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Abstract: In this paper, an improved whale optimization algorithm (WOA) based on the utilization 

of an interval type-2 fuzzy logic system (IT2FLS) is presented. The main idea is to present a proposal 

for adjusting the values of the �⃗� and �⃗� parameters in the WOA using an IT2FLS to achieve excel-

lent results in the execution of the WOA. The original WOA has already proven itself as an algorithm 

with excellent results; therefore, a wide variety of improvements have been made to it. Herein, the 

main purpose is to provide a hybridization of the WOA algorithm employing fuzzy logic to find the 

appropriate values of the r⃗� and r⃗� parameters that can optimize the mathematical functions used 

in this study, thereby providing an improvement to the original WOA algorithm. The performance 

of the fuzzy WOA using IT2FLS (FWOA-IT2FLS) shows good results in the case study of the bench-

mark function optimization. An important comparative with other metaheuristics is also presented. 

A statistical test and the comparative with other bio-inspired algorithms, namely, the original WOA 

with type-1 FLS (FWOA-T1FLS) are analyzed. The performance index used is the average of the 

minimum errors in each proposed method.  

Keywords: swarm intelligent; type-1 fuzzy logic system; whale optimization algorithm;  

mathematical functions; dynamic adjustment 
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1. Introduction 

In recent years, metaheuristic algorithms have been utilized and implemented to 

solve many complex problems. In this paper, a popular and efficient benchmark set of 

mathematical functions is used, which has been utilized by many authors to analyze and 

verify their proposed methods. For example, in [1], a tuna search optimization is demon-

strated to have excellent results as presented by Xie et al. In [2], an algorithm based on the 

bird behavior is presented by Meng et al. In [3,4], a mantis search algorithm and exponen-

tial distribution optimizer are studied by Abdel-Basset et al. Additionally, in [5], a coro-

navirus mask protection algorithm is implemented with this problem yielding good re-

sults by Yuan et al. In [6,7], an osprey optimization algorithm and green anaconda opti-

mization are presented by Dehghani et al. Moreover, in [8], a comparative study with the 

bird swarm algorithm and artificial gorilla troops optimizer is outlined with both methods 

showing excellent results in mathematical functions, as presented by Miramontes et al. 

Apart from these, several more studies have been conducted. 

Nowadays, an increase in the complexity of problems has been visualized; therefore, 

nature-inspired algorithms have been investigated to improve their performance. A topic 

of interest that has been shown to yield excellent results is the improvement of the algo-

rithm with innovative and intelligent techniques. Here, it is noteworthy to mention a few 
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cases. In [9], a differential evolution algorithm (DEA) with dynamic adaptation in their 

main parameters is presented. An improved algorithm for the prediction of heart diseases 

is presented in [10], and an improved bio-inspired algorithm for the fog computing envi-

ronment is analyzed in [11]. In [12], an improved algorithm for task mapping in networks-

on-chip is presented, and an improved sparrow search algorithm is presented in [13]. A 

chaotic gaining and sharing knowledge optimization algorithm is presented in [14], and 

a chaotic dragonfly algorithm is presented in [15]. A marine predator algorithm is im-

proved in [16], and an improved dolphin swarm algorithm is presented in [17]. The pri-

mary purpose in the hybridization of these algorithms is to find the optimal values in the 

main parameters that determine the achievement of an excellent performance in each al-

gorithm; this allows us to analyze some important characteristics such as fast stabilization, 

high precision, the exact solution, and fast convergence rate.  

In this proposal, the first relevant contribution is to explore the execution of the WOA 

in the case study to observe the behavioral results, and then identify the effect of the two 

parameters (�⃗� and �⃗�) in WOA as well as the effect on exploration and exploitation, as 

they are crucial for obtaining excellent results.  

The remainder of the paper is organized as follows. Several research works that are 

relevant to this study are reviewed in Section 2. The original WOA and the proposed 

FWOA-T2FLS are presented in Section 3. The description of the mathematical functions is 

detailed in Section 4. The results of the experiments are outlined in Section 5. In Section 6, 

the results are analyzed, statistically compared, and discussed, and finally in Section 7, 

the conclusions and future works are demonstrated. 

2. Related Works 

Nowadays, one of the hybridizations in which several authors have shown their in-

terest is with fuzzy systems. Metaheuristic algorithms have provided greater stabilization 

and be�er error performances when the fuzzy set method is implemented because prob-

lems have grown in complexity. For example, in [18], an adaptive neuro-fuzzy inference 

system and genetic algorithm (NFGA)-based MPPT controller for the PV system is pre-

sented and in [19], a synthesis of the neuro-fuzzy regulator with genetic algorithm is ana-

lyzed. Additionally, in [20], a new fuzzy approach to dynamic adaptation applied to the 

marine predator algorithm is presented, and in [21], an improved chimp optimization al-

gorithm is presented. Moreover, in [22], a hybrid spiral-bacterial foraging algorithm for a 

fuzzy control design of a flexible manipulator is studied, and in [23], an optimal fuzzy 

logic controller-based PSO for the photovoltaic system is presented. Furthermore, in [24], 

a boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis 

disease is presented. 

When the complexity of the problems grows, it is necessary to provide a more precise 

response. As a result, the IT2FS has the main characteristic of uncertainty in the evaluation 

with greater potential for providing excellent results, as several authors have demon-

strated. Some relevant works have been studied, for example; in [25]an optimization of 

the T2FL is presented with the hybridization of GSO and FA algorithms, and in [26], a 

shadowed type-2 FS in the improvement of the cuckoo search and flower pollination al-

gorithms is presented. In [27], a type-2 FL is implemented in the improvement of a me-

taheuristic algorithm, and in [28], a bat algorithm is implemented in the optimization of 

an IT2FLS. In [29], a metaheuristic approach for IT2FLS is implemented, and in [30], a 

type-2 FS is implemented in the dynamic adaptation of harmony search optimization [31] 

and bee colony optimization [32]. In [33], a T2FL metaheuristic algorithm is implemented 

in nonlinear dynamic systems, and in [34], a high-speed IT2FS approach for dynamic pa-

rameter adaptation is presented. 

In recent years, a bio-inspired algorithm called WOA has generated great interest 

because it has been studied and applied in various fields to solve problems and has been 

found to yield excellent results in the research. Some relevant works have been applied. 

In [35], the WOA algorithm is used in image segmentation, in [36], it is implemented to 
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stabilize a control problem, and in [37], it is used for biomedical classification. In [38], 

WOA is implemented as a planning strategy for mobile robots, in [39], it is used to solve 

the optimal reactive power dispatch problem, and in [40], it is used as an optimizing deep 

learning method for software defect prediction. In [41], the WOA algorithm is used in the 

reconfiguration of distribution networks with simultaneous allocation of distributed gen-

eration, and in [42] it is used to classify problems. 

Therefore, the WOA algorithm showed significant improvements over various meth-

ods. In particular, many authors are interested in the performance of WOA in several 

problems [43–52]. Some related works where this algorithm has been studied with a sim-

ilar problem are presented in [53–55]. 

The proposed improvement with the hybridization using IT2FLS is a new approach 

in the minimization of benchmark functions. 

Once the state-of-the art was analyzed, the WOA algorithm was observed as having 

the largest number of contributions and applications. As studied by different authors, the 

WOA algorithm is one of the most popular algorithms due to its rapid convergence in 

obtaining results. The justification for choosing this algorithm is mainly based on its pop-

ularity and this has motivated us to present a new hybridization using type-2 fuzzy logic 

to improve the original WOA algorithm. 

3. Whale Optimization Algorithm 

Mirjalili and Lewis [56] created the whale optimization algorithm, drawing inspira-

tion from the behavior of whales in nature. Three critical behaviors have been identified. 

First, in some parts of their brains, whales have common cells similar to human beings. 

6Second, as the largest mammals in the world, whales are recognized for their intelligence. 

Third, in the social behavior of whales, they can successfully live alone or in a group. 

However, they are mostly observed in groups [56]. 

3.1. Original WOA 

A visual representation of the behavior of a whale is illustrated in Figure 1, and in 

Figure 2, each movement that a whale performs in the process is illustrated. The mecha-

nism of the movement of the whale to find food is based on three interesting techniques: 

encircling prey (surround prey), spiral bubble-net feeding maneuver (exploitation phase), 

and search for prey (exploration phase) to find the objective [56]. In this case, during the 

WOA execution, the best whale with the best solution is updated according to the current 

location. 

 

Figure 1. Visual representation of the movement of a whale to find food. 
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Figure 2. General representation of a bubble-net search mechanism in WOA (X* is the best solution 

obtained to date): (a) shrinking encircling mechanism and (b) spiral updating position. 

The step-by-step process in WOA is expressed by Algorithm 1.  

Algorithm 1: Pseudo-Code of the WOA Algorithm 

Initialize the whale population Xi (i = 1, 2,……, n) 

Calculate the fitness of each search agent 

X* = the best search agent 

while (t < maximum number of iterations) 

     for each search agent update a, A, C, l, and p 

          if1 (p < 0.5) 

               if2 (|�| < 1) 

                    Update the position of the current agent by Equation (1) 

               else if2 (|�| ≥ 1) 

                    Select a random search agent (�����) 

                    Update the position of the current agent by Equation (6) 

               end if2 

               else if1 (p ≥ 0.5) 

                    Update the position of the current search by Equation (5) 

                  end if1 

            end for 
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            Check if any search agent goes beyond the search space and amend it 

            Calculate the fitness of each search agent 

            Update X* if there is a better solution 

            t = t + 1 

end while 

return X* 

3.1.1. Surround Prey 

This phase is based on the humpback whale’s foam-net feeding method. A relevant 

movement is that a whale can locate their prey by rotating around it. The optimal solution 

is defined in the start of this phase and other whales (agents) update their position towards 

the best individual. This behavior is expressed by Equations (1) and (2) [56]: 

��⃗ = ����⃗ . � ���⃗ ⋇(�) −  ����⃗ (�)�  (1)

 ����⃗ (� + 1) = � ���⃗ ⋇(�) −  ����⃗ ∙  ����⃗   (2)

where the total execution in WOA is expressed by �; the actual position in the optimal 

solution is expressed by � ���⃗ ⋇ and is updated in each iteration;  ����⃗ (�) is the current posi-

tion;  ����⃗   represent the coefficients of  ����⃗ (�)  and  ����⃗  , respectively and are calculated by 

Equations (3) and (4) [56]: 

 ����⃗ = 2 ����⃗ ∙   ���⃗ � −  ����⃗   (3)

���⃗ = 2 ∙  ���⃗ �  (4)

In this phase,  ����⃗   slowly changes from 2 to 0, and  ���⃗ �  and  ���⃗ �  are in the range be-

tween 0 and 1. (These two parameters are studied in this paper, and the detailed explana-

tion is presented in the following sub-section). 

3.1.2. Bubble-Net A�acking Method 

In this phase, two movements, namely, shrink and surround are performed by a 

whale. This is achieved by reducing  ����⃗  in Equation (3). Here,  ����⃗  is a random value in the 

interval [−d, d], where  ����⃗  decreases from 2 in the iterative process to as low as 0. Set d = 

1, namely,  ����⃗  is a random value of [−1, 1]. In WOA, the mechanism to find the new posi-

tion of a whale is expressed as a spiral equation and is indicated mathematically in Equa-

tion [5]: 

 ����⃗ (� + 1) =  ���⃗ ∙  ��� ∙ cos(2��) + � ���⃗ ⋇(�)  (5)

where  ���⃗ = �� ���⃗ ⋇(�) −  ����⃗ (�) �; � is the helix constant and a random number in [−1, 1] is 

indicated by �. 

3.1.3. Search for Prey 

In the following phase,  ����⃗  is implemented to find the prey. A random value of � ����⃗ � 

which is greater than 1 is established. This process is expressed by Equation (6) [56]: 

��⃗ = ����⃗ .  ����⃗ ���� −  ����⃗ �  (6)

� ���⃗ (� + 1) =  ����⃗ ���� − ��⃗ ∙ ��⃗  

where  ����⃗ ����  indicates a random position in the current population. In each iteration, a 

whale chooses which way to update its location according to the value of  ����⃗ . In this phase, 

when |�|�����⃗ > 1, then the selection is represented by a whale (individually), and when |�|�����⃗ <

1, then the selection is assigned to the best solution of the population. 
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3.2. Fuzzy WOA 

Utilizing the proposed method, the mathematical functions are optimized with the 

main goal of obtaining minimal values. In this case, the values of r⃗� and r⃗� parameters 

affect the performance of the WOA algorithm. Based on a previous analysis, the r⃗� pa-

rameter (see Equation (3)) has a relationship with the exploration of the algorithm, and r⃗� 

parameter (see Equation (4)) has a relationship with the exploitation of the algorithm. Both 

parameters are obtained with the interval type-2 FLS based on fuzzy rules. These rules 

were designed by analyzing the performance in the original WOA algorithm in previous 

experiments. To find the optimal values, the IT2FLS has two inputs, namely, iteration and 

diversity. This section explains this interesting methodology in more detail. 

A graphical representation of this paper is depicted in Figure 3. 

 

Figure 3. Proposed idea in the fuzzy WOA. 

3.2.1. Type-1 Fuzzy Logic System 

Zadeh created a way to analyze complex problems with uncertainty or manage the 

way humans make deductions, which is called a fuzzy logic system (FLS). The main com-

ponents of type-1 FLS are depicted in Figure 4 [57]. 

 

Figure 4. Structure of a type-1 FLS. 

Equation (7) indicates the representation of a fuzzy set (FS) in universe X [58]: 

� = {(�, ��(�)) | � ∈  �}  (7)
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where ��: � → [0, 1].  In Equation (7), μ�(x) indicates the membership degree of element 

x ∈ X to set A. The main processes that compose a T1FLS are a fuzzifier which maps a 

crisp input into a fuzzy set, an inference engine which processes the rule base, and a de-

fuzzifier which is used to find the output of the T1FLS as a final crisp value. 

3.2.2. Interval Type-2 Fuzzy System 

Based on Zadeh’s ideas, Mendel et al. presented the mathematical definition of a 

type-2 fuzzy set, as follows [59]. 

An interval type-2 fuzzy set ��, denoted by � �� (�) and ���(�) , is represented by the 

lower and upper membership functions of �� ̌(�), where � ∈ �. In this case, Equation (8) 

shows the definition of an IT2FS [60]: 

�� =  ��(�, �), 1�| ∀� ∈ �, ∀� ∈  ��  ⊆  [0,1]�  (8)

where X is the primary domain and Jx is the secondary domain. All secondary degrees 

(���(�, �)) are equal to 1. Figure 5 shows the representation of an interval type-2 fuzzy 

system. 

 

Figure 5. Structure of an interval type-2 fuzzy system. 

The output processor includes a type reducer and defuzzifier that generates a type-1 

fuzzy set output (from the type reducer) or a crisp number (from the defuzzifier) [60]. An 

interval type-2 FLS is also characterized by IF-THEN rules, but their fuzzy sets are now of 

the interval type-2 form. The type-2 fuzzy set can be used when circumstances are very 

uncertain to determine the exact membership degrees, as is the case with the membership 

functions (MFs) in a fuzzy controller that can take different values. Additionally, we want 

to find the distribution of MFs that shows be�er results in the stability of the fuzzy con-

troller. 

The structure of the proposal with IT2FLS to find the optimal values of the �⃗� and �⃗� 

parameters of the WOA is shown below. Figure 6 illustrates the inputs and outputs with 

the triangular membership functions (MFs), and Figure 7 illustrates the proposal with 

T1FLS. 
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Figure 6. Design of the inputs and outputs of the proposal with IT2FLS. 

 

Figure 7. Design of the inputs and outputs of the proposal with T1FLS. 

The FLS is detailed in the following paragraphs. Triangular membership functions 

(MFs) are used because this type of MF has been shown to give stability in the results in 

previous works. A total of two inputs and two outputs with three triangular MFs in each 

variable are used, each MF requires six values in the solution for the IT2FLS; therefore, the 

IT2FLS comprises 96 values and T1FLS contains 48 values. 

The idea comprises finding the values of the �⃗� and �⃗� parameters and is based on 

the methodology outlined in [31,61]. Based on the preliminary experiments, the value of 

�⃗� is observed, which is an important parameter in the process of exploring good solutions 

in the algorithm. On the other hand, when the value of �⃗� is close to 1, this indicates that 

a be�er solution is close to the best solution and the process is exploited in the WOA. 

To verify the effect of the iterations in the WOA, the percentage of the iterations is 

used as a variable, then in the start of WOA, the iterations will be considered “low”; oth-

erwise, at the end, all iterations will be considered “high” or close to 100%. The represen-

tation of the idea is expressed by Equation (9) [31,61]:  

��������� =  ������� ���������

������� �� ����������
  (9)

The second input in the T1FLS is called the diversity measure as defined by Equation 

(10). It measures the degree of dispersion of the whales, i.e., when the whales are closer 

together, then there is less diversity, and when whales are separated, then the diversity is 

higher. This evaluation is considered as the average of the Euclidean distance between 
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each whale and the best whale. The main idea in the use of diversity is to prevent the 

algorithm from running into a local minimum. This mechanism is analyzed with the fuzzy 

rules that integrate the T1FLS, as shown in more detail in Figure 8 [31,61]:  

�����������(�)� =  
�

��
� ����(�) − ��(�)�

��

���

 (10)

where t represents the current iteration, �� is used with the value of the population, i 

indicates the whale, the number of possible solutions is expressed by �� (in this case, it 

indicates the number of dimensions) and indicates the number of solutions, j is expressed 

as the next solution, ��� indicates solution j of the whale i, and finally, �� represents so-

lution j of the best whale in the space search. 

Based on the natural characteristics of a bio-inspired algorithm that present the intel-

ligent behavior of living beings, which in this case is a whale, it is observed that when the 

food is closer to the current solution, then an exploitation mechanism occurs in the area. 

For this, the value of the r⃗� parameter that represents the exploitation in the proposal is 

considered low or close to 0, which is part of the analysis when designing the fuzzy rules 

(see Figure 8). This is why the fuzzy rules start with a low exploitation when the iterations 

are in beginning of the algorithm. On the other hand, when the iterations are at the end of 

the execution, the value of the r⃗�  parameter is considered high or close to 1. Figure 8 

shows the  nine fuzzy rules are based on previous works [61]. 

 

Figure 8. Fuzzy rules of the IT2FLS. 

4. Set of Benchmark Functions 

A case study in the optimization of benchmark functions is herein demonstrated. A 

total of ten classical benchmark functions are used with the idea of validating FWOA-

IT2FLS such as Sphere, Griewangk, Rastringin, Shewefel, Sum of Different Powers, Zakh-

arov, Dixon and Price, Levy, Sum of Squares, and Rotated Hyper Ellipsoid in the simula-

tion of results. Each function was evaluated with 10, 20, 30, 50, and 100 dimensions (arti-

ficial whale). The mathematical representation for each function is shown in Table 1, and 

the plot for each mathematical function is illustrated in Figure 9. 
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Table 1. Set of benchmark functions. 

�� Name Search Domain f Min Mathematical Representation 

F1 Sphere [−5.12, 5.12]� 0 f(x) =  � x�
�

�

���

 

F2 Griewangk [−600, 600]� 0 f(x) =  �
x�

�

400

�

���

− � cos �
x�

√i
�

�

���

+ 1 

F3 Rastringin [−5.12, 5.12]� 0 f(x) = 10n +  �[x�
� − 10 cos (2x�)  ]

�

���

 

F4 Shewefel [−500, 500]� −837.9658 f(x) = 418.9829n − � x� sin ��|x�|�

��

���

 

F5 
Sum of Different 

Powers 
[−1, 1]� 0 f(x) =  �|x�|

���

�

���

 

F6 Zakharov [−5, 10]� 0 f(x) = � x�
� + (� 0.5ix�)

�

�

���

+

�

���

(� 0.5ix�)
�

�

���

 

F7 Dixon and Price [−10, 10]� 0 f(x) =  (x� − 1)� + � i (2x�
� − x���)�

�

���

 

F8 Levy [−10, 10]� 0 

f(x) = sin2(πω1) + ∑ (ω1 − 1)2�−1
�=1 [1 +

10 sin2(πω1 + 1)] +  (ω� − 1)2 [1 +

sin2(2πω�)], where ω� = 1 +  
��−1

4
, for all i=1,…..,n 

F9 Sum of Squares [−10, 10]� 0 f(x) = � ix�
�

�

���

 

F10 Rotated Hyper Ellipsoid [−65.536, 65536]� 0 f(x) =  � � x�
�

�

���

�

���

 

 

(a) 

 



Axioms 2024, 13, 33 11 of 20 
 

(b)

 

Figure 9. Plot of the mathematical functions. (a) Sphere, Griewangk, Rastringin, Shewefel, and Sum 

of Different Powers. (b) Zakharov, Dixon and Price, Levy, Sum of Squares, and Rotated Hyper El-

lipsoid. 

5. Experimental Results 

This section outlines the results of the benchmark functions implemented in this pa-

per. The objective of this experiment is to determine the behavior of the FWOA with 

IT2FLS to find the optimal values of �⃗� and �⃗� parameters in the WOA. Each experiment 

was executed with 1000 iterations in the WOA and FWOA. In the original WOA, the val-

ues of �⃗� and �⃗� were obtained with a random number in the range of [0, 1] and a fixed 
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value of 0.5 for each parameter. Tables 2–6 demonstrate a comparative using the original 

WOA with fixed and random parameters, with 10 dimensions in Table 2, 20 dimensions 

in Table 3, 30 in Table 4, 50 in Table 5, and 100 in Table 6. The average for each execution 

is shown.  

Table 2. Benchmark functions of varying ��⃗ � and ��⃗ � values with 10 dimensions. 

�� 

Methods 

Original WOA 

��⃗ � and ��⃗ � Fixed 

Original WOA 

��⃗ � and ��⃗ � Random 
FWOA-T1FLS FWOA-IT2FLS 

F1 6.92 × 10−51 2.49 × 10−1 3.41 × 10−1 6.29 × 10−53 

F2 1.61 × 10−9 6.99 × 10+1 7.72 × 10+6 2.91 × 10−9 

F3 8.79 × 10−10 2.15 × 10+1 1.71 × 10+13 3.74 × 10−10 

F4 2.91 × 10−2 2.15 × 10+1 5.00 × 10+2 9.88 × 10+1 

F5 6.35 × 10−35 8.21 × 10−2 −1.69 × 10−15 1.86 × 10−28 

F6 4.54 × 10−1 3.06 × 10−1 8.96 × 10+13 3.97 × 10−1 

F7 1.20 × 10−2 2.90 × 10−2 2.90 × 10−2 1.26 × 10−2 

F8 3.97 × 10−1 1.16 × 100 3.84 × 10+14 6.20 × 10−1 

F9 4.94 × 10−54 1.16 × 10−1 3.93 × 10−32 1.22 × 10−48 

F10 2.21 × 10−52 1.01 × 10+1 −6.55 × 10+13 7.48 × 10−44 

Table 3. Benchmark functions of varying ��⃗ � and ��⃗ � values with 20 dimensions. 

�� 

Methods 

Original WOA 

��⃗ � and ��⃗ � Random 

Original WOA 

��⃗ � and ��⃗ � Fixed 
FWOA-T1FLS FWOA-IT2FLS 

F1 1.18 × 10−70 5.26 × 10−1 1.06 × 10−41 7.57 × 10−60 

F2 2.57 × 10−9 8.75 × 10−1 3.33 × 10+6 1.75 × 10−10 

F3 9.47 × 10−10 6.70 × 10−1 1.17 × 10+13 8.22 × 10−12 

F4 4.06 × 10+2 1.33 × 10+1 1.40 × 10+13 9.20 × 10+1 

F5 4.15 × 10−49 2.43 × 10−2 2.25 × 10−36 2.97 × 10−42 

F6 2.17 × 10−1 3.29 × 10−1 1.22 × 10+13 3.88 × 10−1 

F7 1.13 × 10−2 1.06 × 100 1.06 × 100 1.40 × 10−2 

F8 8.45 × 10−1 1.16 × 100 6.27 × 10−1 5.67 × 10−1 

F9 3.17 × 10−72 4.03 × 10−1 1.21 × 10−52 5.25 × 10−55 

F10 1.16 × 10−71 4.19 × 100 4.29 × 10−53 1.25 × 10−57 

Table 4. Benchmark functions of varying ��⃗ � and ��⃗ � values with 30 dimensions. 

�� 

Methods 

Original WOA 

��⃗ � and ��⃗ � Random 

Original WOA 

��⃗ � and ��⃗ � Fixed 
FWOA-T1FLS FWOA-IT2FLS 

F1 9.58 × 10−84 2.39 × 10−1 1.20 × 10−51 2.84 × 10−59 

F2 2.57 × 10−9 6.35 × 10+1 5.60 × 10+5 7.22 × 10−9 

F3 1.36 × 10−10 4.36 × 10+2 1.17 × 10+13 1.39 × 10−9 

F4 3.76 × 10+2 4.39 × 10+2 1.40 × 10+13 2.23 × 10+2 

F5 3.75 × 10−54 1.03 × 10−1 4.47 × 10−27 1.56 × 10−42 

F6 5.65 × 10−1 3.73 × 10−1 5.65 × 10−1 1.24 × 10−1 

F7 1.39 × 10−2 4.50 × 10−1 8.01 × 10+5 1.31 × 10−2 

F8 9.39 × 10−1 9.35 × 10−1 4.77 × 10+14 4.32 × 10−1 

F9 6.38 × 10−81 6.65 × 10+1 −1.28 × 10−62 1.19 × 10−61 

F10 2.14 × 10−78 4.60 × 100 −4.37 × 100 7.51 × 10−66 
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Table 5. Benchmark functions of varying ��⃗ � and ��⃗ � values with 50 dimensions. 

�� 

Methods 

Original WOA 

��⃗ � and ��⃗ � Random 

Original WOA 

��⃗ � and ��⃗ � Fixed 
FWOA-T1FLS FWOA-IT2FLS 

F1 1.69 × 10−93 −3.57 × 10−1 1.00 × 10−56 2.35 × 10−60 

F2 5.28 × 10−9 −6.03 × 100 1.42 × 106 2.15 × 10−9 

F3 8.64 × 10−10 7.55 × 10−2 2.16 × 105 1.96 × 10−10 

F4 4.21 × 102 1.27 × 102 5.00 × 10+2 3.03 × 10+2 

F5 1.55 × 10−64 1.00 × 10−1 3.91 × 10−38 3.50 × 10−42 

F6 5.65 × 10−1 1.71 × 100 3.75 × 1013 4.35 × 10−1 

F7 1.12 × 10−2 5.63 × 10−1 2.28 × 1014 1.30 × 10−2 

F8 9.93 × 10−1 7.21 × 10−1 3.97 × 1014 5.81 × 10−1 

F9 1.14 × 10−91 6.25 × 10−1 −1.33 × 100 4.88 × 10−59 

F10 1.64 × 10−89 −2.57 × 100 −4.37 × 100 2.80 × 10−59 

Table 6. Benchmark functions of varying ��⃗ � and ��⃗ � values with 100 dimensions. 

�� 

Methods 

Original WOA 

��⃗ � and ��⃗ � Random 

Original WOA 

��⃗ � and ��⃗ � Fixed 
FWOA-T1FLS FWOA-IT2FLS 

F1 2.34 × 10−101 2.68 × 10−1 5.17 × 10−63 2.63 × 10−59 

F2 4.00 × 10−9 7.57 × 10+1 3.44 × 10+5 4.59 × 10−10 

F3 8.19 × 10−10 4.53 × 10−1 1.17 × 10+13 8.94 × 10−10 

F4 4.21 × 102 5.00 × 102 1.40 × 10+13 4.87 × 10+2 

F5 2.40 × 10−64 7.40 × 10−2 7.65 × 10−79 2.67 × 10−43 

F6 5.00 × 100 1.61 × 100 1.62 × 10+14 1.29 × 100 

F7 1.12 × 10−2 1.33 × 100 1.33 × 100 1.20 × 10−2 

F8 1.00 × 100 6.78 × 10−1 7.05 × 10+14 4.38 × 10−1 

F9 2.52 × 10−102 2.91 × 100 3.33 × 10−1 7.47 × 10−59 

F10 1.03 × 10−98 −2.17 × 100 2.53 × 10−80 2.01 × 10−60 

Table 2 shows that the FWOA-IT2FLS method with functions F1, F3, and F6 provides 

the best solution, while in Table 3, the FWOA-IT2FLS method with functions F2, F3, F4, 

and F8 is be�er. When the dimensions are 30, the proposed method shows an improve-

ment in functions F3, F4, F6, and F7 (see Table 4). When the dimensions are 50, the com-

plexity increases and functions F3, F3, F6, and F8 continue with minimum average errors 

(see Table 5). When the dimensions are 100, the proposed FWOA-IT2FLS method with 

functions F2, F6, and F8 is maintained with be�er results (see Table 6). 

6. Analysis of Results 

To verify the performance of the results obtained with the proposed FWOA-IT2FLS 

method, a statistical test and a comparative with the original WOA and fuzzy bee colony 

optimization algorithm (FBCO) [61] are presented.  

6.1. Statistical Test 

The parameters of the statistical z-test include the 95% confidence level, alpha of 5%, 

Ha = µ1 < µ2, H0 = µ1 ≥ µ2, and critical value of −1.645. The description in each hypothesis 

is as follows. Ho is the proposed FWOA-IT2FLS method which is greater or equal to the 

original WOA with random values and Ha denotes that the results of the proposed FWOA-

IT2FLS method are smaller (be�er) than the original WOA. According to the values used 

in Tables 3–7, a sample of 30 experiments was randomly chosen, which shows a rejection 
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zone for values lower than −1.64. Equation (11) expresses the mathematical function of the 

z-test: 

� =
(�������)�(�����)

��� �� �� �

  (11)

The results of the statistical test show that when the z-value is smaller than −1.645, 

then the evidence is “Significant” to reject the null hypothesis. As a result, the alternative 

hypothesis is accepted. In this case, in the comparison between FWOA-IT2FLS and origi-

nal WOA, the average (avg) with 100 dimensions is presented in Table 7. A statistical test 

compares FWOA-T1FLS and original WOA with the results of 100 dimensions in Table 8, 

and the statistical test of FWOA-IT2FLS and FWOA-T1FLS is presented in Table 9. 

Table 7. Statistical test of original WOA and FWOA-IT2FLS. 

�� 

Methods  

FWOA-IT2FLS 
Original WOA 

��⃗ � and ��⃗ � Random 
Z-Value Evidence 

F1 −2.63 × 10−59 2.34 × 10−101 −1.265 NS 

F2 4.59 × 10−10 4.00 × 10−9 −1.004 NS 

F3 8.94 × 10−10 8.19 × 10−10 −3.531 S 

F4 4.87 × 10+2 4.21 × 10+2 −97.494 S 

F5 2.67 × 10−43 2.40 × 10−64 1.281 NS 

F6 1.29 × 100 5.00 × 100 −0.016 NS 

F7 1.20 × 10−2 1.12 × 10−2 0.0543 NS 

F8 4.38 × 10−1 1.00 × 100 77.992 NS 

F9 7.47 × 10−59 −2.52 × 10−102 −0.852 NS 

F10 2.01 × 10−60 −1.03 × 10−98 −1.0054 NS 

Table 8. Statistical test of original WOA and FWOA-T1FLS. 

�� 

Methods  

FWOA-T1FLS 
Original WOA 

��⃗ � and ��⃗ � Random 
Z-Value Evidence 

F1 5.71 × 10—63 2.34 × 10−101 0.560 NS 

F2 3.44 × 10+5 4.00 × 10−9 3.085 NS 

F3 1.17 × 10−13 8.19 × 10−10 −2.902 S 

F4 1.40 × 10+13 4.21 × 10+2 591.500 NS 

F5 7.65 × 10−79 2.40 × 10−64 −1.600 S 

F6 1.62 × 10+14 5.00 × 100 −0.183 NS 

F7 1.33 × 100 1.12 × 10−2 −1.002 NS 

F8 7.05 × 10+14 1.00 × 100 −1.686 S 

F9 3.33 × 10−1 −2.52 × 10−102 −1.000 NS 

F10 2.53 × 10−80 −1.03 × 10−98 3.122 NS 
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Table 9. Statistical test of FWOA-IT2FLS and FWOA-T1FLS. 

�� 
Methods  

FWOA-IT2FLS FWOA-T1FLS Z-Value Evidence 

F1 2.63 × 10—59 9.04 × 10−62 −1.265 NS 

F2 −4.59 × 10−10 3.44 × 10+5 −3.09 S 

F3 −8.94 × 10−10 −2.02 × 10+5 2.902 NS 

F4 −4.87 × 10+2 −5.02 × 10+2 1.4388 NS 

F5 2.67 × 10−43 7.65 × 10−79 1.281 NS 

F6 1.29 × 100 5.00 × 100 0.166 NS 

F7 1.20 × 10−2 1.22 × 10−2 1.807 NS 

F8 4.38 × 10−1 9.69 × 10−1 −8.242 S 

F9 7.47 × 10−59 3.33 × 10−1 1.000 NS 

F10 2.01 × 10−60 2.53 × 10−80 −1.005 NS 

In Table 8, the results show that the proposed method has a significant evidence to 

accept the null hypothesis with functions F3 and F4.  

In Table 9, the results show that the FWOA-T1FLS method has a significant evidence 

to accept the null hypothesis with functions F3, F5, and F8.  

In Table 9, the results show that the FWOA-IT2FLS method has a significant evidence 

to accept the null hypothesis with functions F2 and F8.  

The results of the statistical tests demonstrate that our proposed method is be�er on 

average than the original WOA; therefore, it is possible to mention that FWOA-IT2FLS is 

statistically be�er than the original WOA compared to the averages. The results of the 

proposed FWOA-IT2FLS method are very close to the original WOA, for example, in F1, 

F2, and F10, the z-value is closer to the acceptance of Ha.  

The comparative results with the fuzzy bee colony optimization (FBCO-IT2FLS) [61] 

with 50 dimensions are presented in Table 10.  

Table 10. Comparative results (best and worst) with FBCO, original WOA, and the proposed 

method. 

�� 

Methods 

Original WOA 

��⃗ � and ��⃗ � Random 
Fuzzy WOA-T1FLS Fuzzy WOA-IT2FLS FBCO-IT2FLS [61] 

Best Worst Best Worst Best Worst Best Worst 

F1 1.60 × 10−97  1.98 × 10−92  5. 43 × 10−55 2. 23 × 10−55 1.74 × 10−59 2.94 × 10−60  7.74 × 10−8  6.94 × 10−7  

F2 3.57 × 10−8  1.32 × 10−8  1.04 × 10−8 2.34 × 107 3.73 × 10−8 4.02 × 10−8  8.40 × 10−5  3.26 × 10−2  

F3 4.81 × 10−9  9.58 × 10−9  4.67 × 10+4 8.69 × 10+5 4.78 × 10−9 8.90 × 10−9  7.52 × 100  1.51 × 10+1  

F4 4.20 × 102  4.22 × 10+2  5.00 × 102 5.00 × 10+2 3.03 × 10+2 3.03 × 10+2  1.01 × 103  2.47 × 10+3  

F5 3.92 × 10−63  3.24 × 10−94  5.00 × 102 1.35 × 10−36 1.77 × 10−86 7.93 × 10−41  1.87 × 10−10  1.08 × 10−6  

F6 4.92 × 100  9.24 × 100  8.52 × 10+14 7.69 × 10+14 4.99 × 100 8.53 × 100  5.46 × 102  7.20 × 10+2  

F7 2.18 × 10−6  3.33 × 10−1  1.13 × 10+8 1.00 × 10+1 4.14 × 10−4 3.18 × 10−1  1.76 × 100  9.06 × 100  

F8 7.72 × 10−1  1.03 × 100  1.01 × 10+14 9.98 × 10+14 9.63 × 10−2 1.22 × 100  6.37 × 10−7  1.04 × 10−5  

F9 2.96 × 10−90  2.56 × 10−90  1.00 × 10+1 1.63 × 10−7 1.70 × 10−57 7.68 × 10−58  5.10 × 106  1.29 × 10−4  

F10 2.56 × 10−89  2.88 × 10−88  6.55 × 10+1 5.68 × 10−7 6.29 × 10−59 5.96 × 10−58  1.35 × 10−4  2.44 × 10−3  

The results of the statistical tests demonstrate that our proposed method is be�er on 

average than the original WOA; therefore, it is possible to state that FWOA is statistically 

be�er than the original WOA compared to the averages. The results of the proposed 

FWOA-IT2FLS method are very close to the original WOA. 

Table 11 shows the performance index of standard deviation to FWOA-IT2FLS and 

original WOA and comparison with FBCO-IT2FLS algorithm. 
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Table 11. Standard deviation results of FBCO-IT2FLS, original WOA, and the proposed method. 

�� 

Methods 

Original WOA 

��⃗ � and ��⃗ � Random 
FWOA-IT2FLS FBCO-IT2FLS [61] 

F1 2.34 × 10−101 2.63 × 10−59 1.74 × 10−7 

F2 4.00 × 10−9 1.36 × 10−8 6.12 × 10−3 

F3 8.19 × 10−10 8.14 × 10−10 1.98 × 100 

F4 4.21 × 102 3.37 × 10−12 3.59 × 10+2 

F5 2.40 × 10−64 2.67 × 10−43 2.46 × 10−7 

F6 5.00 × 100 1.29 × 100 3.89 × 10+1 

F7 1.12 × 10−2 1.20 × 10−2 1.76 × 100 

F8 1.00 × 100 4.38 × 10−1 1.91 × 10−6 

F9 2.52 × 10−102 7.47 × 10−59 2.50 × 10−5 

F10 1.03 × 10−98 2.01 × 10−60 6.83 × 10−4 

6.2. Discussion of the Results 

This paper addresses some important points in the discussion. First, the use of IT2FLS 

as a tool for enhancing the performance of the WOA algorithm in the optimization of 

mathematical functions was proposed. The results in Tables 2–6 show that the optimal 

values in the heuristic parameters improve the performance of the original WOA algo-

rithm in the problem of benchmark functions.  

Second, based on the experiments presented in Section 5, we can summarize an anal-

ysis of the results. The original WOA algorithm is an excellent technique in the optimiza-

tion of 10 sets of mathematical functions. The results with 10, 20, 30, 50, and 100 dimen-

sions show that a be�er performance can be achieved when the FWOA-IT2FLS algorithm 

is used. Another important aspect to mention with respect to the IT2FLS method is the 

quick convergence when the number of dimensions of the WOA algorithm are increasing. 

Regarding the computational complexity of the interval type-2 fuzzy logic system, 

IT2FLS requires more calculations; however, we have found that WOA requires a smaller 

number of iterations to find a good solution. In addition, be�er stability is shown in the 

results in Figure 10 with respect to the original WOA with (random and fixed values), 

while FWOA-T1FLS and FWOA-IT2FLS are expressed with two mathematical functions 

of Zakharov (F6) with 100 dimensions. 

Figure 10 shows a fast convergence when the errors are found with FWOA-IT2FLS 

in the experiments (see the purple line). 
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Figure 10. Behavioral results and comparative of Zakharov function with 100 dimensions. 

7. Conclusions 

The research presented in this paper allows us to demonstrate that using a hybridi-

zation based on IT2FLS and T1FLS to find the optimal values of the �⃗� and �⃗� parameters 

shows good results when compared with the original WOA. This is mainly based on the 

fuzzy rules, as the design of the rules was obtained with the results previously found and 

the ability to analyze the effects of each parameter on the exploration and exploitation of 

the WOA. The proposed method is called FWOA-IT2FLS. The statistical test shows that 

the FWOA-IT2FLS algorithm has a statistically significant improvement when compared 

with the original WOA.  

For the F1 function, the best results of the �⃗� and �⃗� values with 100 dimensions are 

in the range of [0.47, 0.85] and [0.11, 0.41]. For the F2 function, the best results are in the 

range of [0.47, 0.69] and [0.11, 0.24], for F3, in the range of [0.56, 0.82] and [0.17, 0.38], for 

F4, in the range of [0.51, 0.70] and [0.14, 0.25], for F5, in the range of [0.47, 0.47] and [0.11, 

0.11], for F6, in the range of [0.47, 0.85] and [0.11, 0.44], for F7, in the range of [0.61, 0.75] 

and [0.20, 0.33], for F8, in the range of [0.47, 0.63] and [0.11, 0.22], for F9, in the range of 

[0.47, 0.75] and [0.11, 0.32], for F10, in the range of [0.47, 0.58] and [0.11, 0.19], respectively. 

Based on the results, it can be concluded that the optimal value of �⃗� is 0.47 and �⃗� is 0.11.  

In future work, the FWOA-IT2FLS method will be applied to real control problems, 

for example, in the trajectory stabilization of an autonomous mobile robot, as using this 

proposed algorithm in fuzzy controllers is an excellent application. Another interesting 
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aspect is to find the values of �⃗� and �⃗� parameters in the WOA through a be�er uncer-

tainty analysis based on an interval type-3 FLS. 
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