October 2014; pp. 1–6. [Google Scholar]
- Wu, T.; Schwarzer, D.; Neuwald, T.; Wüst, P.; Maczionsek, D.; Seibicke, F.; Rauch, H.; Schäfer, U. Investigation and comparison of permanent magnet rotors produced by different additive manufacturing methods. Elektrotech. Inftech. 2024, 141, 155–163. [Google Scholar] [CrossRef]
- Frank, T.J.; Troben, O.A. The cycloid permanent magnetic gear. IEEE Trans. Ind. Appl. 2008, 244, 1659–1664. [Google Scholar] [CrossRef]
- Choi, T.H.; Kim, M.S.; Jung, S.Y. Design of gerotor using cycloid and circular-arc curves. Trans. Korean Soc. Mech. Eng. A 2011, 35, 241–250. [Google Scholar] [CrossRef]
- Shin, J.H.; Kown, S.M. On the lobe profile design in a cycloid reducer using instant velocity center. Mech. Mach. Theory 2006, 41, 596–616. [Google Scholar] [CrossRef]
- Lee, C.S.; Lim, M.S.; Park, H.J. Magnet shape design and verification for SPMSM of EPS System Using Cycloid Curve. IEEE Access 2019, 7, 137207–137216. [Google Scholar] [CrossRef]
- Jang, J.; Cho, S.-G.; Lee, S.-J.; Kim, K.-S.; Kim, J.-M.; Hong, J.-P.; Lee, T.H. Reliability-based robust design optimization with kernel density estimation for electric power steering motor considering manufacturing uncertainties. IEEE Trans. Magn. 2015, 51, 8001904. [Google Scholar] [CrossRef]
- Wang, C.; Shen, J.; Luk, P.; Fei, W.; Jin, M.; Masmoudi, A. Design issues of an IPM motor for EPS. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2011, 31, 71–87. [Google Scholar]
- Lee, C.S.; Kim, H.J. Harmonic Order Analysis of Cogging Torque for Interior Permanent Magnet Synchronous Motor Considering Manufacturing Disturbances. Energies 2022, 15, 2428. [Google Scholar] [CrossRef]
- Kim, J.M.; Yoon, M.H.; Hong, J.P.; Kim, S.I. Analysis of cogging torque caused by manufacturing tolerances of surface-mounted permanent magnet synchronous motor for electric power steering. IEEE Trans. Electr. Power Appl. 2016, 10, 691–696. [Google Scholar] [CrossRef]
- Jun, C.S.; Kwon, B.I.; Kwon, O.B. Tolerance Sensitivity Analysis and Robust Optimal Design Method of a Surface-Mounted Permanent Magnet Motor by Using a Hybrid Response Surface Method Considering Manufacturing Tolerances. Energies 2018, 11, 1159. [Google Scholar] [CrossRef]
- Ma, B.; Lei, G.; Zhu, J.G.; Gou, Y.G.; Liu, C.C. Application-Oriented Robust Design Optimization Method for Batch Production of Permanent-Magnet Motors. IEEE Trans. Ind. Electron. 2017, 65, 1728–1739. [Google Scholar] [CrossRef]
Symbol | Variable Name | Unit | Value |
---|---|---|---|
- | Type | - | SPMSM |
- | Phase/Pole/Slot | - | 3/6/9 |
- | Rated power | W | 670 |
- | Rated voltage | V | 12 |
- | Rated speed | rpm | 1600 |
Rsc | Radius of stator core | mm | 42 |
Rrm | Radius of rotor | mm | 19 |
tm | Magnet thickness | mm | 3.3 |
τa | Magnet pole pitch | Degree | 60 |
τp | Manet pole angle | Degree | 52 |
Lag | Air gap length | mm | 1 |
Lstk | Stack length | mm | 57 |
Skew Model | Step-Skew Angle [Degree] | Cycloid Model (Proposed Model) [mNm] | Eccentric Model (Conventional Model) [mNm] |
---|---|---|---|
Non-skew | 0 | 64 | 236 |
2 step-skew | 10 | 2.1 | 2.6 |
3 step-skew | 6.67 | 0.2 | 1.6 |
4 step-skew | 5 | 0.1 | 0.4 |
Cogging Torque (Peak-to-Peak Value) | Proposed Model (Cycloid Model) | Conventional Model (Eccentric Model) | Reference Model | Unit |
---|---|---|---|---|
Analysis (FEM) | 0.2 | 1.6 | 29.2 | mNm |
Test | 27.8 | 58.2 | 76.5 |
Skew Model | Proposed Model (Cycloid Model) | Conventional Model (Eccentric Model) | Reference Model | Unit |
---|---|---|---|---|
Average torque | 5.1 | 4.7 | 6.4 | Nm |
Torque ripple | 1.0 | 0.9 | 2.0 | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C. Design and Validation of SPMSM with Step-Skew Rotor for EPS System Using Cycloid Curve. Machines 2025, 13, 814. https://doi.org/10.3390/machines13090814
Lee C. Design and Validation of SPMSM with Step-Skew Rotor for EPS System Using Cycloid Curve. Machines. 2025; 13(9):814. https://doi.org/10.3390/machines13090814
Chicago/Turabian StyleLee, Chungseong. 2025. "Design and Validation of SPMSM with Step-Skew Rotor for EPS System Using Cycloid Curve" Machines 13, no. 9: 814. https://doi.org/10.3390/machines13090814
APA StyleLee, C. (2025). Design and Validation of SPMSM with Step-Skew Rotor for EPS System Using Cycloid Curve. Machines, 13(9), 814. https://doi.org/10.3390/machines13090814