Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator
Abstract
1. Introduction
2. Basic Properties of the Subclass (η, A, B)
3. Neighborhoods and Partial Sums
4. Concluding Remarks and Observations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bulboacă, T. Differential Subordinations and Superordinations: Recent Results; House of Scientific Book Publishing: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Abu Risha, M.H.; Annaby, M.H.; Ismail, M.E.H.; Mansour, Z.S. Linear q-difference equations. Z. Anal. Anwend. 2007, 26, 481–494. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. Royal Soc. Edinburgh 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Srivastava, H.M. Certain q-polynomial expansions for functions of several variables. I and II. IMA J. Appl. Math. 1983, 30, 205–209. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. A certain class of analytic functions of complex order with a q-analogue of integral operators. Miskolc Math Notes 2020, 21, 417–433. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Wiley: New York, NY, USA, 1985. [Google Scholar]
- El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic hypergeometric series (with a Foreword by Richard Askey). In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1990; Volume 35. [Google Scholar]
- El-Deeb, S.M.; El-Matary, B.M. Q-analogue of linear differential operator on meromorphic p-valent functions with connected sets. Appl. Math. Sci. 2020, 14, 621–634. [Google Scholar] [CrossRef]
- Aouf, M.K. A certain subclass of meromorphically starlike functions with positive coefficients. Rend. Mat. 1989, 9, 225–235. [Google Scholar]
- Clunie, J. On meromorphic Schlicht functions. J. Lond. Math. Soc. 1959, 34, 215–216. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent functions and nonanalytic curves. Proc. Am. Math. Soc. 1957, 8, 898–901. [Google Scholar] [CrossRef]
- Pommerenke, C. On meromorphic starlike functions. Pacific J. Math. 1963, 13, 221–235. [Google Scholar] [CrossRef]
- Miller, J.E. Convex meromorphic mapping and related functions. Proc. Am. Math. Soc. 1970, 25, 220–228. [Google Scholar] [CrossRef]
- Ruscheweyh, S. Neighborhoods of univalent functions. Proc. Am. Math. Soc. 1981, 81, 521–527. [Google Scholar] [CrossRef]
- Altintas, O.; Owa, S. Neighborhoods of certain analytic functions with negative coefficients. Int. J. Math. Math. Sci. 1996, 19, 797–800. [Google Scholar] [CrossRef]
- Altintas, O.; Özkan, Ö.; Srivastava, H.M. Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Lett. 2000, 13, 63–67. [Google Scholar] [CrossRef]
- Altintas, O.; Özkan, Ö.; Srivastava, H.M. Neighborhoods of a certain family of multivalent functions with negative coefficient. Comput. Math. Appl. 2004, 47, 1667–1672. [Google Scholar] [CrossRef]
- Liu, J.-L. Properties of some families of meromorphic p-valent functions. Math. Jpn. 2000, 52, 425–434. [Google Scholar]
- Liu, J.-L.; Srivastava, H.M. A linear operator and associated families of meromorphically multivalent functions. J. Math. Anal. Appl. 2000, 259, 566–581. [Google Scholar] [CrossRef]
- El-Ashwah, R.M.; Aouf, M.K.; El-Deeb, S.M. Some properties of certain subclasses of meromorphic multivalent functions of complex order defined by certain linear operator. Acta Univ. Apulensis 2014, 40, 265–282. [Google Scholar]
- Aouf, M.K. On a certain class of meromorphic univalent functions with positive coefficients. Rend. Mat. 1991, 7, 209–219. [Google Scholar]
- Chen, M.P.; Irmak, H.; Srivastava, H.M.; Yu, C.S. Certain subclasses of meromorphically univalent functions with positive or negative coefficients. Panam. Math. J. 1996, 6, 65–77. [Google Scholar]
- Breaz, D.; Cotîrlă, L.I.; Umadevi, E.; Karthikeyan, K.R. Properties of meromorphic spiral-like functions associated with symmetric functions. J. Funct. Spaces 2022, 2022, 344485. [Google Scholar] [CrossRef]
- Irmak, H.; Cho, N.E.; Raina, R.K. Certain inequalities involving meromorphically multivalent functions. Hacet. Bull. Nat. Sci. Eng. Ser. B 2001, 30, 39–43. [Google Scholar]
- Totoi, A.; Cotîrlă, L.I. Preserving classes of meromorphic functions through integral operators. Symmetry 2022, 14, 1545. [Google Scholar] [CrossRef]
- Çağlar, M.; Orhan, H. Univalence criteria for meromorphic functions and quasiconformal extensions. J. Inequalities Appl. 2013, 112, 1732. [Google Scholar] [CrossRef][Green Version]
- Oros, G.I.; Cătaş, A.; Oros, G. On certain subclasses of meromorphic close-to-convex functions. J. Funct. Spaces 2008, 2008, 246909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, S.M.; Cotîrlă, L.-I. Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator. Axioms 2023, 12, 207. https://doi.org/10.3390/axioms12020207
El-Deeb SM, Cotîrlă L-I. Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator. Axioms. 2023; 12(2):207. https://doi.org/10.3390/axioms12020207
Chicago/Turabian StyleEl-Deeb, Sheza M., and Luminiţa-Ioana Cotîrlă. 2023. "Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator" Axioms 12, no. 2: 207. https://doi.org/10.3390/axioms12020207
APA StyleEl-Deeb, S. M., & Cotîrlă, L.-I. (2023). Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator. Axioms, 12(2), 207. https://doi.org/10.3390/axioms12020207