
Citation: Umeorah, N.; Mashele, P.;

Agbaeze, O.; Mba, J.C. Barrier

Options and Greeks: Modeling with

Neural Networks. Axioms 2023, 12,

384. https://doi.org/10.3390/

axioms12040384

Academic Editor: Oscar Humberto

Montiel Ross

Received: 19 December 2022

Revised: 29 March 2023

Accepted: 7 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Barrier Options and Greeks: Modeling with Neural Networks
Nneka Umeorah 1,* , Phillip Mashele 2, Onyecherelam Agbaeze 3 and Jules Clement Mba 4

1 School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK
2 School of Economic and Financial Sciences, University of South Africa, Pretoria 0003, South Africa;

mashehp@unisa.ac.za
3 College of Arts and Sciences, Troy University, Troy, AL 36082, USA; onagbaeze@alumni.troy.edu
4 School of Economics, College of Business and Economics, University of Johannesburg,

Johannesburg 2092, South Africa; jmba@uj.ac.za
* Correspondence: umeorahn@cardiff.ac.uk

Abstract: This paper proposes a non-parametric technique of option valuation and hedging. Here,
we replicate the extended Black–Scholes pricing model for the exotic barrier options and their
corresponding Greeks using the fully connected feed-forward neural network. Our methodology
involves some benchmarking experiments, which result in an optimal neural network hyperparameter
that effectively prices the barrier options and facilitates their option Greeks extraction. We compare
the results from the optimal NN model to those produced by other machine learning models, such
as the random forest and the polynomial regression; the output highlights the accuracy and the
efficiency of our proposed methodology in this option pricing problem. The results equally show that
the artificial neural network can effectively and accurately learn the extended Black–Scholes model
from a given simulated dataset, and this concept can similarly be applied in the valuation of complex
financial derivatives without analytical solutions.

Keywords: barrier options; Black–Scholes model; polynomial regression; random forest regression;
machine learning; artificial neural network; option Greeks; data analysis

1. Introduction

The concept, techniques and applications of artificial intelligence (AI) and machine
learning (ML) in solving real-life problems have become increasingly practical over the
past years. The general aim of machine learning lies in attempting to ‘learn’ data and
make some predictions from a variety of techniques. In the financial industry, they offer a
more flexible and robust predictive capacity compared to the classical mathematical and
econometric models. They equally provide significant advantages to the financial decision
makers and market participants regarding the recent trends in financial modeling and
data forecasting. The core applications of AI in finance are risk management, algorithmic
trading, and process automation [1]. Hedge funds and broker dealers utilize AI and ML
to optimize their execution. Financial institutions use the technologies to estimate their
credit quality and evaluate their market insurance contracts. Both private and public
sectors use these technologies to detect fraud, assess data quality, and perform surveil-
lance. ML techniques are generally classified into supervised and non-supervised systems.
A branch of ML (supervised) techniques that have been fully recognized is deep learning,
as it provides and equips machines with practical algorithms needed to comprehend the
fundamental principles, and pattern detection in a significant portion of data. The neural
networks, the cornerstones of these deep learning techniques, evolved and developed in
the 1960s. In the fields of quantitative finance, the neural networks are applied in the
optimization of portfolios, financial model calibrations [2], high-dimensional futures [3],
market prediction [4], and exotic options pricing with local stochastic volatility [5].

For the methodology employed in this paper, artificial neural networks (ANNs) are
systems of learning techniques which focus on a cluster of artificial neurons forming a

Axioms 2023, 12, 384. https://doi.org/10.3390/axioms12040384 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12040384
https://doi.org/10.3390/axioms12040384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-0307-5011
https://orcid.org/0000-0001-6462-6385
https://doi.org/10.3390/axioms12040384
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12040384?type=check_update&version=1

Axioms 2023, 12, 384 2 of 22

fully connected network. One aspect of the ANN is the ability to generally ‘learn’ to
perform a specific task when fed with a given dataset. They attempt to replicate or mimic
a mechanism which is observable in nature, and they gain their inspiration from the
structure, techniques and functions of the brain. For instance, the brain is similar to a huge
network with fully interconnected nodes (neurons, for example, the cells) through links, also
referred to as synapses, biologically. The non-linearity feature is introduced to the network
within these neurons as the non-linear activation functions are applied. The non-linearity
aspect of the neural network tends to approximate any integrated function reasonably
well. One significant benefit of the ANN method is that they are referred to as ‘universal
approximators’. This feature implies that they can fit any continuous function, together with
functions having non-linearity features, even without the assumption of any mathematical
relationship which connects the input and the output variables. Essentially, the ANNs
are also fully capable of approximating the solutions to partial differential equations
(PDE) [6], and they easily permit parallel processing, which facilitates evaluation processes
on graphics processing units (GPUs) [7]. The presence of this universal approximator
function is often a result of their typical architecture, training and prediction process.

Meanwhile, due to the practical significance of the use of financial derivatives, these
instruments have sharply risen in more recent years. This has led to the development of so-
phisticated economic models, which tend to capture the dynamics of the markets, and there
has also been an increase in proposing faster, more accurate and more robust models for the
valuation process. The pricing of these financial contracts has significantly helped manage
and hedge risk exposure in finance and businesses, improve market efficiencies and provide
arbitrage opportunities for sophisticated market participants. The conventional pricing
techniques of option valuation are theoretical, resulting in the formulation of analytical
closed forms for some of these option types. In contrast, others rely heavily on numerical
approximation techniques, such as Monte Carlo simulations, finite difference methods,
finite volume methods, binomial tree methods, etc. These theoretical formulas are mainly
based on assumptions about the behavior of the underlying prices of securities, constant
risk-free interest rates, constant volatility, etc., and they have been duly criticized over the
years. However, modifications have been made to the Black–Scholes model, thereby giving
rise to such models as the mixed diffusion/pure jump models, displaced diffusion models,
stochastic volatility models, constant elasticity of variance diffusion models, etc. On the
other hand, neural networks (NNs) have proved to be emerging computing techniques that
offer a modern avenue to explore the dynamics of financial applications, such as derivative
pricing [8].

Recent years have seen a huge application of AI and ML, as they have been utilized
greatly in diverse financial fields. They have contributed significantly to financial insti-
tutions, the financial market, and financial supervision. Li in [9] summarized the AI and
ML development and analyzed their impact on financial stability and the micro-macro
economy. In finance, AI has been utilized greatly in predicting future stock prices, and the
concept lies in building AI models which utilize ML techniques, such as reinforcement
learning or neural networks [10]. A similar stock price prediction was conducted by Yu
and Yan [11]; they used the phase-space reconstruction method for time series analysis in
combination with a deep NN long- and short-term memory networks model. Regarding
applying neural networks to option pricing, one of the earliest research can be found in
Malliaris and Salchenberger [12]. They compared the performance of the ANN in pricing
the American-style OEX options (that is, options defined on Standard and Poor’s (S&P)
100) and the results from the Black–Scholes model [13] with the actual option prices listed
in the Wall Street Journal . Their results showed that in-the-money call options were valued
significantly better when the Black–Scholes model was used, whereas the ANN techniques
favored the out-of-the-money call option prices.

In pricing and hedging financial derivatives, researchers have incorporated the classi-
cal Black–Scholes model [13] into ML to ensure robust and more accurate pricing techniques.
Klibanov et al. [14] used the method of quasi-reversibility and ML to predict option prices

Axioms 2023, 12, 384 3 of 22

in corporations with the Black–Scholes model. Fang and George [15] proposed valuation
techniques for improving the accuracy rate of Asian options by using the NN in connection
with Levy approximation. Hutchinson et al. in [16] further priced the American call options
defined on S&P 500 futures by comparing three ANN techniques with the Black–Scholes
pricing model. Their results proved the supremacy of all three ANNs to the classical Black–
Scholes model. Other comparative research studies on the ANN versus the Black–Scholes
model are also applicable in pricing the following: European-style call options (with divi-
dends) on the Financial Times Stock Exchange (FTSE) 100 index [17], American-style call
options on Nikkei 225 futures [8], Apple’s European call options [18], S&P 500 index call
options with an addition of neuro-fuzzy networks [19], and in the pricing call options
written on the Deutscher Aktienindex (DAX) German stock index [20]. Similar works on
pricing and hedging options using the ML techniques can be found in [21–25].

Other numerical techniques, such as the PDE-based and the DeepBSDE-based (BSDE—
-backward stochastic differential equations) methods, have also been employed in valuing
the barrier options. For instance, Le et al. in [26] solved the corresponding option pricing
PDE using the continuous Fourier sine transform and extended the concept of pricing
the rebate barrier options. Umeorah and Mashele [27] employed the Crank–Nicolson
finite difference method in solving the extended Black–Scholes PDE, describing the rebate
barrier options and pricing the contracts. The DeepBSDE concept initially proposed by
Han et al. in [28] converted high-dimensional PDE into BSDE, intending to reduce the
dimensionality constraint, and they redesigned the solution of the PDE problem as a deep-
learning problem. Further implementation of the BSDE-based using the numerical method
with deep-learning techniques in the valuation of the barrier options is found in [29,30].

Generally, the concept of ANN can be classified into three phases: the neurons, the lay-
ers and the whole architecture. The neuron, which is the fundamental core processing unit,
consists of three basic operations: summation of the weighted inputs, the addition of a bias
to the input sum, and the computation of the output value via an activation function. This
activation function is used after the weighted linear combination and implemented at the
end of each neuron to ensure the non-linearity effect. The layers consist of an input layer, a
(some) hidden layer(s) and an output layer. Several neurons define each layer, and stacking
up various layers constitutes the entire ANN architecture. As the data transmission signals
pass from the input layer to the output layer through the middle layers, the ANN serves as
a mapping function among the input–output pairs [2]. After training the ANN in options
pricing, computing the in-sample and out-of-sample options based on ANN becomes
straightforward and fast [31]. Itkin [31] highlighted this example by pricing and calibrating
the European call options using the Black–Scholes model.

This research is an intersection of machine learning, statistics and mathematical finance,
as it employs recent financial technology in predicting option prices. To the best of our
knowledge, this ML approach to pricing the rebate and zero-rebate barrier options has
received less attention. Therefore, we aim to fill the niche by introducing this option pricing
concept to exotic options. In the experimental section of this work, we simulate the barrier
options dataset using the analytical form of the extended Black–Scholes pricing model. This
is a major limitation of this research, and the choice was due to the non-availability of the
real data. (A similar synthetic dataset was equally used by [32], in which they constructed
the barrier option data based on the LIFFE standard European option price data by the
implementation of the Rubenstein and Reiner analytic model. These datasets were used in
the pricing of the up-and-out barrier call options via the use of a neural net model.) We
further show and explain how the fully connected feed-forward neural networks can be
applied in the fast and robust pricing of derivatives. We tuned different hyperparameters
and used the optimal in the modeling and training of the NN. The performance of the
optimal NN results is compared by benchmarking the results against other ML models,
such as the random forest regression model and the polynomial regression model. Finally,
we show how the barrier options and their Greeks can be trained and valued accurately

Axioms 2023, 12, 384 4 of 22

under the extended Black–Scholes model. The major contributions of this research are
classified as follows:

• We propose a non-parametric technique of barrier option valuation and hedging using
the concept of a fully connected feed-forward NN.

• Using different evaluation metrics, we measure the performance of the NN algorithm
and propose the optimal NN architecture, which prices the barrier options effectively
in connection to some specified data-splitting techniques.

• We prove the accuracy and performance of the optimal NN model when compared to
those produced by other ML models, such as the random forest and the polynomial
regression, and extract the barrier option prices and their corresponding Greeks with
high accuracy using the optimal hyperparameter.

The format of this paper is presented as follows: In Section 1, we provide a brief
introduction to the topic and outline some of the related studies on the applications of ANN
in finance. Section 2 introduces the concept of the Black–Scholes pricing model, together
with the extended Black–Scholes pricing models for barrier options and their closed-form
Greeks. Section 3 focuses on the machine learning models, such as the ANN, as well
as its applications in finance, random forest regression and the polynomial regression
models. In Section 4, we discuss the relevant results obtained in the course of the numerical
experiments, and Section 5 concludes our research study with some recommendations.

2. Extended Black–Scholes Model for Barrier Options

The classical Black–Scholes model developed by Fischer Black and Myron Scholes is
an arbitrage-free mathematical pricing model used to estimate the dynamics of financial
derivative instruments. The model was initially designed to capture the price estimate of the
European-style options defined under the risk-neutral measure. As a mathematical model,
certain assumptions, such as the log-normality of underlying prices, constant volatility, fric-
tionless market, continuous trading without dividends applied to stocks, etc., are made for
the Black–Scholes model to hold [13]. Though the Black–Scholes model has been criticized
over the years due to some underlying assumptions, which are not applicable in the real-
world scenario, certain recent works are associated with the model [33–36]. Additionally,
Eskiizmirliler et al. [37] numerically solved the Black–Scholes equation for the European
call options using feed-forward neural networks. In their approach, they constructed a
function dependent on a neural network solution, which satisfied the given boundary
conditions of the Black–Scholes equation. Chen et al. [38] proposed a Laguerre neural
network to solve the generalized Black–Scholes PDE numerically. They experimented with
this technique on the European options and generalized option pricing models.

On the other hand, the valuation of exotic derivatives, such as the barrier options,
has been extensively studied by many authors, mainly by imploring a series of numerical
approximation techniques. Barrier options are typically priced using the Monte-Carlo
simulations since their payoffs depend on whether the underlying price has/has not
crossed the specified barrier level. The closed-form solutions can equally be obtained
analytically using the extended Black–Scholes models [39], which shall be implemented as
a benchmark of the exact price in this work. The structure of the model is described below.

2.1. Model Structure

Generally, the Black–Scholes option pricing formula models the dynamics of an
underlying asset price S as a continuous time diffusion process given below:

dS(t) = S(rdt + σdB(t)) , (1)

where r is the risk-free interest rate, σ, the volatility and B(t) is the standard Brownian
motion at the current time t. Suppose V(S, t) is the value of a given non-dividend paying

Axioms 2023, 12, 384 5 of 22

European call option. Then, under the pricing framework of Black and Scholes, V(S, t)
satisfies the following PDE:

∂V(S, t)
∂t

+ rS
∂V(S, t)

∂S
+

σ2S2

2
∂2V(S, t)

∂S2 − rV(S, t) = 0 , (2)

subject to the following boundary and terminal conditions:

V(0, t) = 0 , ∀ t ∈ [0, T] (3)

V(S, t) = S− Ke−r(T−t) for S→ ∞ , (4)

V(S, T) = max{S(T)− K, 0} , (5)

where K is the strike price and T is the time to expiration.
Since the barrier options are the focus of this study, the domain of the PDE in

Equation (2) reduces to D = {(S, t) : B ≤ S ≤ ∞; t ∈ [0, T]} with the introduction
of a predetermined level known as barrier B, and that feature distinguishes them from
the vanilla European options. The boundary and terminal conditions above remain the
same, with the exception of Equation (3), which reduces to V(B, t) = 0 for zero-rebate
and V(B, t) = R for the rebate barrier option. (In this paper, we shall consider the rebate
paid at knock-out. The other type is the rebate paid at expiry, and in that case, Equa-
tion (3) becomes V(B, t) = Re−r(T−t) , ∀ t ∈ [0, T].) The barrier options are either activated
(knock-in options) or extinguished (knock-out options) once the underlying price attains
the barrier level. The direction of the knock-in or the knock-out also determines the type
of barrier options being considered, as this option is generally classified into up-and-in,
up-and-out, down-and-in, and down-and-out barrier options. This paper will consider the
down-and-out (DO) barrier options, both with and without rebates. For this option style,
the barrier level is normally positioned below the underlying, and when the underlying
moves in such a way that the barrier is triggered, the option becomes void and nullified
(zero rebate). However, when the barrier is triggered, and the option knocks out with a
specified payment compensation made to the option buyer by the seller, then we have
the rebate barrier options. Under the risk-neutral pricing measure Q, the price of the
down-and-out (DO) barrier options is given as

V(S, t) = EQ
[

e−r(T−t)(ST − K)+I{ min
0≤t≤T

St > B}
]

, (6)

and the solution to the above is given in the following theorem.

Theorem 1. Extended Black–Scholes for a DO call option (note that Equations (7) and (8) occurs
when the strike price K ≥ B. For K < B, we substitute K = B into d1 and d3.) is given by [39]

V(S, t) = SN(d1)− Ke−rτ N(d2)−
[

S
(

B
S

)2η

N(d3)− Ke−rτ

(
B
S

)2η−2
N(d4)

]
(7)

for d1 =
log
(

S
K

)
+
(

r + σ2

2

)
τ

σ
√

τ
, d3 =

log
(

B2

SK

)
+
(

r + σ2

2

)
τ

σ
√

τ
, d5 =

log
(

B
S

)
+
(

r + σ2

2

)
τ

σ
√

τ
,

where τ = T − t, d2,4 = d1,3 − σ
√

τ, η = (2r + σ2)(2σ2)−1 and N(x) =
∫ x
−∞

1√
2π

e
−y2

2 dy
is the cumulative standard normal distribution function. In the presence of a rebate R, the option
value becomes

VR(S, t) = V(S, t) + R

[(
B
S

)2η−1
N(d5) +

(
S
B

)
N(d5 − 2ησ

√
τ)

]
(8)

Axioms 2023, 12, 384 6 of 22

2.2. Option Greeks

These refer to the sensitivities of option prices with respect to different pricing pa-
rameters. The knowledge and the application of option Greeks can equip investors with
risk-minimization strategies, which will be applicable to their portfolios. Such knowledge
is as vital as hedging the portfolio risk using any other risk management tools. For options
that have an analytical form based on the Black–Scholes model or other closed-form models,
the Greeks or the sensitivities are normally estimated from these formulas. In the absence
of analytical option values, numerical techniques are employed to extract the Greeks. These
Greeks are adopted from [40], and we only consider the delta (∆DO), gamma (ΓDO) and the
vega (νDO).

2.2.1. Delta

This measures the sensitivity of options values to changes in the underlying prices.
The delta for the DO call options behaves like the delta of the European call options when
the option is deep in-the-money, and it becomes very complicated as the underlying price
approaches the barrier level:

∂V(S, t)
∂S

= N(d1)−
(

B
S

)2η−2
{
− B2

S2 N(d3) +
2η − 2

S

(
B2

S
N(d4)− Ke−rτ N(d3)

)}
,

where d1, d3 and d4 are given in Theorem 1.

2.2.2. Gamma

This measures the sensitivity of delta to a change in the underlying price, or the second
partial derivative of the option value with respect to the underlying price:

∂2V(S, t)
∂S2 = =

φ(d1)

σS
√

τ
−
(

B
S

)2η−2{ (2η − 2)(8η − 7)
S

(
B2

S
N(d4)− Ke−rτ N(d3)

)
+

B2

S2

(
2N(d3) +

φ(d3)

σ
√

τ

)
+ 2(2η − 2)

(
B2

S2 N(d3)

)}
,

where d1, d3 and d4 are given in Theorem 1; also, φ(x) = 1√
2π

e
−x2

2 is the probability density
function of the standard normal distribution.

2.2.3. Vega

This measures the sensitivity of options values to changes to volatility. It is calculated
as

∂V(S, t)
∂σ

= S
√

τφ(d1)−
(

B
S

)2η−2
{
√

τKe−rτφ(d4)−
4r
σ3

(
B2

S
N(d4)− Ke−rτ N(d3)

)
ln

B
S

}
.

where d1, d3 and d4 are given in Theorem 1; also, φ(x) = 1√
2π

e
−x2

2 is the probability density
function of the standard normal distribution.

3. Machine Learning Models

Machine learning models, such as the ANN, polynomial regression model and random
forest regression models, form the methodology in this research. Here, we briefly describe
each of them and their financial application as they relate to the rebate barrier options
problem. The numerical experiments are performed on an 11th Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz processor, 16 GB RAM, 64-bit Windows 10 operating system and
x64-based processor.

Axioms 2023, 12, 384 7 of 22

3.1. Artificial Neural Networks

This subsection utilizes the concept of ANN in the approximation of functions which
describe the financial model in perspective. It will highlight the whole network environ-
ment and the multi-layer perceptron (MLP) idea. In connection with the application of
ANN to option pricing, the concept lies first in the generation of the financial data (barrier
option pricing data) and then employing the ANN to predict the option prices according to
the trained model.

3.1.1. Network Environment

The research computations and the data processing are implemented using Python
(version 3.9.7), which is an open-source programming tool. The ANN employed in the
data analysis and construction of the model, as well as the training and validation, is
implemented with Keras (https://keras.io/about/, accessed on 6 April 2023), which is a
deep learning application programming interface, running concurrently with the machine
learning platform Tensorflow (version 2.2.0).

3.1.2. Multi-Layer Perceptron

An MLP is a feed-forward ANN category comprising a minimum of three layers:
the input layer, the hidden layer and the output layer. The MLP with as little as one
hidden layer tends to approximate a large category of non-linear and linear functions with
arbitrary accuracy and precision. Except for input nodes, every other node consists of
neurons triggered by non-linear activation functions. During the training phase, an MLP
employs the supervised learning techniques, also known as backpropagation, and in this
section, we use the backpropagation network method, which is by far the most widespread
neural network type.

Mathematically, consider an MLP network’s configuration with first and second
hidden layers h(1)k and h(2)k , respectively, and input units xk, where k denotes the number of
the units. The non-linear activation function is written as f (.), and we denote f (1)(.), f (2)(.)
and f (3)(.) differently since the network layers can have various activation functions, such
as the sigmoid (Sigmoid is defined by f (z) = 1/(1 + exp (−z)), where z is the input to
the neuron), hyperbolic tangent (Tanh is defined by f (z) = 2sigmoid(z)− 1, where z is
the input to the neuron), rectified linear unit (ReLU) (ReLU is defined by f (z) = max[0, z],
where z is the input to the neuron), etc. The weights of the network are denoted by wjk,
the activation output value yj, and the bias bj, where j denotes the number of units in each
layer. Thus, we have the following representation:

h(1)j = f (1)
(

∑
k

w(1)
jk xk + b(1)j

)

h(2)j = f (2)
(

∑
k

w(2)
jk h(1)k + b(2)j

)

yj = f (3)
(

∑
k

w(3)
jk h(2)k + b(3)j

)
.

3.1.3. The Hyperparameter Search Space and Algorithm

This section further explains the hyperparameter optimization techniques, which aim
to search for the optimal algorithm needed for our optimization problem. It is essential
to note that the parameters of the NN are internal configuration variables that the models
can learn. Examples are the weights and the bias. In contrast, the hyperparameters
are external and cannot be learned from the data but are used to control the learning
process and the structure of the NN. These parameters are set before the training process,
and some examples include the activation function, batch size, epoch, learning rates,
etc. The choice of hyperparameters hugely affects the accuracy of the network. As a

https://keras.io/about/

Axioms 2023, 12, 384 8 of 22

result, different optimal methods, such as manual search, Bayesian optimization, random
search and grid search, have been developed. We will employ the Keras tuner framework
(https://keras.io/keras_tuner/, accessed on 6 April 2023), which encompasses some
algorithms, such as the random search, hyperband and Bayesian optimization. For these
three search algorithms, we choose the validation loss as the objective with the maximum
search configuration of six trials. The following variables define the search space of our
NN architecture:

(1) Width and depth: The depth refers to the number of hidden layers, and the width is
the number of units in each hidden layer. Thus, the depth ranges from [1, 4] with a
step of 1, and the width ranges from [32, 512] with a step of 32.

(2) Activation function: These are non-linear activation functions in the NN, and we only
consider Sigmoid, ReLU and Tanh .

(3) Optimizer: This modifies the model parameters and is mostly used for weight adjust-
ments to minimize the loss function. We only consider Adam, SGD, Adagrad and
RMSprop.

(4) Learning and dropout rates: Learning rates control the speed at which the NN learns,
and we set it at [0.01, 0.001, 0.0001]. The dropout is a regularization technique
employed to improve the ability of NN to withstand overfitting. We set it at [0.1, 0.5]
with a step size of 0.1.

The activation functions are used in each layer, except the output layer. The network is
trained with 45 epochs, 256 batch sizes and an early stopping callback on the validation loss
with patience = 3. Since the option pricing model is a regression problem, our primary
objective is to keep the mean squared error (MSE) of the predicted prices to a minimum.
The essence of training a neural network entails minimizing the errors obtained during the
regression analysis, and this is done by selecting a set of weights in both the hidden and
the output nodes. Thus, to evaluate the performance of our ANN, we consider the MSE as
the loss function used by the network and the mean absolute error (MAE) as the network
metrics, which are given, respectively, as follows:

MSE =
1
N

N

∑
i=1

(Vi(S, t)− V̂i(S, t))2

MAE =
1
N

N

∑
i=1
|Vi(S, t)− V̂i(S, t)| ,

where N is the number of observations, Vi(S, t) is the exact option values and V̂i(S, t) is the
predicted option values. Finally, we alternate the activation functions, optimizers, batch
normalization and dropout rates to investigate the effect of the network training on the
option valuation and avoid overfitting the models.

3.1.4. Data Splitting Techniques for the ANN

Data splitting is a fundamental aspect of data science, especially for developing data-
based models. The dataset is divided into training and testing sets, and an additional
set known as the validation can also be created. The training set is used mainly for
training, and the model is expected to learn from this dataset while optimizing any of
its parameters. The testing set contains the data which are used to fit and measure the
model’s performance. The validation set is mainly used for model evaluation. If the
difference between the training set error and the validation set error is large, there is a case
of over-fitting, as the model has high variance. This paper considers supervised learning in
which the model is trained to predict the outputs of an unspecified target function. This
function is denoted by a finite training set F consisting of inputs and corresponding desired
outputs: F = {[−→a1 ,−→x1], [

−→a2 ,−→x2], · · · [−→an ,−→xn]}, where n is the number of 2-tuples of input/
output samples.

https://keras.io/keras_tuner/

Axioms 2023, 12, 384 9 of 22

Train–Test Split

This paper considers the train–test split as 80:20 and a further 80:20 on the new train
data to account for a validation dataset. Thus, 80% of the whole dataset will account for the
training set and 20% for the test dataset. Additionally, 80% of the training set will be used
as the actual training dataset and the remaining 20% for validation. After training, the final
model should correctly predict the outputs and generalize the unseen data. Failure to
accomplish this leads to over-training, and these two crucial conflicting demands between
accuracy and complexity are known as the bias–variance trade-off [41,42]. A common
approach to balance this trade-off is to use the cross-validation technique.

K-Fold Cross Validation

The k-fold cv is a strategy for partitioning data with the intent of constructing a more
generalized model and estimating the model performance on unseen data. Denote the
validation (testing) set as Fte and the training set as Ftr. The algorithm (Algorithm 1) is
shown below.

Algorithm 1 Pseudocode for the k-fold cross validation
Input the dataset F , number of folds k and the error function (MSE)

1: Data split :
• Randomly split F into k independent subsets Fi,F2, · · · ,Fk of same size.
• For i = 1, 2, · · · , k: Fte ← Fi and Ftr ← F \ {Fi}.

2: Fitting and Training:
• Fit and train model on Ftr and evaluate model performance using Fte periodically:

Rte(i)=Error (Fte).
• Terminate model training when theRte(i) stop criterion is satisfied.

3: Evaluation:
• Evaluate the model performance usingRte =

1
k ∑k

i=1Rte(i).

3.1.5. Architecture of ANN

This research considers a fully connected MLP NN in the option valuation for this
research, which will consist of eight input nodes (in connection to the extended Black–
Scholes for the rebate option parameters). There will be one output node (option value); the
hidden layers and nodes will be tuned. There are two main models classified under the data-
splitting techniques: Model A (train–test split) and Model B (5-fold cross-validation split).
Each model is further subdivided into 3 according to the hyperparameter search algorithm.
Thus, Models A1, A2, and A3 represent the models from the data train–test split for
the hyperband algorithm, random search algorithm and Bayesian optimization algorithm,
respectively. Additionally, Models B1, B2, and B3 represent the models from the k-fold cross-
validation data split for the hyperband algorithm, random search algorithm and Bayesian
optimization algorithm, respectively. Finally, Tables 1 and 2 present the post-tuning search
details and the optimal model hyperparameters for the NN architecture, respectively.

Table 1. Trainable parameter search details.

Search
Details Model A1 Model A2 Model A3 Model B1 Model B2 Model B3

Best MAE
score 0.07081 0.02794 0.01602 0.10141 0.03391 0.02911

Trainable
parame-

ters
254,305 218,145 113,345 138,945 80,961 4609

Total
search

time (secs)
620 714 642 642 491 754

Axioms 2023, 12, 384 10 of 22

Table 1 compares the search time taken by each of the algorithms in tuning the hyper-
parameters. We observed that the hyperband algorithm is highly efficient regarding the
search time for the train–test split and the k-fold cross-validation models. The hyperband
algorithm search time is generally less when compared to the random search and the
Bayesian optimization algorithm. Furthermore, the Bayesian optimization provided the
lowest MAE score and required fewer trainable parameters than the hyperband and the
random search algorithm. This characteristic is equally observable for both models A and
B. From the tuning, we can see that the Bayesian optimization effectively optimizes the
hyperparameter when producing the lowest MAE, though it had the disadvantage of a
higher search time. In contrast to the Bayesian optimization, the hyperband algorithm
is optimal in terms of search time, despite having a higher MAE score. From the results
section, the final comparison of optimality will be made in terms of the deviation from the
actual values when all the models are used in the pricing process.

Table 2. Architecture of the ANN.

Hyperparameters Model A1 Model A2 Model A3 Model B1 Model B2 Model B3

Activation Fn Sigmoid Tanh Tanh ReLU Tanh ReLU
Optimizer Adam Rmsprop Adam Adagrad Rmsprop Adam

Learning rate 0.001 0.0001 0.0001 0.1 0.0001 0.0001
Hidden layers 4 3 4 4 2 3

Layer 1
(dropout) 512(0.2) 288(0.2) 32(0.1) 384(0.3) 480(0.2) 512(0.1)

Layer 2
(dropout) 192(0.2) 480(0.3) 32(0.1) 352(0.2) 160(0.3) 32(0.1)

Layer 3
(dropout) 224(0.4) 160(0.5) 512(0.2) 448(0.4) Nil 352(0.1)

Layer 4
(dropout) 480(0.5) Nil 224(0.2) 192(0.4) Nil Nil

3.2. Random Forest Regression

Random forest combines tree predictors in such a way that each tree in the ensemble
is contingent on the values of a randomly sampled vector selected from the training set.
This sampled vector is independent and has similar distribution with all the trees in the
forest [43]. The random forest regressor uses averaging to improve its predictive ability
and accuracy.

Let f (x; βn) be the collection of tree predictors where n = 1, 2, · · · , N denotes the
number of trees. Here, x is the observed input vector from the random vector X, and βn are
the independent and identically distributed random vectors. The random forest prediction
is given by

f̄ (x) =
1
N

f (x; βn) ,

where f̄ (x) is the unweighted average over the tree collection f (x). As the number of trees
increases, the tree structure converges. This convergence explains why the random forest
does not overfit, but instead, a limiting value of the generalization (or prediction) error is
produced [43,44]. Thus, we have that as n→ ∞, the law of large numbers ensures that

EX,Y[Y− f̄ (X)]2 → EX,Y[Y−Eβ[f̄ (X; β)]]2

Here, Y is the outcome. The training data are assumed to be drawn independently
from the joint distribution of (X, Y). In this research, we use the 80:20 train–test split
techniques to divide the whole dataset into a training set and a testing set. Using the
RandomForestRegressor() from the scikit-learn ML library, we initialize the regression
model, fit the model, and predict the target values.

Axioms 2023, 12, 384 11 of 22

3.3. Polynomial Regression

Polynomial regression is a specific type of linear regression model which can predict
the relationship between the independent variable to the dependent variable as an nth
degree polynomial. In this research, we first create the polynomial features object using
the PolynomialFeatures() from the scikit-learn ML library and indicate the preferred
polynomial degree. We next use the 80:20 train–test split techniques to divide this new
polynomial feature into training and testing datasets, respectively. Next, we construct the
polynomial regression model, fit the model and predict the responses.

4. Results and Discussion
4.1. Data Structure and Description

For the ANN model input parameters, we generated 100000 sample data points and
then used Equation (8) to obtain the exact price for the rebate barrier call options. These
random observations will train, test and validate an ANN model to mimic the extended
Black–Scholes equation. We consider the train–test split and the cross-validation split on the
dataset and then measure these impacts on the loss function minimization and the option
values. The generated samples consist of eight variables, that is (S, K, B, R, T, σ, r, VR),
which are sampled uniformly, except the option price VR, and following the specifications
and logical ranges of each of the input variables (See Table 3). During the training process,
we fed the ANN the training samples with the following inputs (S, K, B, R, T, σ, r), where VR
is the expected output. In this phase, the ANN ‘learns’ the extended Black–Scholes model
from the generated dataset, and the testing phase follows suit, from which the required
results are predicted. Meanwhile, under the Black–Scholes framework, we assume that
the stock prices follow a geometric Brownian motion, and we used GBM(x = 150, r = 0.04,
σ = 0.5, T = 1, N = 100,000) for the random simulation. Table 3 below shows the extended
Black–Scholes parameters used to generate the data points, whereas Table 4 gives the
sample data generated. The range for the rebate, strike and barrier is from the uniform
random distribution, and they are multiplied by the simulated stock price to obtain the
final range.

Table 3. Extended Black–Scholes range of parameters—rebate barrier.

Strike Barrier Rebate Time Volatility Rate

[0.4, 1] [0.4, 1] [0.01, 0.05] [0.5, 1.5] [0.1, 0.5] [0.01, 0.05]

Table 4. Sample training data for rebate barrier option pricing model.

Stock Barrier Strike Rebate Rate Volatility Time Call Option

98.25745 51.92557 46.33445 0.01835 0.04355 0.22836 1.42274 54.61598
149.79728 96.91339 105.83799 0.04255 0.02863 0.27321 0.85166 47.22227
55.90715 38.39396 35.25565 0.01241 0.01989 0.34164 0.95034 20.32389
63.29343 41.03505 31.03422 0.04143 0.03072 0.21341 0.95572 32.80836

126.83153 116.65153 124.11145 0.02695 0.01888 0.45170 0.74936 9.60775
97.18410 75.27999 92.85564 0.01626 0.02186 0.39194 1.04861 15.67665

112.31872 112.30254 53.26221 0.01876 0.03539 0.43021 1.05975 0.04930

Statistics and Exploratory Data Analysis

In this section, we aim to summarize the core characteristics of our option dataset by
analyzing and visualizing them. The descriptive statistics which summarize the distribution
shape, dispersion and central tendency of the dataset are presented in Table 5. The following
outputs were obtained: the number of observations or elements, mean, standard deviation,
minimum, maximum and quartiles (25%, 50%, 75%) of the dataset. We observed that the
distribution of the simulated stock is left skewed since the mean is lesser than the median,
whereas the distributions of the option values, strike price and barrier levels are right
skewed.

Axioms 2023, 12, 384 12 of 22

Table 5. Descriptive statistics for the rebate barrier.

Count Mean Std Min 25% 50% 75% Max

Stock 100,000.0 100.914912 25.412662 49.601351 89.084095 100.055323 110.997594 171.710128
Strike 100,000.0 70.644521 25.269816 20.236066 51.255058 68.083559 86.709133 170.197316
Rebate 100,000.0 0.029946 0.011529 0.010000 0.019957 0.029952 0.039881 0.049999
Barrier 100,000.0 70.574580 25.264409 20.380974 51.162052 67.929254 86.572706 169.477720
Time 100,000.0 1.000314 0.288309 0.500003 0.751330 0.999858 1.250020 1.499976

Sigma 100,000.0 0.299688 0.115622 0.100001 0.199680 0.299840 0.400159 0.499991
Rate 100,000.0 0.030006 0.011557 0.010001 0.019994 0.029978 0.040008 0.050000

OptionV 100,000.0 27.183098 17.482423 0.025235 13.547223 24.047318 38.324748 103.946198

In Figure 1, we consider the visualization using the seaborn library in connection
with the pairplot function to plot a symmetric combination of two main figures, that is,
the scatter plot and the kernel density estimate (KDE). The KDE plot is a non-parametric
technique mainly used to visualize the nature of the probability density function of a
continuous variable. In our case, we limit these KDE plots to the diagonals. We focus
on the relationship between the stock, strike, rebate and the barrier with the extended
Black–Scholes price (OptionV) for the rebate barrier options. From the data distribution
for the feature columns, we notice that the sigma, time and rate columns could be ignored.
This is because the density distribution shows that these features are basically uniform,
and the absence of any variation makes it very unlikely to improve the model performance.
Suppose we consider this problem as a classification problem; then, no split on these
columns will increase the entropy of the model.

On the contrary, however, if this was a generative model, then there would be no prior
to updating given a uniform posterior distribution. Additionally, the model will learn a
variate of these parameters since, by definition of the exact option price (referred to as
OptionV) function, these are the parameters which can take on constant values. Another
method to consider would be to take these parameters ‘sine’ functions as inputs to the
model instead of the actual values. We observed from our analysis that this concept works,
but there is not a significant improvement in model performance, which can be investigated
in further research.

4.2. Neural Network Training

The first category (train dataset) is employed to fit the ANN model by estimating the
weights and the corresponding biases. The model at this stage tends to observe and ‘learn’
from the dataset to optimize the parameters. In contrast, the other (test dataset) is not used
for training but for evaluating the model. This dataset category explains how effective
and efficient the overall ANN model is and the prediction probability of the model. Next
and prior to the model training, we perform data standardization techniques to improve
the performance of the proposed NN algorithm. The StandardScalar function of the
Sklearn python library was used to standardize the distribution of values by ensuring
that the distribution has a unit variance and a zero mean. During the compilation stage,
we plot the loss (MSE) and the evaluation metrics (accuracy) values for both the train and
validation datasets. We equally observe that the error difference between the training and
the validation dataset is not large, and as such, there is no case of over- or under-fitting of
the ANN models. Once the ‘learning’ phase of the model is finished, the prediction phase
will set in. The performance of the ANN model is measured and analyzed in terms of the
MSE and the MAE. Table 6 gives the evaluation metrics for both the out-sample prediction
(testing dataset) and the in-sample prediction (training dataset).

Axioms 2023, 12, 384 13 of 22

Figure 1. Visualization plot.

Table 6. Model evaluation for testing and training data (shows no over- or underfitting).

Models Test Train
Loss (MSE) Metrics (MAE) Loss (MSE) Metrics (MAE)

Model A1 0.0214 0.0574 0.0249 0.0557
Model A2 0.0349 0.0987 0.0299 0.0929
Model A3 0.0446 0.1058 0.0423 0.1027
Model B1 0.0229 0.0601 0.0202 0.0584
Model B2 0.0425 0.0883 0.0394 0.0872
Model B3 0.0457 0.0782 0.0411 0.0762

Table 6 shows the model evaluation comparison for the train/test loss and accuracy.
It is observed that the test loss is greater than the training loss, and the test accuracy is
greater than the training accuracy for all the models. The differences in error sizes are not
significant, and thus the chances of having an overfitting model are limited. Figures 2–5
show the training and validation (test) of the loss and MAE values for all the models when
the models are fitted and trained on epoch = 45, batch size = 256, and verbose = 1. We

Axioms 2023, 12, 384 14 of 22

visualize these graphs to ascertain whether there was any case of overfitting, underfitting
or a perfect fitting of the model. In underfitting, the NN model fails to model the training
data and learn the problem perfectly and sufficiently, leading to slightly poor performance
on the training dataset and the holdout sample. Overfitting occurs mainly in complex
models with diverse parameters, which happens when the model aims to capture all data
points present in a specified dataset. In all the cases, we observe that the models show
a good fit, as the training and validation loss are decreased to a stability point with an
infinitesimal gap between the final loss values. However, the loss values for Model B3
followed by Model B2 are highly optimal in providing the best fit for the algorithm.

(a) (b) (c)

Figure 2. Train/test MAE values for Models A1, A2 and A3; (a) MAE—Model A1; (b) MAE—
Model A2; (c) MAE—Model A3.

(a) (b) (c)

Figure 3. Train/Test MAE values for Models B1, B2 and B3; (a) MAE—Model B1; (b) MAE—Model B2;
(c) MAE—Model B3.

(a) (b) (c)

Figure 4. Train/Test LOSS values for Models A1, A2 and A3; (a) LOSS—Model A1; (b) LOSS—
Model A2; (c) MAE—Model A3.

(a) (b) (c)

Figure 5. Train/Test LOSS values for Models B1, B2 and B3; (a) LOSS—Model B1; (b) LOSS—
Model B2; (c) LOSS—Model B3.

Axioms 2023, 12, 384 15 of 22

Next, we display the plots obtained after compiling and fitting the models. The pre-
diction is performed on the unseen data or the test data using the trained models. Figures 6
and 7 give the plot of the predicted values against the actual values, the density plot of the
error values and the box plot of the error values for all six models.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Option values visualization for Models A1, A2, A3; (a) Model A1: Regression plot;
(b) Model A1: Histogram plot; (c) Model A1: Box plot; (d) Model A2: Regression plot; (e) Model A2:
Histogram plot; (f) Model A2: Box plot; (g) Model A3: Regression plot; (h) Model A3: Histogram plot;
(i) Model A3: Box plot.

The box plot enables visualization of the skewness and how dispersed the solution
is. Model A2 behaved poorly, as this can be observed with the wide range of dispersion
of the solution points, and the model did not fit properly. For a perfect fit, the data points
are expected to concentrate along the 45 deg red line, where the predicted values are equal
to the actual values. This explanation is applicable to Models A2 and A3, as there was no
perfect alignment in the regression plots. We could retrain the neural network to improve
this performance since each training can have different initial weights and biases. Further
improvements can be made by increasing the number of hidden units or layers or using
a larger training dataset. For the purpose of this research, we already performed the
hyperparameter tuning, which solves most of the above suggestions. To this end, we focus
on Model B, another training algorithm.

Models B3 and B1 provide a good fit when their performance is compared to the other
models, though there are still some deviations around the regression line. The deviation
of these solution data points is also fewer than in the other models. It is quite interesting
to note that the solution data points of Models B1 and B3 are skewed to the left, as can be
seen in the box plots. This could be a reason for their high performance compared to other
models, such as A1, A2, and A3, which are positively skewed. However, this behavior
would be worth investigating in our future work.

Axioms 2023, 12, 384 16 of 22

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Option values visualization for Models B1, B2, B3; (a) Model B1: Regression plot; (b) Model
B1: Histogram plot; (c) Model B1: Box plot; (d) Model B2: Regression plot; (e) Model B2: His-
togram plot; (f) Model B2: Box plot; (g) Model B3: Regression plot; (h) Model B3: Histogram plot;
(i) Model B3: Box plot.

Table 7 shows the error values in terms of the MSE, MAE, mean squared logarithmic
error (MSLE), mean absolute percentage error (MAPE) and the R2 (coefficient of determina-
tion) regression score. It also shows the models’ comparison in terms of their computation
speed, and it must be noted that the computation is measured in seconds. Mathematically,
the MSLE and MAPE are given as

MSLE =
1
N

N

∑
i=1

[loge(1 + Vi(S, t))− loge(1 + V̂i(S, t))]2 ,

MAPE =
100%

N

N

∑
i=1

∣∣∣∣Vi(S, t)− V̂i(S, t)
Vi(S, t)

∣∣∣∣ ,

where N is the number of observations, Vi(S, t) is the exact option values and V̂i(S, t)
is the predicted option values. For the MAPE, all the values lower than the threshold
of 20% are considered ‘good’ in terms of their forecasting capacity [45]. Thus, all the
models have good forecasting scores, with Model A1 possessing a highly accurate forecast
ability. Similarly, the values for the MSLE measure the percentile difference between the
log-transformed predicted and actual values. The lower, the better, and we can observe
that all the models gave relatively low MSLE values, with Models A1 and B1 giving the
lowest MSLE values.Please check that intended meaning is retained.

From Table 7, the R2 measures the capacity of the model to predict an outcome in the
linear regression format. Models B1 and B3 gave the highest positive values compared to
the other models, and these high R2-values indicate that these models are a good fit for our
options data. It is also noted that for well-performing models, the greater the R2, the smaller
the MSE values. Model B3 gave the smallest MSE, with the highest R2, compared to the
least performed model A2, which had the largest MSE and the smallest R2 score. The MAE

Axioms 2023, 12, 384 17 of 22

measures the average distance between the predicted and the actual data, and the lower
values of the MAE indicate higher accuracy.

Table 7. Error values and computation time for various NN models.

Models Error Values Comp Time (secs)
R2-Score MAE MSLE MSE MAPE

Model A1 0.989839 1.128247 0.006056 3.143079 0.076672 93.22
Model A2 0.969974 2.080077 0.013861 9.175201 0.129603 76.93
Model A3 0.977491 1.991815 0.019283 6.840152 0.143385 60.21
Model B1 0.994019 0.990397 0.006361 1.821165 0.080418 51.48
Model B2 0.987908 1.328247 0.015289 3.681967 0.125486 51.85
Model B3 0.994371 0.932689 0.014919 1.714182 0.125429 31.17

Finally, we display the speed of the NN algorithm models in terms of their com-
putation times, as shown in Table 7. The computation time taken by the computer to
execute the algorithm encompasses the data splitting stage, standardization of set variables,
ANN model compilation and training, fitting, evaluation and the prediction of the results.
As noted in Models A1 and A2, the use of Sigmoid and Tanh activation functions accounted
for higher computation time, and this is due to the presence of exponential functions, which
need to be computed. Model A1 was the least performed in terms of the computation time,
and Model B3 was the best, accounting for a 66.56% decrease in time. We observe that the
computation time is reduced when the k-fold cross-validation split is implemented prior
to the ANN model training, as compared to the traditional train–test split. This feature is
evident as a further 41.62% decrease was observed when the average computation time for
Model B was used against Model A.

The overall comparison of the tuned models is presented in Figure 8. Here, we rank
the performance of each MLP model with regards to ST:TP, algorithm computation time,
and finally, the errors spanning from the R2 score, MAE and the MSE. The ST:TP ratio
denotes the search time per one trainable parameter. The ranking is ascending, with 1 being
the maximum preference and 6 being the least preference. From the results and regardless
of the number of search times per one trainable parameter, we observe that Model B3 is
optimal, followed by Model B1, and the lowest performing is Model A2. Hence, we can
conclude that models which consist of the k-fold data split performed significantly well in
the valuation of the rebate barrier options using the extended Black–Scholes framework.

Figure 8. Ranking of models for optimality.

Axioms 2023, 12, 384 18 of 22

4.3. Analysis of Result Performance

One avenue to show the accuracy of our proposed model is to test the architecture
on a non-simulated dataset for the rebate barrier options. At present, we are not able to
obtain such real market data due to non-accessibility, and this is one of the limitations of the
research. However, we compare the NN results with other machine learning models, such
as the polynomial regression and the random forest regression on the same dataset. Both
techniques are capable of capturing non-linear relationships that exist amongst variables.

Polynomial regression provides flexibility when modeling the non-linearity. Im-
proved accuracy can be obtained when the higher-order polynomial terms are incorporated,
and this feature makes it easier to capture the non-complex patterns in the dataset. It is
also very fast when compared to both our proposed NN methodology and the random
forest regression (Table 8). In this work, we only present the results obtained using the
2nd-, 3rd- and 4th-degree polynomial regressions. We observed that in terms of accuracy,
polynomials of higher degrees gave rise to more accurate results and a significant reduction
in their error components.

However, one of the issues facing the polynomial regression is model complexity;
when the polynomial degree is high, the chances of model overfitting will be significantly
high. Thus, we are faced with the trade-off between accuracy and over-fitting of the model.
Regression random forest, on the other hand, combines multiple random decision trees,
with each tree trained on a subset of data. We build random forest regression models using
10, 30, 50, and 70 decision trees, then we fit the model to the barrier options dataset, predict
the target values, and then compute the error components. Finally, we compare these two
models to the optimal model obtained with the NN results (Model B3), and we have the
following table.

Table 8. Error values and computation time for Model B3, polynomial regression and random
forest regression.

Models Error values Time (secs)
R2-Score MAE MSLE MSE MAPE

Random Forest Regr.
Decision trees (10) 0.990380 1.182121 0.016714 2.938727 0.145200 6.02
Decision trees (30 0.992352 1.056031 0.013461 2.293958 0.118368 15.56
Decision trees (50) 0.992449 1.037465 0.015827 2.299464 0.117032 26.34
Decision trees (70) 0.992825 1.022187 0.014146 2.211590 0.127853 36.02
Polynomial Regr.
Polynomial order (2) 0.967764 2.156955 N/A 9.843225 0.327491 1.05
Polynomial order (3) 0.987900 1.269433 N/A 3.666175 0.206076 2.25
Polynomial order (4) 1 0.996147 0.689323 N/A 1.177380 0.114092 3.75
Neural Network
Model B3 0.994371 0.932689 0.014919 1.714182 0.125429 31.17

1 We consider polynomials of order ≥ 4 to be higher-order, and this is because of the increase in their complexity.
The accuracy of the 4th-order polynomial regression is actually higher than our proposed model, but the former
has the issue of overfitting the data, which comes with a higher degree of polynomial regression. Additionally,
the N/A in the MSLE cells is due to some negative values in the prediction set, which makes the logarithm of the
values N/A.

Increasing the number of decision trees leads to more accurate results, and Oshiro et al.
(2012) explained that the range of trees should be between 64 and 128. This feature will
make it feasible to obtain a good balance between the computer’s processing time, memory
usage and the AUC (area under curve) [46]; we observed this feature in our research.
The model was tested on 80, 100, 120, 140, 160, 180, and 200 decision trees, and we obtained
the following coefficient of determination R2 regression score (computation time): 0.9924
(34 secs), 0.9928 (52 secs), 0.9929 (62 secs), 0.9925 (75 secs), 0.9929 (83 secs), 0.9929 (89 secs)
and 0.9926 (102 secs), respectively. We obtained the optimal decision tree to be between 110
and 120 with an R2 score of 0.9929, and any other value below 110 will give rise to a less

Axioms 2023, 12, 384 19 of 22

accurate result. Any value above 120 will not lead to any significant performance gain but
will only lead to more computational cost.

Table 8 compares the performance of our optimal NN model to the random forest and
the polynomial regressions. The performance is measured based on the error values and
the computational time. The NN model performed better than the random forest regression
regardless of the number of decision trees used, and this was obvious from the results
presented in Table 8 above. On the other hand, polynomial regression of the 2nd and 3rd
orders underperformed when compared to the NN model, but maximum accuracy was
obtained when higher order (≥ 4) was used. This higher order posed a lot of complexity
issues, which our optimal NN model does not face. Hence, more theoretical understanding
is needed to further explain the phenomenon, and this current research does not account
for it.

4.4. Option Prices and Corresponding Greeks

To compute the zero-rebate DO option prices and their corresponding Greeks, we
simulate another set of data (1,000,000) in accordance with the extended Black–Scholes
model, and the Table 9 below gives a subset of the full dataset after cleansing.

Table 9. Data subset of option values and Greeks.

S B K R r σ T V(t, S) ∆DO ΓDO νDO

190.14286 80.0 100.0 0.0 0.05 0.25 1.0 95.04795 0.99811 0.00013 1.14425
83.61440 80.0 100.0 0.0 0.05 0.25 1.0 2.08913 0.48534 −0.00174 7.12088
108.12702 80.0 100.0 0.0 0.05 0.25 1.0 17.72886 0.74465 0.01029 30.44055
146.39879 80.0 100.0 0.0 0.05 0.25 1.0 51.77793 0.96780 0.00194 10.39359
121.23493 80.0 100.0 0.0 0.05 0.25 1.0 28.42419 0.86428 0.00678 24.95840

For the NN application, we used the hyperparameters of Model B3 to construct
the NN architecture and train and predict the option values and their corresponding
Greeks. The risks associated with the barrier options are complicated to manage and hedge
due to their path-dependent exotic nature, which is more pronounced as the underlying
approaches to the barrier level. For the Greeks considered here, we focus on predicting
the delta, gamma and vega using the optimal NN model, and the following results were
obtained.

Figure 9 shows the plot of the predicted and actual values of the DO option prices,
together with the delta, gamma and vega values. For the option value, the DO call behaves
like the European call when the option is far deep in-the-money, and this is because the
impact of the barrier is not felt at that phase. The option value decreases and tends to zero
as the underlying price approaches the barrier since the probability of the option being
knocked out is very high. The in-the-money feature is equally reflected in the delta and
gamma as they remain unchanged when the barrier is far away from the underlying. Here,
the delta is one, and the gamma is zero.

Gammas for this option style are typically large when the underlying price is in the
neighborhood of the strike price or even near the barrier, and it is the lowest for out-of-
money options or knocked-out options. From Figure 9c, gamma tends to switch from
positive to negative without switching from long to short options. The values of gammas
are usually bigger than the gamma for the standard call option. These extra features pose a
great challenge to risk managers during the rebalancing of portfolios. Lastly, vega measures
the sensitivity of the option value with respect to the underlying volatility. It measures the
change in option value based on a 1% change in implied volatility. Vega declines as the
options approach the knock-out phase; it falls when the option is out-of-money and deep
in-the-money, and it is maximum when the underlying is around the strike price. Overall,
Figure 9a–d display how accurately Model B3 predicts the option values and their Greeks,
as little or no discrepancies are observed in each dual plot.

Axioms 2023, 12, 384 20 of 22

(a) (b)

(c) (d)

Figure 9. Option values and Greeks; (a) DO option value; (b) DO delta; (c) DO gamma; (d) DO vega.

5. Conclusions and Recommendations

This research suggested a more efficient and effective means of pricing the barrier
call options, both with and without a rebate, by implementing the ANN techniques on
the closed-form solution of these option styles. Barrier options belong to exotic financial
options whose analytical solutions are based on the extended Black–Scholes pricing models.
Analytical solutions are known to possess assumptions which are not often valid in the
real world, and these limitations make them ideally imperfect in the effective valuation of
financial derivatives. Hence, through the findings of this research, we were able to show
that neural networks can be employed efficiently in the computation and the prediction
of unbiased prices for both the rebate and non-rebate barrier options. This study showed
that it is possible to utilize an efficient approximation method via the concept of ANN
in estimating exotic option prices, which are more complex and often require expensive
computational time. This research has provided an in-depth concept into the practicability
of the deep learning technique in derivative pricing. This was made viable through some
statistical and exploratory data analysis and analysis of the model training provided.

From the research, we conducted some benchmarking experiments on the NN hy-
perparameter tuning using the Keras interface and used different evaluation metrics to
measure the performance of the NN algorithm. We finally estimated the optimal NN archi-
tecture, which prices the barrier options effectively in connection to some data-splitting
techniques. We compared six models in terms of their data split and their hyperparame-
ter search algorithm. The optimal NN model was constructed using the cross-validation
data-split and the Bayesian optimization search algorithm, and this combination was more
efficient than the other models proposed in this research. Next, we compared the results
from the optimal NN model to those produced by other ML models, such as the random
forest and the polynomial regression; the output highlights the accuracy and the efficiency
of our proposed methodology in this option pricing problem.

Finally, hedging and risk management of barrier options are complicated due to their
exotic nature, especially as the underlying is near the barrier. Our research extracted the

Axioms 2023, 12, 384 21 of 22

barrier option prices and their corresponding Greeks with high accuracy using the optimal
hyperparameter. The predicted and accurate results showed little or no difference, which
explains our proposed model’s effectiveness. For future research direction, more theoretical
underpinning seems to be lacking in connection to the evaluation/error analysis for all the
proposed models used in this research. Another limitation of this work is the use of a fully
simulated dataset; it will suffice to implement these techniques on a real dataset to estimate
the effectiveness. The third limitation of this research lies in the convergence analysis
of the proposed NN scheme, and future research will address this issue. In addition,
more research can be conducted to value these exotic barrier options from the partial
differential perspective, that is, solving the corresponding PDE from this model using the
ANN techniques and extending the pricing methodology to other exotic options, such as
the Asian or the Bermudian options.

Author Contributions: These authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data supporting this study’s findings are available from the
corresponding author upon reasonable request.

Acknowledgments: This work commenced while the first author was affiliated with the Center for
Business Mathematics and Informatics, North-West University, Potchefstroom and the University
of Johannesburg, both in South Africa. The authors wish to acknowledge their financial support in
collaboration with the Deutscher Akademischer Austauschdienst (DAAD).

Conflicts of Interest: The author declares that they have no competing interests.

References
1. Aziz, S.; Dowling, M.M.; Hammami, H.; Piepenbrink, A. Machine learning in finance: A topic modeling approach. European

Financ. Manag. 2022, 28, 744–770 [CrossRef]
2. Liu, S.; Borovykh, A.; Grzelak, L.A.; Oosterlee, C.W. A neural network-based framework for financial model calibration. J. Math.

Ind. 2019, 9, 9. [CrossRef]
3. Beck, C.; Becker, S.; Grohs, P.; Jaafari, N.; Jentzen, A. Solving stochastic differential equations and Kolmogorov equations by means

of deep learning. arXiv 2018, arXiv:1806.00421.
4. Borovykh, A.; Bohte, S.; Oosterlee, C.W. Conditional time series forecasting with convolutional neural networks. arXiv 2017,

arXiv:1703.04691.
5. Babbar, K.; McGhee, W.A. A Deep Learning Approach to Exotic Option Pricing under LSVol; University of Oxford Working Paper.

2019. Available online: https://www.bayes.city.ac.uk/__data/assets/pdf_file/0007/494080/DeepLearningExoticOptionPricin
gLSVOL_KB_CassBusinessSchool_2019.pdf (accessed on 20 November 2022).

6. Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018,
375, 1339–1364. [CrossRef]

7. Liu, S.; Oosterlee, C.W.; Bohte, S.M. Pricing options and computing implied volatilities using neural networks. Risks 2019, 7, 16.
[CrossRef]

8. Yao, J.; Li, Y.; Tan, C.L. Option price forecasting using neural networks. Omega 2000, 28, 455–466. [CrossRef]
9. Li, C. The Application of Artificial Intelligence and Machine Learning in Financial Stability. In Proceedings of the International

Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy, Shanghai, China, 6–8 November 2020;
pp. 214–219.

10. Lee, J.; Kim, R.; Koh, Y.; Kang, J. Global stock market prediction based on stock chart images using deep Q-network. IEEE Access
2019, 7, 167260–167277. [CrossRef]

11. Yu, P.; Yan, X. Stock price prediction based on deep neural networks. Neural Comput. Appl. 2020, 32, 1609–1628. [CrossRef]
12. Malliaris, M.; Salchenberger, L. A neural network model for estimating option prices. Appl. Intell. 1993, 3, 193–206. [CrossRef]
13. Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [CrossRef]
14. Klibanov, M.V.; Golubnichiy, K.V.; Nikitin, A.V. Application of Neural Network Machine Learning to Solution of Black-Scholes

Equation. arXiv 2021, arXiv:2111.06642.
15. Fang, Z.; George, K.M. Application of machine learning: An analysis of Asian options pricing using neural network. In

Proceedings of the 2017 IEEE 14th International Conference on e-Business Engineering (ICEBE), Shanghai, China, 4–6 November
2017; pp. 142–149.

16. Hutchinson, J.M.; Lo A.W.; Poggio, T. A non-parametric approach to pricing and hedging derivative securities via learning
networks. J. Financ. 1994, 49, 851–889. [CrossRef]

http://doi.org/10.1111/eufm.12326
http://dx.doi.org/10.1186/s13362-019-0066-7
https://www.bayes.city.ac.uk/__data/assets/pdf_file/0007/494080/DeepLearningExoticOptionPricingLSVOL_KB_CassBusinessSchool_2019.pdf
https://www.bayes.city.ac.uk/__data/assets/pdf_file/0007/494080/DeepLearningExoticOptionPricingLSVOL_KB_CassBusinessSchool_2019.pdf
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.3390/risks7010016
http://dx.doi.org/10.1016/S0305-0483(99)00066-3
http://dx.doi.org/10.1109/ACCESS.2019.2953542
http://dx.doi.org/10.1007/s00521-019-04212-x
http://dx.doi.org/10.1007/BF00871937
http://dx.doi.org/10.1086/260062
http://dx.doi.org/10.1111/j.1540-6261.1994.tb00081.x

Axioms 2023, 12, 384 22 of 22

17. Bennell, J.; Sutcliffe, C. Black–Scholes versus artificial neural networks in pricing FTSE 100 options. Intell. Syst. Acc. Financ. Manag.
Int. J. 2004, 12, 243–260. [CrossRef]

18. Yadav, K. Formulation of a rational option pricing model using artificial neural networks. In Proceedings of the SoutheastCon
2021, Virtual, 10–14 March 2021; pp. 1–8.

19. Ghaziri, H.; Elfakhani, S.; Assi, J. Neural, networks approach to pricing, options. Neural Netw. World 2000, 1, 271–277.
20. Anders, U.; Korn, O.; Schmitt, C. Improving the pricing of options: A neural network approach. J. Forecast. 1998, 17, 369–388.

[CrossRef]
21. Buehler, H.; Gonon, L.; Teichmann, J.; Wood, B.; Mohan, B.; Kochems, J. Deep Hedging: Hedging Derivatives under Generic Market

Frictions using Reinforcement Learning; SSRN Scholarly Paper ID 3355706; Social Science Research Network: Rochester, NY,
USA, 2019.

22. Culkin, R.; Das, S.R. Machine learning in finance: The case of deep learning for option pricing. J. Invest. Manag. 2017, 15, 92–100.
23. De Spiegeleer, J.; Madan, D.B.; Reyners, S.; Schoutens, W. Machine learning for quantitative finance: Fast derivative pricing,

hedging and fitting. Quant. Financ. 2018, 18, 1635–1643. [CrossRef]
24. Gan, L.; Wang, H.; Yang, Z. Machine learning solutions to challenges in finance: An application to the pricing of financial products.

Technol. Forecast. Soc. Change 2020, 153, 119928. [CrossRef]
25. Hamid, S.A.; Habib, A. Can Neural Networks Learn the Black-Scholes Model? A Simplified Approach; Working Paper No. 2005–01;

School of Business, Southern New Hampshire University: Manchester, NH, USA, 2005.
26. Le N.T.; Zhu, S.P.; Lu, X. An integral equation approach for the valuation of American-style down-and-out calls with rebates.

Comput. Math. Appl. 2016, 71, 544–564. [CrossRef]
27. Umeorah, N.; Mashele, P. A Crank-Nicolson finite difference approach on the numerical estimation of rebate barrier option prices.

Cogent Econ. Financ. 2019, 7, 1598835. [CrossRef]
28. Han, J.; Jentzen, A.; Weinan, E. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci.

USA 2018, 115, 8505–8510. [CrossRef] [PubMed]
29. Ganesan, N.; Yu, Y.; Hientzsch, B. Pricing barrier options with DeepBSDEs. arXiv 2020, arXiv:2005.10966.
30. Yu, B.; Xing, X.; Sudjianto, A. Deep-learning based numerical BSDE method for barrier options. arXiv 2019, arXiv:1904.05921.
31. Itkin, A. Deep learning calibration of option pricing models: Some pitfalls and solutions. arXiv 2019, arXiv:1906.03507.
32. Xu, L.; Dixon, M.; Eales, B.A.; Cai, F.F.; Read, B.J.; Healy, J.V. Barrier option pricing: Modelling with neural nets. Phys. Stat. Mech.

Its Appl. 2004, 344, 289–293. [CrossRef]
33. Ghevariya, S. PDTM approach to solve Black Scholes equation for powered ML-Payoff function. Comput. Methods Differ. Equ. 2022,

10, 320–326.
34. Mehdizadeh, Khalsaraei, M.; Shokri, A.; Mohammadnia, Z.; Sedighi, H.M. Qualitatively Stable Nonstandard Finite Difference

Scheme for Numerical Solution of the Nonlinear Black–Scholes Equation. J. Math. 2021, 2021, 6679484.
35. Rezaei, M.; Yazdanian, A. Pricing European Double Barrier Option with Moving Barriers Under a Fractional Black–Scholes Model.

Mediterr. J. Math. 2022, 19, 1–16. [CrossRef]
36. Torres-Hernandez, A.; Brambila-Paz, F.; Torres-Martínez, C. Numerical solution using radial basis functions for multidimensional

fractional partial differential equations of type Black–Scholes. Comput. Appl. Math. 2021, 40, 1–25. [CrossRef]
37. Eskiizmirliler, S.; Günel, K.; Polat, R. On the solution of the black–scholes equation using feed-forward neural networks. Comput.

Econ. 2021, 58, 915–941. [CrossRef]
38. Chen, Y.; Yu, H.; Meng, X.; Xie, X.; Hou, M.; Chevallier, J. Numerical solving of the generalized Black-Scholes differential equation

using Laguerre neural network. Digit. Signal Process. 2021, 112, 103003. [CrossRef]
39. Rich, D.R. The mathematical foundations of barrier option-pricing theory. Adv. Futur. Options Res. 1994, 7, 267–311.
40. Zhang, P.G. Exotic Options: A Guide to Second Generation Options; World Scientific: Singapore, 1997.
41. Kononenko, I.; Kukar, M. Machine Learning and Data Mining; Horwood Publishing: Chichester, UK, 2007
42. Reitermanová, Z. Data Splitting. In Proceedings of the WDS’10—19th Annual Conference of Doctoral Students, Prague, Czech

Republic, 1–4 June 2010.
43. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
44. Segal, M.R. Machine Learning Benchmarks and Random Forest Regression; Division of Biostatistics, University of California: San

Francisco, CA, USA, 2004.
45. Blasco, B.C.; Moreno, J.J.M.; Pol, A.P.; Abad, A.S. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema

2013, 25, 500–506.
46. Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How many trees in a random forest?. In Proceedings of the Machine Learning and Data

Mining in Pattern Recognition: 8th International Conference, MLDM 2012, Berlin, Germany, 13–20 July 2012; pp. 154–168.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/isaf.254
http://dx.doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6<369::AID-FOR702>3.0.CO;2-S
http://dx.doi.org/10.1080/14697688.2018.1495335
http://dx.doi.org/10.1016/j.techfore.2020.119928
http://dx.doi.org/10.1016/j.camwa.2015.12.013
http://dx.doi.org/10.1080/23322039.2019.1598835
http://dx.doi.org/10.1073/pnas.1718942115
http://www.ncbi.nlm.nih.gov/pubmed/30082389
http://dx.doi.org/10.1016/j.physa.2004.06.134
http://dx.doi.org/10.1007/s00009-022-02104-4
http://dx.doi.org/10.1007/s40314-021-01634-z
http://dx.doi.org/10.1007/s10614-020-10070-w
http://dx.doi.org/10.1016/j.dsp.2021.103003
http://dx.doi.org/10.1023/A:1010933404324

	Introduction
	Extended Black–Scholes Model for Barrier Options
	Model Structure
	Option Greeks
	Delta
	Gamma
	Vega

	Machine Learning Models
	Artificial Neural Networks
	Network Environment
	Multi-Layer Perceptron
	The Hyperparameter Search Space and Algorithm
	Data Splitting Techniques for the ANN
	Architecture of ANN

	Random Forest Regression
	Polynomial Regression

	Results and Discussion
	Data Structure and Description
	Neural Network Training
	Analysis of Result Performance
	Option Prices and Corresponding Greeks

	Conclusions and Recommendations
	References

