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Abstract: Usually, the order of active disturbance rejection control (ADRC) is equal to the relative 

order of the plant. To improve the control performance, a robust reduced-order method for ADRC 

is investigated in this paper. Firstly, frequency domain analysis shows that the lower-order ex-

tended state observer (ESO) has a smaller disturbance estimation error, so disturbance attenuation 

capability can be improved by reducing the order of ADRC. However, using only reduced-order 

ADRC will worsen the robustness of closed-loop systems. Therefore, a robust ADRC method based 

on a modified noise reduction disturbance observer (MNRDOB) is proposed. The main role of the 

MNRDOB is to improve the control performance of the closed-loop system by modifying the struc-

ture of the controlled object. In addition, the robust stability of the closed-loop control system based 

on the MNRDOB is discussed. Moreover, some simulations are used to demonstrate the robustness 

and noise suppression effects of the compound control method reduced-order ADRC with MNR-

DOB, and the parameter tuning method for the MNRDOB to improve the robustness of the system 

is given. Finally, some experiments on speed control of a one-dimensional gimbal are performed, 

and the results show that the proposed method is excellent in overshoot, tracking accuracy, and 

disturbance attenuation. 

Keywords: reduced-order control; active disturbance rejection control (ADRC); disturbance  

observer (DOB); robust stability; one-dimensional gimbal 

 

1. Introduction 

Active disturbance rejection control (ADRC) as a robust control method can effec-

tively overcome nonlinear dynamics, model uncertainty, and external disturbances [1,2]. 

ADRC control technology was first proposed by Prof. Han [3,4]. Its central idea is to use 

an extended state observer (ESO) to estimate the total disturbance including internal and 

external disturbances of the system, and then the estimation is used in feedback to com-

pensate for disturbances. Gao proposed the linear ADRC for the purpose of simplifying 

parameter tuning and system performance analysis [5]. As a practical control solution, 

ADRC is applied to many engineering systems, such as motor drivers [6–8], underwater 

gliders [9,10], power systems [11], and the Piezoelectric Actuator System [12], etc.  

The design process of the ADRC does not require detailed model information of the 

plant, except for the model order and control gain. Generally, the order of ADRC is re-

quired to be equal to the order of the plant to meet the need of disturbance estimation and 
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compensation. However, in some cases, the coefficients of the high-frequency components 

of the system are very small, and the plant model is usually simplified to a lower order to 

simplify controller design and performance analysis [13]. This simplification is very com-

mon in multi-closed-loop control systems in series, such as the three-loop servo control of 

the motor [14,15]. On the other hand, for some systems with complex dynamics, the real 

model order is difficult to obtain or may even be time-varying. In addition, a simplified 

model is also desirable for controller design and performance analysis. It is clear the 

ADRC designed by the simplified model is a reduced-order control scheme. However, 

there is no description of the advantages and disadvantages of this reduced-order control 

scheme in the existing literature. Three problems may limit the proposal of order-reduc-

tion schemes. One is that classical ADRC design methods usually show superior control 

performance. Secondly, the simplification of the controlled object model is very common 

in engineering applications, and this simplification is usually based on experience but 

very effective. Third, the reduced-order scheme will indeed reduce the robustness of the 

system. Although the reduced-order ESO has been widely studied [16,17], it is essentially 

a simplification based on the output differential of the system, and the order of ADRC 

composed of the reduced-order ESO remains unchanged. Although the reduced-order 

ESO has been widely studied, its essence is the simplification of ESO by means of a system 

output differential, and the order of the ADRC composed of the reduced-order ESO does 

not change. Therefore, the existing reduced-order ESO is irrelevant to the reduced-order 

ADRC scheme studied in this paper. 

In this paper, the conditions of the reduced-order ADRC control scheme to stabilize 

the closed-loop system are clearly stated. In addition, the frequency domain analysis 

shows that the lower-order ESO has stronger disturbance estimation ability, which means 

that using a reduced-order ADRC can improve the anti-disturbance performance of the 

system. However, the reduced-order ADRC will reduce the system’s robustness. It is also 

considered that sensor noise suppression is a constant subject for control systems. There-

fore, a modified noise reduction disturbance observer (MNRDOB) is proposed to form the 

compound control strategy of reduced-order ADRC + MNRDOB. Note that the noise re-

duction disturbance observer (NRDOB) was first developed by [18]; however, two limita-

tions lead to the fact that the NRDOB in [18] cannot be used to deal with defects in the 

reduced-order ADRC. On the one hand, the anti-disturbance capability of the NRDOB 

control system in [18] is determined only by the NRDOB and is independent of the nom-

inal controller of the outer loop. Therefore, applying this NRDOB will offset the ADRC’s 

advantage in disturbance rejection. On the other hand, the use of a reduced-order nominal 

model for NRDOB in [18] may destabilize the closed-loop system. In addition, [19] pro-

posed a simplified NRDOB (SNRDOB), but the SNRDOB does not change the controlled 

object of the outer loop nominal controller in robust stability conditions, so it cannot im-

prove the robustness of the reduced-order ADRC system. The MNRDOB proposed in this 

paper avoids these defects. 

The objective of this paper is to clarify the significance and rationality of the reduced-

order ADRC scheme that is common in engineering applications and to propose a robust 

control scheme to overcome the shortcomings of this reduced-order scheme. The simula-

tions demonstrate the superiority of the proposed method in robustness and noise reduc-

tion. In addition, the proposed method is used for speed control of a one-dimensional 

gimbal to verify its effectiveness. The rest of the paper is arranged as follows. Section 2 

introduces the ADRC algorithm and describes the conditions under which the reduced-

order ADRC can stabilize the closed-loop system. In addition, the frequency domain anal-

ysis is utilized to show that the lower-order ESO has stronger perturbation estimation 

ability. In Section 3, an MNRDOB is proposed to improve system robustness and suppress 

sensor noise. The robust stability conditions of closed-loop systems are also discussed. In 

Section 4, the simulation analysis is carried out and the tuning method of MNRDOB pa-

rameters is given. Some experimental results are shown in Section 5. Section 6 concludes 

this paper. 
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2. ADRC Algorithm 

2.1. Classical ADRC Algorithm 

Consider the following single input single output linear system with disturbance 

1 2

2 3

1 1 2 2

1

n n n n r n

x x

x x

x x x x b u +f

y x

=

=

= + + + +

=

  

 (1) 

where ( )1,2, ,ix i n=  are the system states, , 1,2,...,i i n=  are constants, 
ru  is the 

control input, ( )nf t  is the total disturbance including unmodeled dynamics and external 

disturbance, 0nb   is the nominal control gain, and let 
1 1 2 2( )n n ng x = x x x+ + +   . By 

defining 
1 ( )n nx f t+ =  as the total disturbance and letting ( ) ( )n nh t f t= , the dynamic sys-

tem (1) can be rewritten as an extended model: 

1 2

2 3

1

1

1

( )n n n n r

n n

x x

x x

x x g x b u

x h

y x

+

+

=

=

= + +

=

=

 (2) 

The compact form of (2) can be described as 

[ ( ) ]e e e e n r h

e e

x A x B g x b u B h

y C x

= + + +

=
 (3) 

where 
1

1 2 1[ , , , ]T n

e nx x x x R +

+=  , 
1[0,0, ,1,0]T n

eB R +=  , and 
1[0,0, ,1]T n

hB R +=  , 
1[1,0, ,0] n

eC R +=  . 

According to (3) an n + 1st-order ESO is designed as 

1e e e e n rz A z B b u e= + +   (4) 

where 1

1 2 1[ , , , ]T n

e nz z z z R +

+=   is the output vector of ESO, 
1 1 1e x z= − , and 

1

1 2 1[ , , , ]T n

n R    +

+=   is observer gain vector and 
(2 1)!

, 1,2,...,
!(3 1)!

i

i o i n
i i

 
+

= =
− +

as 

suggested by [5], 0o   is the observer bandwidth to be designed. The corresponding n 

+ 1st-order state error feedback (SEF) is 

( )1( )r n n
u K v z z b+= − −  (5) 

where 
1 2[ , , , ]T n

nv v v v R=   is the output vector of the nth-order tracking differentiator 

(TD) [4], 
1 2[ , , , ]T n

nz z z z R=  , and 
1 2[ , , , ] n

nK k k k R=   is controller gain vector. The n 

+ 1st-order ESO, the nth-order SEF, and the nth order TD constitute an nth-order ADRC. 

Subtract (4) from (3) and let 
e ee x z= − , and then the following error dynamics can be ob-

tained. 

( )e e h ne A C e B h= − +  (6) 

Lemma 1. For 
o >0, the state e  of (6) converges into a ball centered in the origin, if matrix 

e eA C−  is Hurwitz and if there exists a constant L > 0 such that
nh L . 
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The detailed proof process of Lemma 1 can be seen in [20], which will not be de-

scribed in detail here. 

Writing (1) as compact form 

r f nx Ax Bu B f= + +  (7) 

where 
1 2[ , , , ]T n

nx x x x R=  is the state vector, [0,0, , ]T n

nB b R=  , and 

[0,0, ,1]T n

fB R=  , it is easy to check that, for 
nh L , if 

eA C−  and A BK b−  are 

both stable, the closed loop system consisting of (5) and (7) is stable. 

2.2. Reduced-Order ADRC Algorithm 

It can be seen from the above derivation that, in the traditional design, the order of 

ADRC is equal to the order of the target plant. However, from Lemma 1, it is noted that 

the premise of the stability of the closed-loop system is 
nh L  rather than directly re-

lated to the order. Therefore, as long as 
nh L  is satisfied, it is feasible to design a low-

order ADRC to control a high-order plant. The following assumptions are put forward. 

Assumption 1. The control input 
ru  and its derivative are bounded by 

,r ru U + u U +                (8) 

Assumption 2. The total disturbance ( )nf t  is bounded by 

( )nf t F +    (9) 

Note that Assumption 2 may be somewhat conservative, because it may lead to non-

convergence under state-dependent uncertainty shown in [21,22]. To overcome this con-

servatism, modeling and analysis of state-dependent uncertainty can be carried out by 

referring to the method in [21,22], which will not be described in detail here. In fact, one 

of the conditions established by ordinary ADRC is that the first derivative of the total 

perturbation is bounded, which is also conservative for state-dependent model uncertain-

ties. Therefore, the analysis method on the uncertainty of the state-dependent model in 

[21,22] is of great significance to study the stability of ADRC. 

The reduced-order model of the nth-order system (1) is as follows: 

( )

1 2

2 3

1 1 1 2 2 1 1 1

1

1
n- n n n n n- r

n

x x

x x

x x x x +f x b u

y x

− −

=

=

= − + + + − +

=

  


 
(10) 

where 
1

n

n-

n

b
b =


− . Equation (10) can be simplified as 

 

1 2

2 3

1 1 1

1

( ) ( )n- n n- r n- r

x x

x x

x x x b u x b u

y x

=

=

= −  − +  +

=

 (11) 

where 
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1

1( )
( )

n r n r

gx if Assumption holdsd x
x

gx+b u b u elsedt −

                                 
 = = 

−       
 

By defining 
1 1( )n n n n- rX f x x b u−= = − −  as total disturbance of the reduced-order sys-

tem and when Assumption 1 holds 
1 1 1( ) ( )n n n n r n rh t =f t f b u b u− − −= − + (when Assumption 1 

does not hold 
1 1( ) ( )n n nh t =f t f− − = ), the extended model (nth-order model) of (11) is 

1 2

2 3

1 1

1

1

( )n- n- r

n n

x x

x x

x x b u

X h

y x

−

=

=

=  +

=

=

 (12) 

Proposition 1. Based Assumption 2, according to the extended model (12) of the reduced-order 

model (10), an observer such as (4) can be designed for system (1), and for 0o  , the observation 

error converges in the ball centered at the origin. 

Proof of Proposition 1. From Assumption 1 and Assumption 2, one has 

1 1

1

1
( )

n n r n r n n

n

n

f b u b u F b U b U if Assumption holds
h t

f F else

− −

−

 − +    +  +        
= 

                                                     

          

 □ (13) 

Equation (13) means that the derivative of the total disturbance 
1nf −

 is bounded. 

Then, Proposition 1 is easily proved by Lemma 1. 

Remark 1. It should be noted that it is necessary for 
1 0n-b  , which means that 

n  is a negative 

constant. It is worth emphasizing that the ESO designed according to the reduced-order model (10) 

and the extended model (12) is nth order, while the ESO designed by the classical method is n + 1st 

order. Therefore, the ESO designed according to Proposition 1 is of order reduced. 

Remark 2. Proposition 1 implies that the condition of bounded estimation error of reduced-order 

ESO is different from that of classical ESO. The reduced-order ESO requires Assumption 2 to hold, 

while classical ESO requires bounded perturbation differentiation. 

Remark 3. It is easy to check on the premise of satisfying Assumptions 1 and 2; the order of system 

(10) can be further reduced in the way of (10)-(12) to obtain the n-ith-order (i ≥ 1) model. According 

to Proposition 1, n-i + 1st-order ESO can be designed. This result explains why the ADRC system 

is still stable when a low-pass filter is connected in series. 

As the core of ADRC, ESO directly determines the control performance of ADRC. 

The lower-order ESO means smaller phase delay and more accurate disturbance estima-

tion performance. Let us take the second-order ESO and third-order ESO as examples. 

Defining f̂  as the estimate of f  by ESO and letting ˆf f f= − , the transfer functions 

from f  to f  for second- and third-order ESO, respectively, are obtained by the same 

method given in [23,24]. 

( )

22

1

2 2

1 2

2 o

o

s ss sf
=

f s s s+



  

++
=

+ +
 (14) 
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( )

3 2 23 2

1 2

3 2 3

1 2 3

3 3o o

o

s s ss s sf

f s s s s+

+ ++ +
= =

+ + +

  

   
 (15) 

According to the tuning method in [5], the bandwidth of the detector is set to 

300o= rad/s . The amplitude-frequency characteristic plots of (9) and (10) are shown in 

Figure 1. We can see that in the low-frequency range, the amplitude attenuation ability of 

the second-order ESO is stronger than the third-order one, resulting in a smaller estima-

tion error. 

Remark 4. The lower-order ESO has stronger disturbance estimation capability, which means the 

reduced-order ADRC has stronger disturbance attenuation capability. However, a reduced-order 

ADRC leads to a greater model error, i.e., a larger total disturbance. The larger the model error, the 

larger the observer bandwidth required. However, the excessive observer bandwidth will amplify 

the noise and cause the system performance to deteriorate. Thus, using reduced-order ADRC may 

cause less robustness. Therefore, ensuring system robustness is the prerequisite for using reduced-

order ADRC. 

 

Figure 1. The amplitude-frequency characteristic plots for f f  transfer functions. 

3. MNRDOB-Based ADRC 

3.1. Modified Noise Reduction Disturbance Observer 

As described in Remark 4, the reduced-order ADRC may deteriorate the system ro-

bustness, so an additional algorithm is needed to overcome this problem. On the other 

hand, sensor noise in many control systems cannot be avoided, so it is an urgent problem 

to filter sensor noise in ADRC systems. In this section, a modified noise reduction disturb-

ance observer (MNRDOB) is developed from [18] to suppress sensor noise and compen-

sate for modeling errors and external disturbances. 

To reduce noise in high-precision control, the noise reduction disturbance observer 

(NRDOB) was developed from the framework of the disturbance observer (DOB) [25], 

which clearly solves the attenuation of sensor noise at high frequency. NRDOB has been 

applied in series elastic actuator control, which significantly improves system stiffness 

[26]. The noise reduction of the NRDOB is achieved by transforming the actual system 

output into a dynamic model by using a nominal model. The NRDOB closed-loop system 

is shown in Figure 2. 
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er ru u

d

1 Q−

y

n

en
dy

ry
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C P

w 0P

1

0P Q−

 

Figure 2. Control system based on NRDOB from [18]. 

Here 
0P  is the nominal model of P , u is the control inputs for the nominal model, 

and signals r , d , and n  represent the reference input, input disturbance, and sensor 

noise, respectively. According to the above block diagram, it is easy to obtain the follow-

ing transfer function: 

( )
( )

( )

l

r

y s
P s

u s
=  (16) 

Similarly, the transfer function from ( )ru s  to ( )ly s  is 

1

0

( ) 2

( ) 1

l

r

y s P

u s PP −
=

+
 (17) 

MNRDOB’s feedback node is different from NRDOB, and its function is similar to 

model reference adaptive control, that is, forcing the behavior of the controlled object to 

follow the nominal model. Next, the characteristics of MNRDOB will be further elabo-

rated. Calculating the output y  and the control input u  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

yr yd yn

ur ud un

y s  T s r s  T s d s  T s n s

u s  T s r s  T s d s  T s n s

= + +

= + +
 (18) 

where 

( )

(1 )
,

(1 ( 2 ))

1(2 1)
,

(1 ( 2 )) (1 ( 2 ))

(1 2 )
.

(1 ( 2 ))

0

ur yr u

0 0 0

0 0 00

ud yd

0 0 0 0 0 0

0

un yn un

0 0 0

P C Q
T  , T PT

P C P PQ-P Q PQ

P P P C P CQPQ P C
T , T

P C P PQ-P Q PQ P C P PQ-P Q PQ

Q P C
T , T PT

P C P PQ-P Q PQ

+
=       =

+ + +

+ −− +
=       =

+ + + + + +

− +
=       =

+ + +

 

Defining the low-pass filter (LPF) ( )Q s  as 

1

1 0

1

1 1 0

( ) ( )
( )

( ) ( ) ( )

h h

h h

l l

l

c s c s c
Q s  

s a s a s  a

−

−

−

−

+ + +
=

+ + + +

 

  
 (19) 

where h 0  and l 0  are integers, and 0   is a constant. Let 0 0c a= , 

( ) ( ): (( )) : ( )nr deg Q s r deg P s , and ( )Q s  is stable. 

Suppose that there exists an 0L   such that the reference input ( )r j  and dis-

turbance ( )d j  are large enough in the low frequency range [0, ]L , the sensor is noisy 

( ) 0n j  , and there exists an H L  such that ( )n j  is large enough in the high-
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frequency band [ , ]L H   and that both ( )r j  and ( )d j  are approximately equal to 

zero. An appropriate LPF ( )Q s  meets the following simple approximation: 

( ) 1, [0, ]

( ) 0, [ , ]

L

H

Q j

Q j

            

            

 

  
 (20) 

If [0, ]L  , from (18) one has 

0

0 0 0

2 2
( ) ( ) ( )

2 (1 ) 2
yr

PP C PC
T j j j

P PP C P P P PC
   =

+ + + +
 (21) 

Supposing that 
0

0
lim P P



→

=  is a positive constant, the MNRDOB control system can 

accurately track the step reference, which is similar to the nominal control system without 

the MNRDOB. Similarly, for low frequency disturbances 

0

0 0 0

( ) ( ) ( )
2 (1 ) 2

yd

PP P
T j j j

P PP C P P P PC
   =

+ + + +
 (22) 

For the nominal control system, the transfer function between the disturbance and 

the output is 

( ) ( )
1

yd

P
T j j

PC
 =

+
 (23) 

Remark 5. It can be seen from (22) and (23), for nominal controllers without an observer structure, 

an appropriate 0P  always guarantees that the disturbance rejection of the MNRDOB controller is 

stronger than the nominal one. As far as ADRC is concerned, the ESO needs to estimate the total 

disturbance from ly . However, the filtering effect of ( )Q s  will filter out some disturbance infor-

mation, resulting in the ESO’s disturbance estimation ability being limited. Therefore, the anti-

disturbance capability of the ADRC with NRDOB is weaker than that of ADRC alone. In addition, 

the ADRC’s anti-disturbance capability is negatively correlated with   of the Q-filter. 

In the high-frequency range [ , ]H   , 

0 0

0 0

(1 2 )
( ) ( ) 0

(1 )

(1 2 )
( ) ( ) 0

(1 )

0

yn

0

un

PQ P C
T j j

P P C

Q P C
T j j

P P C

+
 − 

+

+
 − 

+

 

 

 (24) 

Therefore, with an appropriate LPF ( )Q s , the MNRDOB can effectively attenuate 

noise. 

Remark 6. As can be seen from Figure 2, the MNRDOB compensates for disturbance by w  and 

suppresses sensor noise by en . These two functions of MNRDOB are necessary for controlling a 

high-order plant with a low-order ADRC. Ideally, ( )P s  is converted to a reference model 0 ( )P s  

by feedback w . For a low-order ADRC, a low-order 0 ( )P s  is expected. Of course, an excessive 

modeling error may also lead to the loss of system stability. 

3.2. Robust Stability Analysis 

The robust stability of the MNRDOB closed-loop system will be discussed in this 

section. First, considering the following uncertain system set  , 
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0

1 1

0 1 2

( ) : [ , ]
...

i i in n n

n

b
P s  a a a

a s a s a s a− −

 
= =  

+ + + + 
  (25) 

where n  is a positive integer, and all ia  and ia  are known constants. We assume that 

both the real uncertain plant ( )P s  and its nominal model 
0 ( )P s   belong to  . Let 

( )
( )

( )

N s
P s

D s
= , ( ) 0

0

0

( )

( )

N s
P s

D s
= , and 00 deg( ( )) deg( ( )) 1D s D s = −  . It is worth noting that 

(1) and (25) are equivalent, and 0

0

n

b
b

a
= . 

According to the structure of Figure 3, the nine transfer functions from [ , , ]Tr d n  to 

[ , , ]Tu y e  in are given as follows: 

( )

0

(1 ) (2 1) (1 2 )
1

(1 ) 1 (1 2 )
( )

0 0 0

0 n 0 0 0

0 0

P C Q PQ P C Q P C

P PC Q P P P C P CQ PQ P C
s

P PQ P PQ -P Q

+ − + − + 
 

+ + − − +
 
 + − 

 (26) 

where ( ) (1 ) 1 20s Q PC Q PCQ = − + + + . If the above nine transfer functions are stable, the 

closed loop system is said to be internally stable. Let 
( )

( )
( )

C

C

N s
C s

D s
=  and 

( )
( )

( )

Q

Q

N s
Q s

D s
= , 

which are ratios of coprime polynomials. Then, (26) can be written as 

11 12 13

21 22 23

31 32 33

1

( , )

M M M

M M M
s

M M M
 

 
 
 
  

 (27) 

where 2 2 2

0 0 0 0 0 0 0( ; ) : ( ) (2 )C C Q C C C Qs  DD D N DN N D D NN N D D N DN N N= + + + −   and ijM  

are suitably defined from (19). Therefore, the NRDOB closed-loop system is internally 

stable if and only if ( ; )s     in (27) is Hurwitz for ( )P s  , defining 

( )0 0:= Cm deg DD D N . Then, the equation ( ; ) 0s    =  has m l+  roots, because all the 

transfer functions P , 0P , C , and Q  are strictly proper. 

er

1 Q−

y

n

en
dy

ry

ly

C

w

dy

P

0P Q

0P

ru u

d

 

Figure 3. Control system based on MNRDOB. 
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Lemma 2. Let 

0

( ) : ( 2 )

( )
( ) : ( ; 1) lim ( ; 1)

( )

s 0 C 0 0 C 0 C

f Q Q
s

P s   D DD N NN N D D N

P s
P s  D s  N s   

P s→

= + +

= +
 (28) 

There exist m  and l  roots for ( ) 0sP s =  and ( ) 0fP s = , respectively. Let 
* ( 1,... , )is i  m+l =  be the roots of ( ; ) 0s    = . Then, we have 

*

*

lim ( ) , 1,... ,

lim ( ) , 1,... ,

i i
s

i i
s

s s i  m

s s i m  m+l

      

       

→

→

= =

= = +
 (29) 

Proof of Lemma 2. Since ( ) ( ) 0; 0 ; 0 0Q QD s  =N s  a=  , it follows that

( ; 0) ( 2 )0 C 0 0 C 0 Cs  D DD N NN N D D N = + + 0 ( )sa P s= . Therefore, m roots of ( ; ) 0s    =  con-

verge to those of ( ) 0sP s =  as   approaches zero. Considering the remaining l  roots 

of ( ; ) 0s    = , let 

1 2( ; ) : ( ; ) ( ; ) ( ; ) ( ; )Q Q

s s
s  s  D  s  N           

 
= +  (30) 

where 
2

1 0 0 0( ; ) ( )m

C C s ss  DD D N DN N    == +
 and 

2 2

2 0 0 0 0( ; ) (2 )m

C C C s ss  D NN N D D N DN N    == + − . Because P , 0P , C , and Q  are 

strictly proper and 00 deg( ( )) deg( ( )) 1D s D s = −  , we have 

1 0 0 1
0 0

lim ( ; ) lim m m

C s ss  DD D N s
 

   =
→ →

= =  and 2

2 0 2
0 0

lim ( ; ) lim m m

C s ss  D D N s 


 

   − −

=
→ →

= =  

for all s  with some constants 1  and 2 . Moreover, since ( ; ) ( ; 1)Q QD s  D s    =  and 

( ; ) ( ; 1)Q QN s  N s    = , it follows that 2

1

1

( ; 0) [ ( ; 1) ( ; 1)]m

Q Qs  s D s  N s  
s


 


= +

1 ( )m

fs P s= . 

Thus, ( ; ) 0s    =  have m  roots at the origin and l  roots at * *

1m m ls s+ + . According to 

Lemma 1 of [27], there exist l  roots for ( ; ) 0s    = , defining ( 1,... , )is i  m+l =  such that 
*

0
lim ( )i is s


 
→

= . Since ( )is     are the roots of ( ; ) 0s    = , (29) is proved. □ 

Based on Lemma 2, a theory for robust stability of the MNRDOB closed-loop systems 

is proposed as follows: 

Theorem 1. For all *0     where * 0  , the MNRDOB closed-loop system is robustly in-

ternally stable if the following three conditions hold: 

(a) ( )0P s  is stable; (b) 0

0 0

2

2

PP C

P PP C P+ +
 is stable for all ( )P s  ; (c) ( )fP s  is Hur-

witz. 

Proof of Theorem 1. The denominators of 0

0 0

2

2

PP C

P PP C P+ +
 and ( )nP s  are 

0 0 02C C CDD N NN N D D N+ + and ( )0D s , respectively. Thus, (a) and (b) imply that ( )sP s  is 

stable, so the proof follows Lemma 2. □ 

Remark 7. For condition (b), the controlled object of the nominal controller ( )C s  is 



Machines 2022, 10, 592 11 of 21 
 

 

* 0

0 0

( ) 2
( )

( )

l

r

y s NN
P s

u s DN D N
= =

+
 (31) 

For 3n  , a proper 0P  always guarantees that (31) is stable whether P  is stable or 

not. A stable control object is easy to control. In addition, for 0 = , 

( ) ( ; 1) ( ; 1)f Q QP s D s  N s   = + , whose stability needs further verification. In addition, for 

1 = , since the denominator of ( )Q s  is the Hurwitz polynomial, ( ) ( ; 1)f QP s D s  =  is sta-

ble. Then, the three stability conditions of the closed-loop system are reduced to two. 

The compound control system of ADRC with MNRDOB is shown in Figure 4. It can 

be seen that the disturbances observed by the MNRDOB are used to improve the structure 

of the plant ( )P s  and to cancel the disturbance d . The ADRC’s controlled object is *( )P s  

modified by the MNRDOB. Therefore, the disturbances suppressed by ADRC are the 

model errors with *( )P s  and the residual disturbances of d  cancelled by the MNRDOB. 

r

1 Q−

y

n

en
dy

ry

ly

SEF

w

dy

d

ESO

TD
v

P*

ru u

1

0P Q−

0P

P

ez

 

Figure 4. Control system based on ADRC with MNRDOB. 

Remark 8. The NRDOB is first proposed by [18]. However, there are two reasons why the struc-

ture of the NRDOB in [18] is not used in this paper. Firstly, the transfer function between disturb-

ance d  and output y  is 

( )1

( )

0

yd

0 0

P P Q
T

P Q P P
  

−
=

+ −
 (32) 

Therefore, its anti-disturbance capability depends only on the NRDOB and has noth-

ing to do with ( )C s . If ADRC is combined with NRDOB in [18], its advantages in disturb-

ance rejection will be cancelled out. Secondly, for NRDOB in [18], one of the conditions 

for the robust internal stability is 

0

( )
( ) : ( ; 1) lim 1 ( ; 1)

( )
f Q Q

s

P s
P s  D s  N s   

P s→

 
= + − 

 
 (33) 

For the reduced-order ADRC, 1 =  is expected. Obviously, if 1 = , in (33), there 

will be at least one root at the origin. Furthermore, the robustness of the NRDOB system 

will not be determined. 

Note that the design and stability proof of MNRDOB are based on affine system mod-

els such as (25), so it cannot be applied to non-affine systems similar to those mentioned 

in [28]. 
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4. Simulation and Analysis 

In this section, some simulation results are used to illustrate the effectiveness of the 

proposed method. The simulated plant is derived from a speed plant of a one-dimensional 

gimbal, which is driven directly by a brushless DC motor. Figure 5 shows the equivalent 

schematic diagram of the one-dimensional gimbal. 

aR

aL

mM

LJmJ

m

au eu

ai

 

Figure 5. The equivalent schematic diagram of the one-dimensional gimbal. 

Here, 
au  is the ideal voltage, 

aR  is the resistance of the armature, 
aL  is induct-

ance of the armature, 
ai  is the current of the armature, 

mM  is the output torque of the 

motor, 
eu  is counter electromotive force, =m m   is the angular velocity of the motor, 

mJ  is the inertia of motor, 
LJ  is the inertia of load, and the total inertia of the system is 

= +m LJ J J . Since the one-dimensional gimbal directly driven by the motor has high trans-

mission stiffness, assuming that only the influence of viscous damping friction is consid-

ered, the transfer function from control voltage to angular velocity of the one-dimensional 

gimbal is 

2

0

2

0 1 2

( )
( )

( ) /

( ) ( )

m

a w

w m

a a m a a m e m

s
P s

u s K

K C

L Js L B JR s R B C C

b

a s a s a

=

        =
+ + + +

        = 
+ +



 (34) 

where 
mC   is the moment coefficient, 

eC   is the back EMF coefficient, and 
wK  is the 

power amplification ratio. The parameters of the one-dimensional gimbal are shown in 

Table 1. 

Table 1. The parameters of the one-dimensional gimbal. 

Parameters   

Armature resistance aR  2.25 (Ω) 

Armature inductance aL  0.0067 (H) 

Total inertia J  0.011 (kg × m2) 

Back EMF coefficient eC  2.67 (V/(rad/s)) 

Moment coefficient mC  4.5 (N m/A) 

Viscous damping coefficient mB  0.002 (N m/(rad/s)) 
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Power amplification ratio wK  5.4 

Let us consider some external disturbance ( )d t , and then the state space form of (34) 

is 

( )

1 2

2 2 1 1 2 2

0

1
r

x x

x a x a x b u d
a

=

= − − + +
 (35) 

where 1 mx =  , 0

2

0

b
b

a
= . Let ( )3 2 1 1 2

0

1
f a x a x d

a
= − − +  be the total disturbance, and then a 

second-order ADRC can be designed according to (4) and (5). Based on (11), (35) can be 

reduced to 

 1 2 1 1r rx x b u b u= − +  (36) 

where 0

1

1

b
b

a
=  and the total disturbance 2 2 1 rf x b u= − . Similarly, according to (4) and (5), 

a first-order ADRC can be obtained. It is worth noting that since (34) is stable, Assump-

tions 1 and 2 are easily satisfied as long as the reference signal and its derivatives are 

bounded. 

According to the bandwidth tuning method given by [5], the parameters of the two 

ADRC are set as follows: for the second-order ADRC (SOADRC) 488c = , 400o = , 

and 
2 329660b b= = ; and for the first-order ADRC (FOADRC), 500c = , 400o = , and 

1 692b b= = . It should be noted that the observation bandwidth of the second-order ESO 

and the third-order ESO is the same, and the gain of proportional control is also the same, 

which ensures the fairness of the comparison experiment. In addition, the first-order 

ADRC still needs TD to arrange the transition process to ensure that the derivative of 

control input ru  is bounded even if the reference signal is a step signal. 

Figure 6 shows the simulation results of the step response, and the 5% sensor noise, 

which is much more intense than it actually is, is added at 1t s= . As shown in Figure 6a, 

one can see that the response speed of the FOADRC is faster than that of the second-order 

ADRC, and the time to reach reference of the FOADRC is about 0.07 s, which is about 1/3 

of the SOADRC’s. To suppress sensor noise, a low-pass filter (LPF) is connected in series 

on two ADRC controllers, respectively, in Figure 6b, and the LPF is simply chosen as 

1 1

1 0.02 1
LPFG

s s
= =

+ +
 (37) 

The simulation results show that, when the LPF is added, the FOADRC has signifi-

cant overshoot (about 45%) and oscillation, while SOADRC maintains good control per-

formance. Although FOADRC is superior in sensor noise suppression, its step response 

performance and noise suppression capability are significantly reduced after adding LPF. 

Therefore, FOADRC has lower robustness. These results not only demonstrate the perfor-

mance of the above methods but also confirm the analysis of the noise and robustness of 

the reduced-order ADRC in Remark 4. 
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(a)

(b)

 

Figure 6. The simulation results of step response. (a) Two ADRC; (b) Two ADRC with LPF. 

In order to verify the superiority of reduced-order ADRC + MNRDOB in robustness 

and noise suppression, the nominal model 0 ( )P s  is chosen as 

0

0

1 2

( )
b

P s
a s a

=
+

 (38) 

In addition, the Q-filter is simply chosen as (37). The simulation results are shown in 

Figure 7. One can see that input noise and output noise are effectively suppressed after 

adding the MNRDOB compared to using the FOADRC only. In addition, the response 

speed of the system is the same as that without the MNDOB. The influence of noise on the 

system output and control input of the above five control methods is shown in Table 2 in 

order to more intuitively show the advantages of reduced-order ADRC + MNRDOB in 

noise suppression. As can be seen from Table 2, for the FOADRC with MNRDOB, the 

noise in the control input is the smallest, and the noise in the system output is only slightly 

greater than the SOADRC with LPF. 

(a) (b)
 

Figure 7. The simulation result of step response by FOADRC with MNRDOB. (a) Speed(deg/s); (b) 

u(V). 
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Table 2. The impact of sensor noise on different control algorithms. 

Control Methods 
Noise in System Output 

(RMS/deg/s) 

Noise in Control Input 

(RMS/V) 

SOADRC 0.4079 0.0305 

SOADRC with LPF 0.0577 0.0012 

FOADRC 0.2298 0.0059 

FOADRC with LPF 0.1654 0.0015 

FOADRC with MNRDOB 0.0848 0.0008 

In order to further verify the enhancement of system robustness by the MNRDOB, 

the simulation experiment is carried out by increasing and decreasing the inertia and 

keeping the controller parameters constant. The simulation results of the step response 

are shown in Figure 8, in which sensor noise is not considered. When 
0a  is 1/5 of the 

original, the step response of the FOADRC and the FOADRC with MNRDOB remains 

excellent, while the SOADRC oscillates violently. When 
0a  increases to five times of the 

original, the FOADRC loses stability, the SOADRC remains excellent, and the FOADRC 

with MNRDOB has small oscillation but stabilizes for 0.4 s. Therefore, the composite con-

trol strategy of the FOADRC with MNRDOB has more outstanding performance in terms 

of robustness. 

Remark 9. Note that in practical engineering applications, the higher-order terms with minimal 

coefficients in the transfer function are usually ignored to simplify the controlled object model. For 

reduced-order ADRC, the smaller the coefficient of the higher-order term ignored, the better the 

robustness of the system and vice versa. The simulation experiments in Figure 6 well confirm this 

statement. The reasons for the improved robustness of FOADRC with MNRDOB can be found in 

Figure 4 and by (31). The control object of FOADRC is converted from P  to P  by the MNR-

DOB; for P in (34), based on (31), P  restructured by the MNRDOB by using the nominal 

model in (38) is 

0 0

0 0 0 1 2

2
( )

0.5

NN b
P s

DN D N a s a s a

 = =
+ + +

 (39) 

Obviously, the coefficient of the second-order term in P  is reduced by half com-

pared to P , so the compound control strategy of the ADRC with MNRDOB has strong 

robustness. It should be emphasized that the coefficient of the second-order term in P  

can be reduced by decreasing the numerator of the nominal model 0P , thus further im-

proving the robustness of the system. On the other hand, it can be seen from Equation (24) 

that reducing the numerator of 0P  can also improve the disturbance suppression ability 

of the MNRDOB system. 

(a) (b)
 

Figure 8. Robustness comparison for three control methods. (a) 0 / 5a ; (b) 05a . 
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5. Experimental Results 

To verify the practicability and validity of the proposed scheme, some experiments 

are carried out on the experimental setup shown in Figure 9. The control system for the 

one-dimensional gimbal includes a DSP control board (the control chip is 

TMS320F283335), PC, and power supply. The sampling frequency of the speed loop is 1 

kHz. The main parameters of the plant are consistent with those described in the simula-

tion. The experimental device used in this paper is for aerospace application, which is 

required to run at a low speed to ensure the stability of spacecraft. Therefore, all the ex-

periments in this paper test the performance of the system at low speed. 

In this section, the control performance of the three control methods, second-order 

ARRC with LPF, FOADRC with NRDOB (from [18]), and FOADRC with MNRDOB, will 

be compared. The control parameters used in the experiment are consistent with those in 

the simulation. For NRDOB, since the first-order nominal model cannot guarantee its sta-

bility, the nominal model is chosen as model (34), and the corresponding filter Q is se-

lected as a second-order low-pass filter 
2

1
( )

(0.02 1)
Q s

s
=

+
. Based on Remark 9, the nom-

inal model for the MNRDOB is designed as (40) to improve the robustness and disturb-

ance rejection ability of the MNRDOB system to improve the robustness and disturbance 

rejection ability of the MNRDOB system 

0

0

1 2

/ 3
( )

b
P s

a s a
=

+
 (40) 

Control computer

DSP control board

Secondary power supply

Oscilloscope

One-dimensional gimbal

 

Figure 9. Experimental setup. 

Figure 10 shows the step responses and sinusoidal disturbance suppression effects of 

the three controllers, in which the sinusoidal control voltage disturbances of 0.1sin(2 )t  

and 0.05sin(10 )t  are added at 1t s= , respectively. One can see that the FOADRC with 

MNRDOB has the strongest ability to suppress sinusoidal disturbances, the FOADRC 

with NRDOB has the second, and the SOARRC with LPF has the weakest. In order to 

further verify the disturbance inhibition of the proposed method, in the experiment 

shown in Figure 11, a step control input disturbance 1d V=  and a step disturbance 

0.1rad/sd =  were added at 1 s and 2.5 s, respectively. The results show that the proposed 

method can force the system to reconverge faster to the reference trajectory under the 

same disturbance conditions. In addition, the response speed of the SOADRC with LPF is 

slower than the other two methods. Therefore, the proposed methods are outstanding in 

the step response and disturbance inhibition. 
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(a) (b)
 

Figure 10. Experimental results of the step response and sinusoidal disturbance. (a) 1 Hz disturb-

ance; (b) 5 Hz disturbance. 

Voltage disturbance Speed disturbance

 

Figure 11. Experimental results of step disturbance. 

Figure 12 shows the tracking results of the three control methods at different speeds 

(5 deg/s, 15 deg/s, and 25 deg/s). It can be seen that the step response performance of the 

three control methods at different speeds is consistent with the results in Figure 11. There-

fore, the proposed method has good control performance at different speeds. 

 

Figure 12. Experimental results of different speed references. 
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To verify the advantages of the proposed method in tracking performance and fric-

tion suppression, a delay compensation of 0.027 s is added to eliminate the influence of 

phase delay. The experimental results for the sine signal sin( )t  and mixed signal (com-

posed by 2sin( )t , 0.5sin(4 )t , and 0.05sin(10 )t ) are shown in Figures 13 and 14, 

where the tracking responses and tracking errors are all illustrated, to display the tracking 

performance of the proposed method. As shown in Figures 13 and 14, the proposed 

method FOADRC with MNRDOB can retain significantly superior tracking performance 

than the other two methods in both cases, because the disturbance and the unknown dy-

namics are better estimated and compensated by the proposed method. As can be seen 

from the tracking errors in Figures 13 and 14, the proposed method can effectively inhibit 

the peak error produced by friction compared with the other two methods. The more de-

tailed comparison results are shown in Table 3. 

(a) (b)
 

Figure 13. Experimental results of the sinusoidal response. (a) Speed(deg/s); (b) Error(deg/s). 
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Figure 14. Experimental results of the mixed signal response. (a) Speed(deg/s); (b) Error(deg/s). 

Table 3. Performance comparison of three control methods. 

Control Meth-

ods 

Maximum Tracking Error 

(deg/s)  
Tracking Error (deg/s) 

Sinusoidal Disturbance Sine Signal Mixed Signal 

1 Hz 5 Hz Maximum RMS Maximum RMS 

SOADRC with 

LPF 
2.021 3.914 0.416 0.0897 0.594 0.1043 

FOADRC with 

NRDOB 
1.537 3.462 0.397 0.0739 0.539 0.0865 

FOADRC with 

MNRDOB 
0.531 1.169 0.254 0.0485 0.292 0.0560 

In recent years, many scholars have proposed many effective control methods for 

motor speed control, such as model reference adaptive control [29], model predictive con-

trol [30], singular perturbation control [31], and neural network method [32], etc. How-

ever, the design and algorithm complexity of these methods are high and difficult to im-

plement in engineering. The sliding mode observer (SMO) mentioned in [33] has attracted 

wide attention due to its high robustness. To further demonstrate the control performance 

of the proposed method, the results for mixed signal response by sliding mode ESO 

(SMESO) are shown in Figure 15. The SMESO is the second-order ESO modified to the 

following form according to SMO in literature [33]: 

1 2 1 1

2 3 2 2 1

3 3 1

( )

( )

( )

r

z z sign e

z z b u sign e

z sign e

= −

= + −

= −







 (41) 

where , 1,2,3i i =  are the observer gains. For simplicity, the feedback control law and 

the controller parameters are consistent with the SOADRC. 
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Figure 15. Experimental results of the mixed signal response by SMESO method. (a) Speed(deg/s); 

(b) Error(deg/s). 

Comparing Figure 14 with Figure 15, we can see that SMESO’s tracking performance 

is better than that of SOADRC with LPF and FOADRC with NRDOB but still not as good 

as the proposed method. The maximum tracking error of the SMESO method for mixed 

signals is 0.449 deg/s, and the tracking error RMS is 0.0838 deg/s. In addition, the tracking 

error of the SMESO method has more fluctuation, which may be caused by chattering of 

the sliding mode.  

6. Conclusions 

This paper presents a robust reduced-order method for active disturbance rejection 

control (ADRC) to achieve high control performance. Frequency domain analysis shows 

that the lower-order extended state observer (ESO) has stronger disturbance estimation 

ability. However, direct reduced-order control will reduce the robustness of the system. 

In addition, the influence of sensor noise is unavoidable in many control systems. There-

fore, a modified noise reduction disturbance observer (MNRDOB) is proposed to improve 

the robustness of the reduced-order ADRC and suppress the sensor noise. Simulation re-

sults are presented to illustrate the superiority of the proposed method in robustness and 

noise reduction. Finally, the effectiveness of the proposed method is verified by speed 

control of a one-dimensional gimbal, and the results show that the proposed method is 

excellent in overshoot, rapidity, and disturbance attenuation. Further robustness and sta-

bility of the reduced-order ADRC method will be studied in future work. 
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