The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain
Abstract
1. Introduction
2. Mathematical Background and Auxiliary Results
3. The Existence of an Entropy Solution
- (a)
- (b)
- is bounded in
- (c)
- ( the characteristic function of ). Then
4. Uniqueness of the Entropy Solution
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Alber, H.D. Materials with Memory: Initial-Boundary Value Problems for Constitutive Equations with Internal Variables; Springer: New York, NY, USA, 2006. [Google Scholar]
- Ball, J.M. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 1976, 63, 337–403. [Google Scholar] [CrossRef]
- Benkhira, E.H.; Essoufi, E.H.; Fakhar, R. On convergence of the penalty method for a static unilateral contact problem with nonlocal friction in electro-elasticity. Eur. J. Appl. Math. 2016, 27, 1–22. [Google Scholar] [CrossRef]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef]
- Bénilan, P.; Boccardo, L.; Gallouêt, T.; Gariepy, R.; Pierre, M.; Vázquez, J.L. An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Della Sc. Norm. Super. Pisa Cl. Sci. 1995, 22, 241–273. [Google Scholar]
- Aberqi, A.; Bennouna, J.; Mekkour, M.; Redwane, H. Nonlinear parabolic inequalities with lower order terms. Appl. Anal. 2017, 96, 2102–2117. [Google Scholar] [CrossRef]
- Benkirane, A.; Bennouna, J. Existence of solutions for nonlinear elliptic degenerate equations. Nonlinear Anal. Theory Methods Appl. 2003, 54, 9–37. [Google Scholar] [CrossRef]
- Benslimane, O.; Aberqi, A.; Bennouna, J. Existence and Uniqueness of Weak Solution of p(x)-Laplacian in Sobolev Spaces with Variable Exponents in Complete Manifolds. arXiv 2020, arXiv:2006.04763. [Google Scholar]
- Boureanu, M.M.; Udrea, C.; Udrea, D.N. Anisotropic problems with variable exponents and constant Dirichlet conditions. Electron. J. Differ. Equ. 2013, 2013, 1–13. [Google Scholar]
- Aberqi, A.; Bennouna, J.; Elmassoudi, M.; Hammoumi, M. Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces. Monatshefte Math. 2019, 189, 195–219. [Google Scholar] [CrossRef]
- Aharouch, L.; Bennouna, J. Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. 2010, 72, 3553–3565. [Google Scholar] [CrossRef]
- Demengel, F.; Hebey, E. On some nonlinear equations involving the p-Laplacian with critical Sobolev growth. Adv. Differ. Equ. 1998, 3, 533–574. [Google Scholar]
- Evans, L.C. Weak Convergence Methods for Nonlinear Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 1990. [Google Scholar]
- Domanska, O.V. Boundary problems for elliptic systems with anisotropic nonlinearity. Visnik Nats. Univ. Lviv. Politekhnika Fiz. Mat. Nauki 2009, 660, 5–13. [Google Scholar]
- Bendahmane, M.; Karlsen, K.H. Nonlinear anisotropic elliptic and parabolic equations in ℝN with advection and lower order terms and locally integrable data. Potential Anal. 2005, 22, 207–227. [Google Scholar] [CrossRef]
- Bokalo, M.; Domanska, O. On well-posedness of boundary problems for elliptic equations in general anisotropic Lebesgue-Sobolev spaces. Mat. Stud. 2007, 28, 77–91. [Google Scholar]
- Ayazoglu, R.; Akbulut, S.; Akkoyunlu, E. Uniform Boundedness of Kantorovich Operators in Variable Exponent Lebesgue Spaces. Filomat 2019, 33, 5755–5765. [Google Scholar] [CrossRef]
- Cammaroto, F.; Vilasi, L. On a perturbed p(x)-Laplacian problem in bounded and unbounded domain. J. Math. Anal. Appl. 2013, 402, 71–83. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Tachikawa, A. Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 2020, 9, 710–728. [Google Scholar] [CrossRef]
- Korolev, A.G. Imbedding theorems for anisotropic Sobolev-Orlicz spaces. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika 1983, 38, 32–37. [Google Scholar]
- Kozhevnikova, L.M. Existence of Entropic Solutions of an Elliptic Problem in Anisotropic Sobolev-Orlicz Spaces. J. Math. Sci. 2019, 241, 258–284. [Google Scholar] [CrossRef]
- Kozhevnikova, L.M. On the entropy solution to an elliptic problem in anisotropic Sobolev-Orlicz spaces. Comput. Math. Math. Phys. 2017, 57, 434–452. [Google Scholar] [CrossRef]
- Krasnosel’skii, M.A.; Rutickii, J.B. Convex Functions and Orlicz Spaces; Fizmatlit: Moscow, Russia, 1958. [Google Scholar]
- Mihăilescu, M.; Moroşanu, G.; Rădulescu, V. Eigenvalue problems for anisotropic elliptic equations: An Orlicz–Sobolev space setting. Nonlinear Anal. Theory Methods Appl. 2010, 73, 3239–3253. [Google Scholar] [CrossRef]
- Cianchi, A. A fully anisotropic Sobolev inequality. Pac. J. Math. 2000, 196, 283–294. [Google Scholar] [CrossRef]
- Alberico, A.; Chlebicka, I.; Cianchi, A.; Zatorska-Goldstein, A. Fully anisotropic elliptic problems with minimally integrable data. Calc. Var. Partial. Differ. Equ. 2019, 58, 186. [Google Scholar] [CrossRef]
- Boccardo, I.; Gallouët, T. Nonlinear elliptic equations with right hand side measures. Commun. Partial. Differ. Equ. 1992, 17, 189–258. [Google Scholar] [CrossRef]
- Gossez, J.P. Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 1974, 190, 163–205. [Google Scholar] [CrossRef]
- Lions, J.L. Quelques Méthodes de Résolution des Problemes aux Limites non Linéaires; Dunod: Paris, France, 1969. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benslimane, O.; Aberqi, A.; Bennouna, J. The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain. Axioms 2020, 9, 109. https://doi.org/10.3390/axioms9030109
Benslimane O, Aberqi A, Bennouna J. The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain. Axioms. 2020; 9(3):109. https://doi.org/10.3390/axioms9030109
Chicago/Turabian StyleBenslimane, Omar, Ahmed Aberqi, and Jaouad Bennouna. 2020. "The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain" Axioms 9, no. 3: 109. https://doi.org/10.3390/axioms9030109
APA StyleBenslimane, O., Aberqi, A., & Bennouna, J. (2020). The Existence and Uniqueness of an Entropy Solution to Unilateral Orlicz Anisotropic Equations in an Unbounded Domain. Axioms, 9(3), 109. https://doi.org/10.3390/axioms9030109