State-of-the-Art Lightweight Implementation Methods in Electrical Machines
Abstract
:1. Introduction
2. Application of Lightweight Materials
2.1. Composite Materials
2.2. Aluminum Windings
2.3. Soft Magnetic Composite
2.4. Superconducting Materials
3. Structural Lightweight Design
3.1. Active Part
3.2. Passive Part
4. Advanced Manufacturing Technology
4.1. Windings
4.2. Cores
4.3. Cooling Configurations
5. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.; Gerada, D.; Xu, Z.; Zhang, X.; Tighe, C.; Zhang, H.; Gerada, C. Back-iron extension thermal benefits for electrical machines with concentrated windings. IEEE Trans. Ind. Electron. 2019, 67, 1728–1738. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Gerada, D.; Huang, K.; Stone, I.; Worrall, S.; Yan, Y. A critical review on thermal management technologies for motors in electric cars. Appl. Therm. Eng. 2022, 201, 117758. [Google Scholar] [CrossRef]
- Cao, W.; Mecrow, B.C.; Atkinson, G.J.; Bennett, J.W.; Atkinson, D.J. Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA). IEEE Trans. Ind. Electron. 2012, 59, 3523–3531. [Google Scholar]
- Wrobel, R.; McGlen, R.J. Opportunities and challenges of employing heat-pipes in thermal management of electrical machines. In Proceedings of the 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 23–26 August 2020. [Google Scholar]
- Zhao, H.; Zhang, X.; Zhang, F.; Wang, S.; Zhao, W.; Li, J.; Zhang, H.; Gerada, D. A Comprehensive Review and Experimental Investigation on Heat Pipes Application in Electrical Machines. IEEE Trans. Transp. Electrif. 2022, 9, 2267–2281. [Google Scholar] [CrossRef]
- Dong, C.; Qian, Y.; Zhang, Y.; Zhuge, W. A Review of Thermal Designs for Improving Power Density in Electrical Machines. IEEE Trans. Transp. Electrif. 2020, 6, 1386–1400. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, Y.; Gai, Y.; Liu, W. Thermal Management of Drive Motor for Transportation: Analysis Methods, Key Factors in Thermal analysis, and Cooling Methods—A Review. IEEE Trans. Transp. Electrif. 2023, 9, 4751–4774. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, X.; Li, J.; Wang, H.; Zhang, F.; Zhang, H.; Zhu, X.; Gerada, D. Heat Pipe Bending Effect on Cooling Effectiveness in Electrical Machines. IEEE Trans. Energy Convers. 2023, 38, 2011–2021. [Google Scholar] [CrossRef]
- Solomon, D.G.; Greco, A.; Masselli, C.; Gundabattini, E.; Rassiah, R.S.; Kuppan, R. A review on methods to reduce weight and to increase efficiency of electric motors using lightweight materials, novel manufacturing processes, magnetic materials and cooling methods. Ann. Chim.-Sci. Matér. 2020, 44, 1–14. [Google Scholar] [CrossRef]
- Gnanaraj, S.D.; Gundabattini, E.; Singh, R.R. Materials for lightweight electric motors—A review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Boopathi, N.G.; Muthuraman, M.S.; Palka, R.; Wardach, M.; Prajzendanc, P.; Gundabattini, E.; Rassiah, R.S.; Solomon, D.G. Modeling and simulation of electric motors using lightweight materials. Energies 2022, 15, 5183. [Google Scholar] [CrossRef]
- Peter, M.; Fleischer, J.; Sell-Le Blanc, F.; Jastrzembski, J.P. New conceptual lightweight design approaches for integrated manufacturing processes: Influence of alternative materials on the process chain of electric motor manufacturing. In Proceedings of the 2013 3rd International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 29–30 October 2013. [Google Scholar]
- Ruhland, P.; Matveev, A.; Nielsen, K.; Kvinnesland, K.; Coutandin, S.; Fleischer, J. New Production Techniques for Electric Motors in High Performance Lightweight Applications. In Proceedings of the 2020 10th International Electric Drives Production Conference (EDPC), Ludwigsburg, Germany, 8–9 December 2020. [Google Scholar]
- Lizarribar, B.; Prieto, B.; Martinez-Iturralde, M.; Artetxe, G. Novel Topology Optimization Method for Weight Reduction in Electrical Machines. IEEE Access 2022, 10, 67521–67531. [Google Scholar] [CrossRef]
- Wu, S.; Tian, C.; Zhao, W.; Zhou, J.; Zhang, X. Design and Analysis of an Integrated Modular Motor Drive for More Electric Aircraft. IEEE Trans. Transp. Electrif. 2020, 6, 1412–1420. [Google Scholar] [CrossRef]
- Koch, S.F.; Peter, M.; Fleischer, J. Lightweight design and manufacturing of composites for high-performance electric motors. Procedia CIRP 2017, 66, 283–288. [Google Scholar] [CrossRef]
- Fang, S.; Liu, H.; Wang, H.; Yang, H.; Lin, H. High Power Density Permanent Magnet Synchronous Motor With Lightweight Structure and High-Performance Soft Magnetic Alloy Core. In Proceedings of the 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 15–18 April 2018. [Google Scholar]
- Wrobel, R.; Mecrow, B. Additive Manufacturing in Construction of Electrical Machines—A Review. In Proceedings of the 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece, 22–23 April 2019. [Google Scholar]
- Szabó, L. Survey on Applying 3D Printing in Manufacturing the Cooling Systems of Electrical Machines. In Proceedings of the 2022 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 19–21 May 2022. [Google Scholar]
- Wu, F.; Refaie, A.M.E. Toward Additively Manufactured Electrical Machines: Opportunities and Challenges. IEEE Trans. Ind. Appl. 2020, 56, 1306–1320. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, X.; Li, J.; Xu, L.; Wang, S.; Zhang, H. An Advanced Propulsion Motor with Enhanced Winding Cooling System for A Solar-Powered Aircraft. IEEE Trans. Transp. Electrif. 2023, 10, 2034–2044. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Zhang, X.; Gerada, D.; Li, J.; Zhang, J. Multi-Objective Optimization of the Iron Bridge between Segmeted PMs for an Outer-Rotor Brushless DC Motor. In Proceedings of the 2022 IEEE International Conference on Industrial Technology (ICIT), Shanghai, China, 22–25 August 2022. [Google Scholar]
- Zhang, X.; Li, L.; Zhang, C. Mass Optimization Method of a Surface-Mounted Permanent Magnet Synchronous Motor Based on a Lightweight Structure. IEEE Access 2020, 8, 40431–40444. [Google Scholar] [CrossRef]
- Wrobel, R.; Salt, D.; Simpson, N.; Mellor, P.H. Comparative study of copper and aluminium conductors—Future cost effective PM machines. In Proceedings of the 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 8–10 April 2014. [Google Scholar]
- Sayed, E.; Abdalmagid, M.; Pietrini, G.; Sa’adeh, N.M.; Callegaro, A.D.; Goldstein, C.; Emadi, A. Review of Electric Machines in More-/Hybrid-/Turbo-Electric Aircraft. IEEE Trans. Transp. Electrif. 2021, 7, 2976–3005. [Google Scholar] [CrossRef]
- Ahmed, N.; Atkinson, G.J. A Review of Soft Magnetic Composite Materials and Applications. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022. [Google Scholar]
- Dave, N.; Vakil, G.; Xu, Z.; Gerada, C.; Zhang, H.; Gerada, D. Comparison of slotted and slotless PM machines for high kW/kg aerospace applications. In Proceedings of the 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 24–27 November 2020. [Google Scholar]
- Fang, S.; Liu, H.; Wang, H.; Yang, H.; Lin, H. High power density PMSM with lightweight structure and high-performance soft magnetic alloy core. IEEE Trans. Appl. Supercond. 2019, 29, 0602805. [Google Scholar] [CrossRef]
- Vaimann, T.; Kallaste, A. Additive Manufacturing of Electrical Machines—Towards the Industrial Use of a Novel Technology. Energies 2023, 16, 544. [Google Scholar] [CrossRef]
- El-Refaie, A. Role of advanced materials in electrical machines. CES Trans. Electr. Mach. Syst. 2019, 3, 124–132. [Google Scholar] [CrossRef]
- Profumo, F.; Tenconi, A.; Cerchio, M.; Eastham, J.F.; Coles, P.C. Axial flux plastic multi-disc brushless pm motors: Performance assessment. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC’04, Anaheim, CA, USA, 22–26 February 2004. [Google Scholar]
- Lakatos, I.; Szauter, F.; Czeglédi, D. Investigating the appliance of aluminum as a winding material with high efficiency electric motor. In Proceedings of the 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Auckland, New Zealand, 29–31 August 2016. [Google Scholar]
- Babicz, S.; Djennad, S.A.-A.; Velu, G. Preliminary study of using anodized aluminum strip for electrical motor windings. In Proceedings of the 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Des Moines, IA, USA, 19–22 October 2014. [Google Scholar]
- Damme, J.V.; Vansompel, H.; Crevecoeur, G. Anodized Aluminum Foil Winding Axial Flux Machine for Direct-Drive Robotic Applications. IEEE Trans. Ind. Electron. 2023, 70, 10409–10419. [Google Scholar] [CrossRef]
- Widmer, J.D.; Spargo, C.M.; Atkinson, G.J.; Mecrow, B.C. Solar Plane Propulsion Motors With Precompressed Aluminum Stator Windings. IEEE Trans. Energy Convers. 2014, 29, 681–688. [Google Scholar] [CrossRef]
- Widmer, J.D.; Martin, R.; Mecrow, B.C. Precompressed and Stranded Aluminum Motor Windings for Traction Motors. IEEE Trans. Ind. Appl. 2016, 52, 2215–2223. [Google Scholar] [CrossRef]
- Yamada, Y.; Sugimoto, H.; Imae, K. Design of High Slot Fill Aluminum Winding in a Permanent Magnet Synchronous Machine With Reduced Winding Loss. IEEE Trans. Ind. Appl. 2023, 59, 1437–1445. [Google Scholar] [CrossRef]
- Ishikawa, T.; Sato, Y.; Kurita, N. Performance of Novel Permanent Magnet Synchronous Machines Made of Soft Magnetic Composite Core. IEEE Trans. Magn. 2014, 50, 8105304. [Google Scholar] [CrossRef]
- Guo, Y.; Ba, X.; Liu, L.; Lu, H.; Lei, G.; Yin, W.; Zhu, J. A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives. Energies 2023, 16, 2053. [Google Scholar] [CrossRef]
- Du, W.; Zhao, S.; Zhang, H.; Zhang, M.; Gao, J. A Novel Claw Pole Motor With Soft Magnetic Composites. IEEE Trans. Magn. 2021, 57, 8200904. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.G.; Watterson, P.A.; Wu, W. Development of a PM transverse flux motor with soft magnetic composite core. IEEE Trans. Energy Convers. 2006, 21, 426–434. [Google Scholar] [CrossRef]
- Liu, C.C.; Wang, D.Y.; Wang, S.P.; Wang, Y.H. A Novel Flux Reversal Claw Pole Machine with Soft Magnetic Composite Cores. IEEE Trans. Appl. Supercond. 2020, 30, 5202905. [Google Scholar] [CrossRef]
- Liu, C.; Chao, Z.; Wang, S.; Wang, Y.; Lei, G.; Guo, Y.; Zhu, J. Design and Performance Analysis of Permanent Magnet Claw Pole Machine with Hybrid Cores. CES Trans. Electr. Mach. Syst. 2023, 7, 275–283. [Google Scholar] [CrossRef]
- Biasion, M.; Fernandes, J.F.; Vaschetto, S.; Cavagnino, A.; Tenconi, A. Superconductivity and its Application in the Field of Electrical Machines. In Proceedings of the 2021 IEEE International Electric Machines & Drives Conference (IEMDC), Hartford, CT, USA, 17–20 May 2021. [Google Scholar]
- Chow, C.C.; Ainslie, M.D.; Chau, K. High temperature superconducting rotating electrical machines: An overview. Energy Rep. 2023, 9, 1124–1156. [Google Scholar] [CrossRef]
- Terao, Y.; Seta, A.; Ohsaki, H.; Oyori, H.; Morioka, N. Lightweight design of fully superconducting motors for electrical aircraft propulsion systems. IEEE Trans. Appl. Supercond. 2019, 29, 5202305. [Google Scholar] [CrossRef]
- Saeidabadi, S.; Parsa, L.; Corzine, K.; Kovacs, C.; Haugan, T.J. A Double Rotor Flux Switching Machine With HTS Field Coils for All Electric Aircraft Applications. IEEE Trans. Appl. Supercond. 2023, 33, 5203107. [Google Scholar] [CrossRef]
- Komiya, M.; Aikawa, T.; Sasa, H.; Miura, S.; Iwakuma, M.; Yoshida, T.; Sasayama, T.; Tomioka, A.; Konno, M.; Izumi, T. Design study of 10 MW REBCO fully superconducting synchronous generator for electric aircraft. IEEE Trans. Appl. Supercond. 2019, 29, 5204306. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Pancheri, F.; Larg, T.L. LARG: A Lightweight Robotic Gripper with 3-D Topology Optimized Adaptive Fingers. IEEE/ASME Trans. Mechatron. 2022, 27, 2026–2034. [Google Scholar] [CrossRef]
- Hayes, A.C.; Träff, E.A.; Sørensen, C.V.; Willems, S.V.; Aage, N.; Sigmund, O.; Whiting, G.L. Topology optimization for structural mass reduction of direct drive electric machines. Sustain. Energy Technol. Assess. 2023, 57, 103254. [Google Scholar] [CrossRef]
- Lee, D.; Balachandran, T.; Sirimanna, S.; Salk, N.; Yoon, A.; Xiao, P.; Macks, J.; Yu, Y.; Lin, S.; Schuh, J.; et al. Detailed Design and Prototyping of a High Power Density Slotless PMSM. IEEE Trans. Ind. Appl. 2023, 59, 1719–1727. [Google Scholar] [CrossRef]
- Habib, A.; Mohd Zainuri, M.A.A.; Che, H.S.; Ibrahim, A.A.; Rahim, N.A.; Alaas, Z.M.; Ahmed, M.M.R. A systematic review on current research and developments on coreless axial-flux permanent-magnet machines. IET Electr. Power Appl. 2022, 16, 1095–1116. [Google Scholar] [CrossRef]
- Bolam, R.C.; Vagapov, Y.; Anuchin, A. A Review of Electrical Motor Topologies for Aircraft Propulsion. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Turin, Italy, 1–4 September 2020. [Google Scholar]
- Islam, M.S.; Mikail, R.; Husain, I. Slotless lightweight motor for aerial applications. IEEE Trans. Ind. Appl. 2019, 55, 5789–5799. [Google Scholar] [CrossRef]
- Si, J.; Zhang, T.; Hu, Y.; Gan, C.; Li, Y. An axial-flux dual-rotor slotless permanent magnet motor with novel equidirectional toroidal winding. IEEE Trans. Energy Convers. 2021, 37, 1752–1763. [Google Scholar] [CrossRef]
- Mikkelsen, E.K.; Matveev, A.; Nøland, J.K. High-Speed MW-Class Generator with Multi-Lane Slotless Winding for Hybrid-Electric Aircraft. IEEE Access 2023, 11, 84759–84771. [Google Scholar] [CrossRef]
- Tymosch, T.; Fischer, M.; Ketchedjian, V.; Terao, Y.; Ohsaki, H. Analysis of superconducting synchronous motors with Halbach array field excitation. IEEE Trans. Appl. Supercond. 2020, 31, 5200205. [Google Scholar] [CrossRef]
- Zhang, B.; Seidler, T.; Dierken, R.; Doppelbauer, M. Development of a yokeless and segmented armature axial flux machine. IEEE Trans. Ind. Electron. 2015, 63, 2062–2071. [Google Scholar] [CrossRef]
- Besong, J.E.; Fujimoto, Y. Design of a Coreless Multi-Phase Electric Motor Using Magnetic Resonant Coupling. IEEE Trans. Magn. 2022, 58, 8206611. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Geng, W. Design and optimization of Halbach-array PM rotor for high-speed axial-flux permanent magnet machine with ironless stator. IEEE Trans. Ind. Electron. 2019, 67, 7269–7279. [Google Scholar] [CrossRef]
- Rallabandi, V.; Taran, N.; Ionel, D.M.; Eastham, J.F. Coreless multidisc axial flux PM machine with carbon nanotube windings. IEEE Trans. Magn. 2017, 53, 8102904. [Google Scholar] [CrossRef]
- Mueller, M.; McDonald, A.; Macpherson, D. Structural analysis of low-speed axial-flux permanent-magnet machines. IEEE Proc.-Electr. Power Appl. 2005, 152, 1417–1426. [Google Scholar] [CrossRef]
- Subotic, I.; Gammeter, C.; Tüysüz, A.; Kolar, J.W. Weight optimization of an axial-flux PM machine for airborne wind turbines. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016. [Google Scholar]
- Neelakandan, V.; Ganesan, T.; Rao, P.C. Weight optimization of housing bracket for electrical starter motor using fea. Procedia Struct. Integr. 2019, 14, 345–353. [Google Scholar] [CrossRef]
- Wrobel, R.; Mecrow, B. A Comprehensive Review of Additive Manufacturing in Construction of Electrical Machines. IEEE Trans. Energy Convers. 2020, 35, 1054–1064. [Google Scholar] [CrossRef]
- Ghahfarokhi, P.S.; Podgornovs, A.; Kallaste, A.; Cardoso, A.J.M.; Belahcen, A.; Vaimann, T.; Tiismus, H.; Asad, B. Opportunities and Challenges of Utilizing Additive Manufacturing Approaches in Thermal Management of Electrical Machines. IEEE Access 2021, 9, 36368–36381. [Google Scholar] [CrossRef]
- Selema, A.; Van Den Abbeele, J.; Ibrahim, M.N.; Sergeant, P. Innovative 3D Printed Coil and Cooling Designs for Weight-Sensitive Energy-Saving Electrical Machine. IEEE Trans. Transp. Electrif. 2023, 1. [Google Scholar] [CrossRef]
- Simpson, N.; Yiannakou, G.; Felton, H.; Robinson, J.; Arjunan, A.; Mellor, P.H. Direct Thermal Management of Windings Enabled by Additive Manufacturing. IEEE Trans. Ind. Appl. 2023, 59, 1319–1327. [Google Scholar] [CrossRef]
- Wu, F.; Refaie, A.M.E.; Al-Qarni, A. Additively Manufactured Hollow Conductors Integrated with Heat Pipes: Design Tradeoffs and Hardware Demonstration. IEEE Trans. Ind. Appl. 2021, 57, 3632–3642. [Google Scholar] [CrossRef]
- Bieber, M.; Haase, M.; Tasche, F.; Zibart, A.; Ponick, B. Additively manufactured air-cooled lightweight rotor for an automotive electric motor. In Proceedings of the 2023 IEEE International Electric Machines & Drives Conference (IEMDC), San Francisco, CA, USA, 15–18 May 2023. [Google Scholar]
- Urbanek, S.; Frey, P.; Magerkohl, S.; Zimmer, D.; Tasche, L.; Schaper, M.; Ponick, B. Design and Experimental Investigation of an Additively Manufactured PMSM Rotor. In Proceedings of the 2021 IEEE International Electric Machines & Drives Conference (IEMDC), Hartford, CT, USA, 17–20 May 2021. [Google Scholar]
- Nishanth, F.; Goodall, A.D.; Todd, I.; Severson, E.L. Characterization of an Axial Flux Machine with an Additively Manufactured Stator. IEEE Trans. Energy Convers. 2023, 38, 2717–2729. [Google Scholar] [CrossRef]
- Sixel, W.; Liu, M.; Nellis, G.; Sarlioglu, B. Ceramic 3-D Printed Direct Winding Heat Exchangers for Thermal Management of Concentrated Winding Electric Machines. IEEE Trans. Ind. Appl. 2021, 57, 5829–5840. [Google Scholar] [CrossRef]
- Wrobel, R.; Hussein, A. A Feasibility Study of Additively Manufactured Heat Guides for Enhanced Heat Transfer in Electrical Machines. IEEE Trans. Ind. Appl. 2020, 56, 205–215. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X. Design and Preliminary Optimization of a Heat Exchanger Formed by Additive Manufacturing for Outer-Rotor PMSM. IEEE Trans. Energy Convers. 2023, 1–10. [Google Scholar] [CrossRef]
- Tiismus, H.; Kallaste, A.; Belahcen, A.; Rassõlkin, A.; Vaimann, T. Challenges of Additive Manufacturing of Electrical Machines. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019. [Google Scholar]
Materials | Common Materials | Extended Performance Boundaries | Limitations and Considerations |
---|---|---|---|
Composite materials [11,16,31] | Glass fiber-reinforced polymer, Carbon-reinforced plastic, Advanced plastic, etc. |
|
|
Aluminum windings [35,36,37] | Aluminum alloys |
|
|
Soft magnetic composites [41,42,43] | High purity and compressibility of iron powder |
|
|
Superconducting materials [46,47,48] | YBCO, REBCO |
| The complexity and weight gain of the system caused by the required low temperature |
Motor Components | Common Topologies | Extended Performance Boundaries | Limitations and Considerations |
---|---|---|---|
Active part | Slotless machine [54,55,56] |
|
|
Stator yoke optimization [28,57,58] | |||
Ironless machine [59,60,61] | |||
Passive part [23,63,64] | Structural simplification and optimization |
|
Motor Components | Classification of Common Additive Manufacturing Methods | Extended Performance Boundaries | Limitations and Considerations |
---|---|---|---|
Windings [67,68,69] |
|
| |
Cores [70,71,72] |
| ||
Cooling configurations [73,74,75] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Li, J.; Zhang, X.; Xiong, B.; Zhao, C.; Ruan, Y.; Wang, H.; Zhang, J.; Lan, Z.; Huang, X.; et al. State-of-the-Art Lightweight Implementation Methods in Electrical Machines. Machines 2024, 12, 339. https://doi.org/10.3390/machines12050339
Zhao H, Li J, Zhang X, Xiong B, Zhao C, Ruan Y, Wang H, Zhang J, Lan Z, Huang X, et al. State-of-the-Art Lightweight Implementation Methods in Electrical Machines. Machines. 2024; 12(5):339. https://doi.org/10.3390/machines12050339
Chicago/Turabian StyleZhao, Han, Jing Li, Xiaochen Zhang, Bin Xiong, Chenyi Zhao, Yixiao Ruan, Huanran Wang, Jing Zhang, Zhouwei Lan, Xiaoyan Huang, and et al. 2024. "State-of-the-Art Lightweight Implementation Methods in Electrical Machines" Machines 12, no. 5: 339. https://doi.org/10.3390/machines12050339
APA StyleZhao, H., Li, J., Zhang, X., Xiong, B., Zhao, C., Ruan, Y., Wang, H., Zhang, J., Lan, Z., Huang, X., & Zhang, H. (2024). State-of-the-Art Lightweight Implementation Methods in Electrical Machines. Machines, 12(5), 339. https://doi.org/10.3390/machines12050339