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Abstract: In this paper, we consider several classes of mappings related to the class of α-z-contraction
mappings by introducing a convexity condition and establish some fixed-point theorems for such
mappings in complete metric spaces. The present result extends and generalizes the well-known
results of Singh, Khan, and Kang (Mathematics, 2018, 6(6), 105), Istrătescu (Liberta Math., 1981, 1,
151–163), and many others in the existing literature. An illustrative example is also provided to
exhibit the utility of our main results. Finally, we derive the existence and uniqueness of a solution
to an integral equation to support our main result and give a numerical example to validate the
application of our obtained results.
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1. Introduction and Preliminaries

In recent years, a great number of papers have presented generalizations of the well-
known Banach–Picard contraction principle. Čirić [1] investigated the generalized contrac-
tion and extension of Banach’s contraction to combine x, y, Tx, and Ty of all six possible
values for all x, y ∈ X and T a self-mapping on a metric space. In 1982, Istrătescu [2] pro-
posed a generalization of seven contraction principle values by introducing a “convexity”
condition for the mapping iterates. He deduced that these conditions might be adapted
for other classes of mappings to obtain some extensions of known fixed-point results. Al-
ghamdi et al. [3] proved a generalization of the Banach contraction principle to the class of
convex contractions in non-normal cone metric spaces. In 2015, Miculescu et al. [4] obtained
a generalization of Istrăţescu’s fixed-point theorem concerning convex contractions. In
2017, Miculescu et al. [5] obtained a generalization of Matkowski’s fixed-point theorem
and Istrăţescu’s fixed-point theorem of convex contraction of a comparison function φ such
that d( f [m](x), f [m](y)) ≤ φ(max d(x, y), d( f (x), f (y)), . . . , d( f [m−1](x), f [m−1](y))) for all
x, y ∈ X. Latif et al. [6] introduced the new concepts of partial generalized convex contrac-
tions and partial generalized convex contractions of order two. Moreover, they established
some approximate fixed-point results in a metric space endowed with an arbitrary binary
relation and some approximate fixed-point results in a metric space endowed with a graph.
In 2022, Latif et al. [7] established fixed points in the setting of metric spaces for generalized
multivalued contractive mappings with respect to the wb-distance . In 2013, Miandaragh
et al. [8] expanded the concept of convex contractions to generalized convex contractions
and generalized convex contractions of order two. In the same year, they proved some
approximate fixed-point results in the setting of generalized α-convex contractive mapping
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in [9]. Wardowski [10] introduced the F-contraction and proved a new fixed-point theorem
concerning the F-contraction. Samet et al. [11] introduced a new concept of α–ψ-contractive-
type mappings and established fixed-point theorems for such mappings in complete metric
spaces. Asem and Singh proved some fixed-point theorems on a Meir–Keeler proximal
contraction for non-self-mappings in [12]. Following that [13,14], Karapinar established
some fixed-point theorems in different metric spaces for the concept of α-admissible map-
ping. Recently, Khan et al. [15] discussed the concepts of (α, p)-convex contraction and
asymptotically T2-regular sequence and demonstrated that an (α, p)-convex contraction
reduced to a two-sided convex contraction. Yildirim [16] introduced a definition of the
F-Hardy–Rogers contraction of Nadler type and also proved some fixed-point theorems for
such mappings using Mann’s iteration process in complete convex b-metric spaces. Singh
et al. [17] discussed an α-z-convex contraction of six possible values (without rational
type) in complete metric spaces. Eke et al. [18] introduced the convexity condition to
some classes of contraction mappings, such as the Chatterjea contractive mapping and
the Hardy and Rogers contractive mapping, and proved the fixed points of these maps in
complete metric spaces. Following that, some works on the generalization of such classes
of mappings in the setting of various spaces [19–34] appeared.

Singh et al. [17] discussed an α-z-convex contraction of six possible values (without
rational type) and proved the fixed points of these maps in complete metric spaces. In this
paper, we extend and generalize their main theorem into an α-z-convex contraction of
seven possible values (with rational type) in the setting of complete metric spaces inspired
and motivated by Singh et al. [17]. Examples and applications to integral equations are
provided to illustrate the usability of our obtained results.

Throughout this paper, we use the following notations: R represents (−∞,+∞), R+

is (0,+∞), and R0
+ represents [0,+∞).

Definition 1. [11] Let Γ : Λ→ Λ be a self-mapping on a nonvoid set Λ and α : Λ×Λ→ [0, ∞)
be a mapping. Then, Γ is said to be α-admissible if for all η,m ∈ Λ, α(η,m) ≥ 1⇒ α(Γη, Γm) ≥ 1.

Example 1. Let Λ = (−∞, ∞) and define Γ : Λ→ Λ by

Γη =

{
ln|η|, if η 6= 0;
3, else.

Define α : Λ×Λ→ [0, ∞) by

α(η,m) =

{
3, if η ≥ m;
0, else.

Then, Γ is α-admissible as α(η,m) ≥ 1⇒ α(Γη, Γm) ≥ 1 for η ≥ m and α(η,m) = α(m, η),
for all η = m.

Definition 2. [13] Let Γ : Λ→ Λ be a self-mapping and α : Λ×Λ→ (−∞,+∞) be a mapping.
Then, we say that Γ is triangular α-admissible if

(Γ1) α(η,m) ≥ 1⇒ α(Γη, Γm) ≥ 1, for all η,m ∈ Λ;
(Γ2) α(η, o) ≥ 1 and α(o,m) ≥ 1 imply α(η,m) ≥ 1, for all η,m, o ∈ Λ.

Example 2. Let Λ = [0,+∞), Γη = η2 + eη and

α(η,m) =

{
1, if η,m ∈ [0, 1];
0, else.

Hence, Γ is a triangular α-admissible mapping.
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Definition 3. [14] Let Λ 6= ∅ and let Γ be an α-admissible mapping on Λ. Then, Λ has the
property (H) if for each η,m ∈ Fix(Γ), there exists o ∈ Λ such that α(η, o) ≥ 1 and α(o,m) ≥ 1.

Definition 4. [17] An α-admissible mapping Γ is said to be α∗-admissible, if for each η,
m ∈ Fix(Γ) 6= ∅, we get α(η,m) ≥ 1. If Fix(Γ) = ∅, then Γ is called vacuously α∗-admissible.

Example 3. Let Λ = [0, ∞) and Γ : Λ → Λ by Γη = 3 + η, for all η ∈ Λ. Define a mapping
α : Λ×Λ→ [0, ∞) by

α(η,m) =

{
e(η−m), if η ≥ m;
0, else.

Then, Γ is α-admissible. Since Γ has no fixed point, we have Fix(Γ) = ∅, and Γ is vacuously
α∗-admissible.

Example 4. Let Λ = [0, ∞) and Γ : Λ → Λ by Γη = η3

9 , for all η ∈ Λ. Define α : Λ×Λ →
[0, ∞) by

α(η,m) =

{
1, if η,m ∈ [0, 3];
0, else.

Clearly, Γ is α-admissible and Fix(Γ) = {0, 3}. Then, Γ is α∗-admissible.

Example 5. Let Λ = [0, ∞) and define Γ : Λ → Λ by Γη =
√

η(η2+6)
5 , for all η ∈ Λ. Define

α : Λ×Λ→ [0, ∞) by

α(η,m) =

{
1, if η,m ∈ [0, 2];
0, else.

Clearly, Γ is α-admissible and Fix(Γ) = {0, 2, 3}. Note that Γ is not α∗-admissible, since
α(η, 3) = 0 for η ∈ {0, 2}.

Definition 5. [10] For a nonvoid set Λ, a function Q : Λ× Λ → R0
+ is said to be metric if it

satisfies the following conditions:

1. Q(η,m) ≥ 0 and Q(η,m) = 0 if and only if η = m.
2. Q(η,m) = Q(m, η), for all η,m ∈ Λ.
3. Q(η,m) ≤ Q(η, o) +Q(o,m), for all η,m, o ∈ Λ.

In addition, the pair (Λ,Q) is called a metric space.

Definition 6. [10] Let z ∈ = be the set of all mappings z : R+ → R satisfying the stipulations:

(F1) z is strictly nondecreasing, i.e., for all δ, ε ∈ R+ such that δ < ε =⇒ z(δ) < z(ε);
(F2) For each sequence {δβ}β∈N, lim

β→∞
δβ = 0⇔ lim

β→∞
z(δβ) = −∞;

(F3) There exists k ∈ (0, 1) such that lim
δ→0+

δkz(δ) = 0.

Definition 7. [10] A mapping Γ : Λ→ Λ is said to be an z-contraction on a metric space (Λ,Q)
if there exists z ∈ = and µ > 0 such that for all η,m ∈ Λ,

Q(Γη, Γm) > 0 =⇒ µ +z(Q(Γη, Γm)) ≤ z(Q(η,m)). (1)

Example 6. [10] The following functions z : R+ → R are in =:

(i) z(δ) = lnδ;
(ii) z(δ) = lnδ + δ;
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(iii) z(δ) = −1√
δ
;

(iv) z(δ) = ln(δ2 + δ).

The following theorem was proved by Wardowski [10].

Theorem 1. [10] Let (Λ,Q) be a complete metric space and Γ : Λ → Λ be an z-contraction.
Then, we get

(i) o ∈ Λ is the unique fixed point of Γ;
(ii) For all η ∈ Λ, the sequence {Γβη} is convergent to o ∈ Λ.

Definition 8. [1] Let Γ be a self-mapping on a metric space (Λ,Q). Then, we say that Γ is orbitally
continuous on Λ if lim

k→∞
Γβkη = o implies that lim

k→∞
Γβkη = Γo.

Let Γ : Λ → Λ be a self-mapping on a nonvoid set Λ. Define Fix(Γ) = {η : Γη =
η, f or all η ∈ Λ}.

We establish some fixed-point theorems on an α-z-convex contraction of possible
seven values included rational type with an application to integral equations, inspired by
Singh et al. [17].

2. Main Results

First, we introduce the concept of “α-z-convex contraction” with examples.

Definition 9. A self-mapping Γ on Λ is said to be an α-z-convex contraction, if there exist two
functions α : Λ×Λ→ [0, ∞) and z ∈ = such that for all η,m ∈ Λ,

Q[(Γ2η, Γ2m) > 0 =⇒ µ +z(α(η,m)Q[(Γ2η, Γ2m)) ≤ z(p[(η,m)), (2)

where [ ∈ [1, ∞), µ > 0 and

p[(η,m) = max{Q[(η,m),Q[(η, Γη),Q[(Γη, Γ2η),Q[(m, Γm),Q[(Γm, Γ2m),

Q[(η, Γm) +Q[(m, Γη)

2
,
Q[(Γη, Γ2m) +Q[(Γm, Γ2η)

2
}. (3)

Example 7. Let z(x) = ln(x), x > 0. Obviously, z ∈ =. Let Γ be a self-mapping on a metric
space (Λ,Q). We postulate that the convex contraction of type 2 ([2]) putting α(η,m) = 1, for all
η,m ∈ Λ, e−µ = k = ∑7

k=1 αk < 1 and αk ≥ 0 for all k = 1, 2, ..., 7.

Q(Γ2η, Γ2m) ≤ α1Q(η,m) + α2Q(η, Γη) + α3Q(Γη, Γ2η)

+ α4Q(m, Γm) + α5Q(Γm, Γ2m) + α6

(Q(η, Γm) +Q(m, Γη)

2

)
+ α7

(Q(Γη, Γ2m) +Q(Γm, Γ2η)

2

)
,

where η,m ∈ Λ with η 6= m. Then, we obtain

α(η,m)Q(Γ2η, Γ2m) = Q(Γ2η, Γ2m)

≤
7

∑
k=1

αk max
{
Q(η,m),Q(η, Γη),Q(Γη, Γ2η),Q(m, Γm),Q(Γm, Γ2m),

Q(η, Γm) +Q(m, Γη)

2
,
Q(Γη, Γ2m) +Q(Γm, Γ2η)

2

}
,
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which implies that

α(η,m)Q(Γ2η, Γ2m) ≤ kp1(η,m) = e−µp1(η,m).

Applying the natural logarithm on both sides, we get

µ +z(α(η,m)Q(Γ2η, Γ2m)) ≤ z(p1(η,m)).

Therefore,

Q(Γ2η, Γ2m) > 0 =⇒ µ +z(α(η,m)Q(Γ2η, Γ2m)) ≤ z(p1(η,m)),

for all η,m ∈ Λ. We conclude that Γ is an α-z-convex contraction with [ = 1.

Example 8. Let Λ = [0, 1] with Q(η,m) = |η − m|. Define a mapping Γ : Λ → Λ by

Γη = η2

2 + 5
16 , for all η ∈ Λ with α(η,m) = 1, for all η,m ∈ Λ. Then, Γ is α-admissible. Now, we

get Γ is nonexpansive, since we obtain

|Γη − Γm| = 1
2
|η2 −m2| ≤ |η −m|, f or all η,m ∈ Λ.

Setting z ∈ = such that z(x) = ln x, x > 0. Then, for all η,m ∈ Λ with η 6= m, we obtain

α(η,m)|Γ2η, Γ2m| = |Γ2η, Γ2m|

=
1

512
(|(64η4 + 80η2 − 64m4 − 80m2)|)

≤ 1
512

(64|η4 −m4|+ 80|η2 −m2|)

≤ 1
2
|Γη − Γm|+ 5

16
|η −m|

≤ 13
16

max{|Γη − Γm|, |η −m|}

≤ e−µp1(η,m),

where −µ = ln( 13
16 ). Applying the logarithm on both sides, we have

µ +z(α(η,m)Q(Γ2η, Γ2m)) ≤ z(p1(η,m)).

We conclude that Γ is an α-z-convex contraction with [ = 1.

Example 9. Define Γ : [0, 1] → [0, 1] by Γη = 1−η2

2 , for all η ∈ [0, 1] and α(η,m) = 1, for all
η,m ∈ [0, 1], with usual metric Q(η,m) = |η −m|. Then, Γ is α-admissible. Setting z ∈ = such
that z(x) = lnx, x > 0. Then, for all η,m ∈ [0, 1] with η 6= m, we obtain

|Γη, Γm| = 1
2
|η2 −m2| ≤ |η −m|
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and

α(η,m)|Γ2η, Γ2m| = |Γ2η, Γ2m|

=
1
8
(|2η2 − η4 − 2m2 +m4|)

=
1
8
(2|η2 −m2|+ |η4 −m4|)

≤ 1
2
|η −m|+ 1

4
|η2 −m2|

=
1
2
|η −m|+ 1

2
|Γη − Γm|

≤ 1. max{|η −m|, |Γη − Γm|}
≤ e−µp1(η,m).

where −µ = ln(1). Applying the logarithm on both sides, we get

µ +z(α(η,m)Q(Γ2η, Γ2m)) ≤ z(p1(η,m)).

However, by µ = − ln(1), there does not exist any µ > 0 such that

µ +z(α(η,m)Q(Γ2η, Γ2m)) ≤ z(p1(η,m)).

Therefore, Γ is not an α-z-convex contraction with [ = 1. Now, we see

|Γη − Γm|2 =
1
4
|η2 −m2|2 ≤ |η −m|2

and

α(η,m)(|Γ2η, Γ2m|2) = 1
64
|2η2 − η4 − 2m2 +m4|2

≤ 1
64

(4|η2 −m2|2 + |η4 −m4|2)

=
1
16
|η2 −m2|2 + 1

64
|η4 −m4|2

≤ 1
4
|η −m|2 + 1

16
|η2 −m2|2

≤ 5
16

max{|η −m|2, |Γη − Γm|2}

≤ 5
16

p2(η,m)

= e−µp2(η,m).

Applying the logarithm on both sides, we get

µ +z(α(η,m)Q(Γ2η, Γ2m)) ≤ z(p2(η,m)),

where −µ = ln 5
16 . Therefore, Γ is an α-z-convex contraction with [ = 2.

Now, first, we prove the Lemma through an α-z-convex contraction.

Lemma 1. Let (Λ,Q) be a complete metric space, Γ : Λ→ Λ a given map, and let α : Λ×Λ→
[0, ∞) be a mapping. Suppose that the following affirmations hold:

(i) There exists [ ∈ [1, ∞) and µ > 0 such that for all η,m ∈ Λ,

Q[(Γ2η, Γ2m) > 0 =⇒ µ +z(α(η,m)Q[(Γ2η, Γ2m)) ≤ z(p[(η,m)),
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where

p[(η,m) = max{Q[(η,m),Q[(η, Γη),Q[(Γη, Γ2η),Q[(m, Γm),Q[(Γm, Γ2m),

Q[(η, Γm) +Q[(m, Γη)

2
,
Q[(Γη, Γ2m) +Q[(Γm, Γ2η)

2
}.

(ii) Γ is α-admissible;
(iii) There exists η0 ∈ Λ such that α(η0, Γη0) ≥ 1.

Define a sequence {ηβ} in Λ by ηβ+1 = Γηβ = Γβ+1η0, for all β ≥ 0, then {Q[(ηβ, ηβ+1)}
is a strictly decreasing sequence in Λ.

Proof. Let η0 ∈ Λ be such that α(η0, Γη0) ≥ 1 and define a sequence {ηβ} by ηβ+1 = Γηβ,
for all β ∈ N∪ {0}. By (ii), we have

α(η0, η1) = α(η0, Γη0) ≥ 1⇒ α(η2, η3) = α(Γη1, Γ2η0) ≥ 1.

Inductively, we obtain α(ηβ, ηβ+1) ≥ 1, for all β ≥ 0. Postulating that ηβ 6= ηβ+1 for
all β ≥ 0, then Q[(ηβ, ηβ+1) > 0, for all β ≥ 0. Let v = max{Q[(η0, η1),Q[(η1, η2)}. From
(3), taking η = η0 and m = η1, we obtain

p[(η0, η1) = max{Q[(η0, η1),Q[(η0, Γη0),Q[(Γη0, Γ2η0),Q[(η1, Γη1),Q[(Γη1, Γ2η1),

Q[(η0, Γη1) +Q[(η1, Γη0)

2
,
Q[(Γη0, Γ2η1) +Q(Γη1, Γ2η0)

2
}

= max{Q[(η0, η1),Q[(η0, η1),Q[(η1, η2),Q[(η1, η2),Q[(η2, η3),

Q[(η0, η2) +Q[(η1, η1)

2
,
Q[(η1, η3) +Q(η2, η2)

2
}

= max{Q[(η0, η1),Q[(η1, η2),Q[(η2, η3),
Q[(η0, η2)

2
,
Q[(η1, η3)

2
}

= max{Q[(η0, η1),Q[(η1, η2),Q[(η2, η3)}. (4)

By (F1) and α(η0, η1) ≥ 1, by (2) and (4), we obtain

z(Q[(η2, η3)) = z(Q[(Γ2η0, Γ2η1))

≤ z(α(η0, η1)Q[(Γ2η0, Γ2η1))

≤ z(p[(η0, η1))− µ

= z(max{Q[(η0, η1),Q[(η1, η2),Q[(η2, η3)})− µ

≤ z(max{v,Q[(η2, η3)})− µ. (5)

If max{v,Q[(η2, η3)} = Q[(η2, η3), then (5) gives

z(Q[(η2, η3)) ≤ z(Q[(η2, η3))− µ < z(Q[(η2, η3)).

This is a contradiction. It follows that

z(Q[(η2, η3)) ≤ z(v)− µ < z(v).

Since µ > 0 and by (F1), we have

Q[(η2, η3) < v = max{Q[(η0, η1),Q[(η1, η2)}.
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Again, by (3) with η = η1 and m = η2, we get

p[(η1, η2) = max{Q[(η1, η2),Q[(η1, Γη1),Q[(Γη1, Γ2η1),Q[(η2, Γη2),Q[(Γη2, Γ2η2),

Q[(η1, Γη2) +Q[(η2, Γη1)

2
,
Q[(Γη1, Γ2η2) +Q(Γη2, Γ2η1)

2
}

= max{Q[(η1, η2),Q[(η1, η2),Q[(η2, η3),Q[(η2, η3),Q[(η3, η4),

Q[(η1, η3) +Q[(η2, η2)

2
,
Q[(η2, η4) +Q(η3, η3)

2
}

= max{Q[(η1, η2),Q[(η2, η3),Q[(η3, η4),
Q[(η1, η3)

2
,
Q[(η2, η4)

2
}

= max{Q[(η1, η2),Q[(η2, η3),Q[(η3, η4)}. (6)

By (2) and (6), we obtain

z(Q[(η3, η4)) = z(Q[(Γ2η1, Γ2η2))

≤ z(α(η1, η2)Q[(Γ2η1, Γ2η2))

≤ z(p[(η1, η2))− µ

= z(max{Q[(η1, η2),Q[(η2, η3),Q[(η3, η4)})− µ.

If max{Q[(η1, η2),Q[(η2, η3),Q[(η3, η4)} = Q[(η3, η4), then we obtain

z(Q[(η3, η4)) ≤ z(Q[(η3, η4))− µ < z(Q[(η3, η4)),

which is a contradiction. We obtain

max{Q[(η1, η2),Q[(η2, η3)} > Q[(η3, η4).

Therefore,

v > Q[(η2, η3) > Q[(η3, η4).

Inductively, continuing in this way, we prove that the sequence {Q[(ηβ, ηβ+1)} is
strictly decreasing in Λ.

Theorem 2. Let (Λ,Q) be a complete metric space, Γ : Λ→ Λ a given map, and let α : Λ×Λ→
[0, ∞) be a mapping. Suppose that the following affirmations hold:

(i) There exists [ ∈ [1, ∞) and µ > 0 such that for all η,m ∈ Λ,

Q[(Γ2η, Γ2m) > 0 =⇒ µ +z(α(η,m)Q[(Γ2η, Γ2m)) ≤ z(p[(η,m)),

where

p[(η,m) = max{Q[(η,m),Q[(η, Γη),Q[(Γη, Γ2η),Q[(m, Γm),Q[(Γm, Γ2m),

Q[(η, Γm) +Q[(m, Γη)

2
,
Q[(Γη, Γ2m) +Q[(Γm, Γ2η)

2
}.

(ii) Γ is α-admissible;
(iii) There exists η0 ∈ Λ such that α(η0, Γη0) ≥ 1;
(iv) Γ is continuous or orbitally continuous on Λ.

Then, Γ has a fixed point in Λ. Further, if Γ is α∗-admissible, then Γ has a unique fixed
point o ∈ Λ. Moreover, for any η0 ∈ Λ if ηβ+1 = Γβ+1η0 6= Γηβ, for all β ∈ N ∪ {0}, then
lim

β→∞
Γβη0 = o.
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Proof. Let η0 ∈ Λ be such that α(Γη0, η0) ≥ 1 and construct a sequence {ηβ} by ηβ+1 = Γηβ,
for all β ∈ N ∪ {0}. If ηβ0 = ηβ0+1, i.e., Γηβ0 = ηβ0 for some β0 ∈ N ∪ {0}, then ηβ0 is a
fixed point of Γ.

Now, we postulate that ηβ 6= ηβ+1 ∀ β ≥ 0. Then, Q[(ηβ, ηβ+1) > 0, for all
β ≥ 0. By (ii), we have α(η0, Γη0) ≥ 1 ⇒ α(η1, η2) = α(Γη0, Γ2η0) ≥ 1. Therefore,
inductively, we show that α(ηβ, ηβ+1) = α(Γβη0, Γβ+1η0) ≥ 1, for all β ≥ 0. Letting
v = max{Q[(η0, η1),Q[(η1, η2)}.

Now, from (3), taking η = ηβ−2 and m = ηβ−1 with β ≥ 2, we have

p[(ηβ−2, ηβ−1) = max{d[(ηβ−2, ηβ−1), d[(ηβ−2, Γηβ−2), d[(Γηβ−2, Γ2ηβ−2),

d[(ηβ−1, Γηβ−1), d[(Γηβ−1, Γ2ηβ−1),

d[(ηβ−2, Γηβ−1) + d[(ηβ−1, Γηβ−2)

2
,
d[(Γηβ−2, Γ2ηβ−1) + d[(Γηβ−1, Γ2ηβ−2)

2
}

= max{d[(ηβ−2, ηβ−1), d[(ηβ−2, ηβ−1), d[(ηβ−1, ηβ),

d[(ηβ−1, ηβ), d[(ηβ, ηβ+1),

d[(ηβ−2, ηβ) + d(ηβ−1, ηβ−1)

2
,
d[(ηβ−1, ηβ+1) + d(ηβ, ηβ)

2
}

= max{d[(ηβ−2, ηβ−1), d[(ηβ−2, ηβ−1), d[(ηβ−1, ηβ),

d[(ηβ−1, ηβ), d[(ηβ, ηβ+1),
d[(ηβ−2, ηβ)

2
,
d[(ηβ−1, ηβ+1)

2
}

= max{d[(ηβ−2, ηβ−1), d[(ηβ−1, ηβ), d[(ηβ, ηβ+1)}.

By (F1), condition (ii), and Equation (2), we have

z(Q[(ηβ, ηβ+1)) = z(Q[(Γ2ηβ−2, Γ2ηβ−1))

≤ z(α(ηβ−2, ηβ−1)Q[(Γ2ηβ−2, Γ2ηβ−1))

≤ z(p[(ηβ−2, ηβ−1))− µ

≤ z(max{Q[(ηβ−2, ηβ−1),Q[(ηβ−1, ηβ),Q[(ηβ, ηβ+1)})− µ.

If max{Q[(ηβ−2, ηβ−1),Q[(ηβ−1, ηβ),Q[(ηβ, ηβ+1)} = Q[(ηβ, ηβ+1), then we obtain

z(Q[(ηβ, ηβ+1)) ≤ z(Q[(ηβ, ηβ+1))− µ < z(Q[(ηβ, ηβ+1)).

This is a contradiction. Therefore,

z(Q[(ηβ, ηβ+1)) ≤ z(max{Q[(ηβ−2, ηβ−1),Q[(ηβ−1, ηβ)})− µ.

Since {Q[(ηβ, ηβ+1)} is a strictly nonincreasing sequence, we obtain

z(Q[(ηβ, ηβ+1)) ≤ z(Q[(ηβ−2, ηβ−1))− µ ≤ ... ≤ z(v)− Jµ, (7)

whenever β = 2 J or β = 2 J + 1 for J ≥ 1.

From (6), we obtain

lim
β→∞

z(Q[(ηβ, ηβ+1)) = −∞. (8)
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Therefore, by (F2) and by Equation (8), we have

lim
β→∞
Q[(ηβ, ηβ+1) = 0. (9)

By (F3), there exists 0 < k < 1 such that

lim
β→∞

[Q[(ηβ, ηβ+1)]
kz(Q[(ηβ, ηβ+1)) = 0. (10)

Moreover, by Equation (7), we get

[Q[(ηβ, ηβ+1)]
k[z(Q[(ηβ, ηβ+1))−z(v)] ≤ −[Q[(ηβ, ηβ+1)]

k Jµ ≤ 0, (11)

where β = 2 J or β = 2 J + 1 for J ≥ 1. Setting β → ∞ in (11) along with (9) and (10),
we have

lim
β→∞

J[Q[(ηβ, ηβ+1)]
k = 0. (12)

Now, two cases arise.
Case-(i): If β is even and β ≥ 2, then by Equation (12), we have

lim
β→∞

β[Q[(ηβ, ηβ+1)]
k = 0. (13)

Case-(ii): If β is odd and β ≥ 3, then by Equation (12), we have

lim
β→∞

(β− 1)[Q[(ηβ, ηβ+1)]
k = 0. (14)

Using (9), (14) gives

lim
β→∞

β[Q[(ηβ, ηβ+1)]
k = 0. (15)

We conclude for the above cases that, ∃ β1 ∈ N such that

β[Q[(ηβ, ηβ+1)]
k ≤ 1 ∀ β ≥ β1.

Therefore, we obtain

Q[(ηβ, ηβ+1) ≤
1

β
1
k

, ∀ β ≥ β1.

Now, we prove the sequence {ηβ} is a Cauchy sequence. For all [ > q ≥ β1, we have

Q[(η[, ηq) ≤ Q[(η[, η[−1) +Q[(η[−1, η[−2) + .... +Q[(ηq+1, ηq) <
∞

∑
k=q

Q[(ηk, ηk+1) ≤
∞

∑
k=q

1

k
1
k

.

Taking q→ ∞, we get lim
[,q→∞

Q[(η[, ηq) = 0, since ∑∞
k=q

1

k
1
k

is convergent. This proves

that the sequence {ηβ} is a Cauchy sequence in Λ. By the completeness property, there
exists o ∈ Λ such that lim

β→∞
ηβ = o. Now, we show that o is a fixed point of Γ. Since Γ is

continuous,

Q[(o, Γo) = lim
β→∞
Q[(ηβ, Γηβ) = lim

β→∞
Q[(ηβ, ηβ+1) = 0.

This implies that o is a fixed point of Γ.
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Again, we postulate that Γ is orbitally continuous on Λ, then

ηβ+1 = Γηβ = Γ(Γβη0)→ Γo as β→ ∞.

By completeness, we obtain Γo = o. Therefore, Fix(Γ) 6= 0.
Further, postulating that Γ is α∗−admissible, ∀ o, o∗ ∈ Fix(Γ), we have α(o, o∗) ≥ 1.

By Equations (2) and (3), we have

z(Q[(o, o∗)) = z(Q[(Γ2o, Γ2o∗))

= z(α(o, o∗)Q[(Γ2o, Γ2o∗))

≤ z(p[(o, o∗))− µ

= z(max{Q[(o, o∗),Q[(o, Γo),Q[(Γo, Γ2o),Q[(o∗, Γo∗),Q[(Γo∗, Γ2o∗),

Q[(o, Γo∗) +Q[(o∗, Γo)
2

,
Q[(Γo, Γ2o∗) +Q(Γo∗, Γ2o)

2
})− µ

= z(Q[(o, o∗))− µ.

Since µ > 0 and using (F1), we obtain

z(Q[(o, o∗)) < z(Q[(o, o∗)).

This is a contradiction. Therefore, Γ has a unique fixed point in Λ.

Example 10. Let Λ = [0, 1] and Q : Λ×Λ→ R+ be given by

Q[(η,m) = |η −m|,

for all η,m ∈ Λ. Then, (Λ,Q) is a complete metric space. Define a mapping Γ : Λ→ Λ by

Γη =
η2

2
+

1
8

,

for all η ∈ Λ with α(η,m) = 1, for all η,m ∈ Λ. Then, Γ is α-admissible. Let z ∈ = be
z(x) = ln x, x > 0. Since we have

|Γη, Γm| = 1
2
|η2 −m2| ≤ |η −m|,

for all η ∈ Λ, we have

α(η,m)(|Γ2η, Γ2m|2) = 1
256
|(2η2 − η4)− (2m2 −m4)|2

≤ 1
64

(|η4 −m4 + η2 −m2|2)

≤ 1
64

(|η4 −m4|2 + |η2 −m2|2)

=
1
64
|η2 −m2|2 + 1

64
|η4 −m4|2

≤ 1
2
(|Γη − Γm|2 + 1

4
|η −m|2)

≤ 5
8

max{|η −m|2, |Γη − Γm|2}

≤ 5
8
p2(η,m)

= e−µp2(η,m).
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where −µ = ln( 5
8 ). Applying the logarithm on both sides, we get

µ +z(α(η,m)Q[(Γ2η, Γ2m)) ≤ z(p1(η,m)).

This shows that Γ is an α-z-convex contraction mapping. We define a sequence {ηβ} by

ηβ =
β

β + 1
− 1√

2
,

then ηβ → 1− 1√
2

, as β→ ∞.
Therefore,

ηβ+1 = Γηβ = [
1
4
(

β

β + 1
− 1√

2
)2 +

1
8
]→ 1− 1√

2
,

as β→ ∞. Thus, all conditions of Theorem 2 are satisfied and η = 1− 1√
2

is the unique fixed point
of Γ in Λ.

Corollary 1. Let (Λ,Q) be a complete metric space and α : Λ×Λ→ [0, ∞) a mapping. Postu-
lating that Γ : Λ→ Λ is a self-mapping, the following affirmations hold:

(i) ∀ η,m ∈ Λ,

α(η,m)Q[(Γ2η, Γ2m) ≤ kmax{Q[(η,m),Q[(η, Γη),Q[(Γη, Γ2η),Q[(m, Γm),Q[(Γm, Γ2m),

Q[(η, Γm) +Q[(m, Γη)

2
,
Q[(Γη, Γ2m) +Q[(Γm, Γ2η)

2
} (16)

where k ∈ (0, 1);
(ii) Γ is α-admissible;
(iii) There exists η0 ∈ Λ such that α(η0, Γη0) ≥ 1;
(iv) Γ is continuous or orbitally continuous on Λ.

Then, Γ has a fixed point in Λ. Further, if Γ is an α∗-admissible mapping, then Γ has a unique
fixed point o ∈ Λ. Moreover, for any η0 ∈ Λ if ηβ+1 = Γβ+1η0 6= Γβη0, for all β ∈ N∪ {0}, then
lim

β→∞
Γβη0 = o.

Proof. Setting z(x) = ln(x), x > 0. Obviously, z ∈ =. Applying the logarithm on both
sides of (16), we get

− lnk+ ln α(η,m)Q[(Γ2η, Γ2m) ≤ In(max{Q[(η,m),Q[(η, Γη),

Q[(Γη, Γ2η),Q[(m, Γm),Q[(Γm, Γ2m),

Q[(η, Γm) +Q[(m, Γη)

2
,
Q[(Γη, Γ2m) +Q[(Γm, Γ2η)

2
}),

which implies that

µ +z(α(η,m)Q[(Γ2η, Γ2m)) ≤ z(p1(η,m)),

for all η,m ∈ Λ with η 6= m where µ = − lnk. It follows that Γ is an α-z-convex contraction
with [ = 1. Thus, all the affirmations of Theorem 2 are held and hence, Γ has a unique fixed
point in Λ.

Corollary 2. Let (Λ,Q) be a complete metric space and α : Λ×Λ→ [0, ∞) a mapping. Postu-
lating that Γ : Λ→ Λ is a self-mapping, the following affirmations hold:

(i) ∀ η,m ∈ Λ,
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α(η,m)Q[(Γ2η, Γ2m) ≤ α1Q[(η,m) + α2Q[(η, Γη) + α3Q[(Γη, Γ2η)

+ α4Q[(m, Γm) + α5Q[(Γm, Γ2m) + α6

(
Q[(η, Γm) +Q[(m, Γη)

2

)

+ α7

(
Q[(Γη, Γ2m) +Q[(Γm, Γ2η)

2

)
,

where 0 ≤ αk < 1, k = 1, 2, ..., 7 such that ∑7
k=1 αk < 1;

(ii) Γ is α-admissible;
(iii) There exists η0 ∈ Λ such that α(η0, Γη0) ≥ 1;
(iv) Γ is continuous or orbitally continuous on Λ.

Then, Γ has a fixed point in Λ. Further, if Γ is an α∗-admissible mapping, then Γ has a unique fixed
point o ∈ Λ. Moreover, for any η0 ∈ Λ if ηβ+1 = Γβ+1η0 6= Γβη0, for all β ∈ N ∪ {0}, then
lim

β→∞
Γβη0 = o.

Proof. Setting z(x) = ln(x), x > 0. Obviously, z ∈ =. For all η,m ∈ Λ with η 6= m,
we obtain

α(η,m)Q[(Γ2η, Γ2m) = Q[(Γ2η, Γ2m)

≤ α1Q[(η,m) + α2Q[(η, Γη) + α3Q[(Γη, Γ2η)

+ α4Q[(m, Γm) + α5Q[(Γm, Γ2m),

+ α6

(
Q[(η, Γm) +Q[(m, Γη)

2

)
+ α7

(
Q[(Γη, Γ2m) +Q[(Γm, Γ2η)

2

)

≤ kmax
{
Q[(η,m),Q[(η, Γη),Q[(Γη, Γ2η),Q[(m, Γm),Q[(Γm, Γ2m),

Q[(η, Γm) +Q[(m, Γη)

2
,
Q[(Γη, Γ2m) +Q[(Γm, Γ2η)

2

}
,

where k = ∑7
k=1 αk < 1. By Corollary 1, Γ has a unique fixed point in Λ.

Corollary 3. Consider a continuous self-mapping Γ on a complete metric space (Λ,Q). If there
exists k ∈ (0, 1) satisfying the following inequality

Q[(Γ2η, Γ2m)) ≤ kmax
{
Q[(η,m),Q[(η, Γη),Q[(Γη, Γ2η),Q[(m, Γm),Q[(Γm, Γ2m),

Q[(η, Γm) +Q[(m, Γη)

2
,
Q[(Γη, Γ2m) +Q[(Γm, Γ2η)

2

}
for all η,m ∈ Λ, then Γ has a unique fixed point in Λ.

3. Application

In this application part, we provide a nonlinear integral equation application of our
main results.

Consider a real-valued continuous function Λ = ζ[a, b] defined on [a, b] with metric
d(ϕ, ψ) = |ϕ− ψ| = maxs∈[a,b] |ϕ(s)− ψ(s)| ∀ ϕ, ψ ∈ ζ[a, b]. Then, (Λ, d) is a complete
metric space.
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Consider

η(s) = v(s) +
1

b− a

∫ b

a
K(s, t, η(t))dt, (17)

where s, t ∈ [a, b], v(s) is a given function in Λ and K : [a, b]× [a, b]×Λ→ R, v : [a, b]→
R are given continuous functions.

Theorem 3. Let (Λ, d) be a metric space with metric d(ϕ, ψ) = |ϕ− ψ| = maxs∈[a,b] |ϕ(s)−
ψ(s)| ∀ ϕ, ψ ∈ Λ and define a continuous operator Γ : Λ→ Λ on Λ by

Γη(s) = v(s) +
1

b− a

∫ b

a
K(s, t, η(t))dt. (18)

If there exists k ∈ (0, 1) such that ∀ η,m ∈ Λ with η 6= m and t, s ∈ [a, b] satisfying the following
inequality

|K(s, t, Γη(t))− K(s, t, Γm(t))| ≤ kmax
{
|η(t)−m(t)|, |Γη − Γm|, |η − Γη|, |Γη − Γ2η|,

|m− Γm|, |Γm− Γ2m|,
( |η − Γm|+ |m− Γη|

2

)
,( |Γη − Γ2m|+ |Γm− Γ2η|

2

)}
, (19)

then, by (18), the integral operator has a unique solution o ∈ Λ and for each η0 ∈ Λ, Γηβ 6=
ηβ ∀ β ∈ N∪ {0}, we have lim

β→∞
Γηβ = o.

Proof. Define a mapping α : Λ × Λ → R+ by α(η,m) = 1 ∀ η,m ∈ Λ. Therefore, Γ is
α-admissible. Let z ∈ = such that z(x) = In(x), x > 0. Let η0 ∈ Λ and a sequence {ηβ} in
Λ defined by ηβ+1 = Γηβ = Γβ+1η0 ∀ β ≥ 0. By Equation (18), we have

ηβ+1 = Γηβ(s) = v(s) +
1

b− a

∫ b

a
K(s, t, ηβ(t))dt. (20)

We prove that Γ is an α-z-convex contraction on ζ[a, b]. By Equations (18) and (19),
we obtain

|Γ2η(s)− Γ2m(s)| = 1
|b− a|

∣∣∣∣∫ b

a
K(s, t, Γη(t))dt− K(s, t, Γm(t))dt

∣∣∣∣
≤ 1
|b− a|

∫ b

a
|K(s, t, Γη(t))− K(s, t, Γm(t))|dt

≤ k
|b− a|

∫ b

a
max

{
|η(t)−m(t)|, |Γη − Γm|, |η − Γη|, |Γη − Γ2η|,

|m− Γm|, |Γm− Γ2m|,
( |η − Γm|+ |m− Γη|

2

)
,( |Γη − Γ2m|+ |Γm− Γ2η|

2

)}
dt.

Taking the maximum on both sides, for all s ∈ [a, b], we have
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d(Γ2η, Γ2m) = max
s∈[a,b]

|Γ2η(s)− Γ2m(s)|

≤ k
|b− a| max

s∈[a,b]

∫ b

a
max

{
|η(t)−m(t)|, |Γη(t)− Γm(t)|, |η(t)− Γη(t)|,

|Γη(t)− Γ2η(t)|, |m(t)− Γm(t)|, |Γm(t)− Γ2m(t)|,( |η(t)− Γm(t)|+ |m(t)− Γη(t)|
2

)
,( |Γη(t)− Γ2m(t)|+ |Γm(t)− Γ2η(t)|

2

)}
dt.

≤ k
|b− a| max

[
max

ϑ∈[a,b]

{
|η(ϑ)−m(ϑ)|, |Γη(ϑ)− Γm(ϑ)|, |η(ϑ)− Γη(ϑ)|,

|Γη(ϑ)− Γ2η(ϑ)|, |m(ϑ)− Γm(ϑ)|, |Γm(ϑ)− Γ2m(ϑ)|,( |η(ϑ)− Γm(ϑ)|+ |m(ϑ)− Γη(ϑ)|
2

)
,( |Γη(ϑ)− Γ2m(ϑ)|+ |Γm(ϑ)− Γ2η(ϑ)|

2

)}] ∫ b

a
dt

= kmax
{
d(η,m), d(Γη, Γm), d(η, Γη), d(Γη, Γ2η), d(m, Γm), d(Γm, Γ2m),(
d(η, Γm) + d(m, Γη)

2

)
,
(
d(Γη, Γ2m) + d(Γm, Γ2η)

2

)}
= kp1(η,m).

Therefore, d(Γ2η, Γ2m) ≤ kp1(η,m). Hence, we have

α(η,m)d(Γ2η, Γ2m) ≤ kp1(η,m).

Now, applying the logarithm on both sides, we get

−In k+ In[α(η,m)d(Γ2η, Γ2m)] ≤ In p1(η,m).

Therefore, we have

k+z(α(η,m)d(Γ2η, Γ2m) ≤ z(p1(η,m)),

where − ln k = µ. It follows that Γ is an α-z-convex contraction with [ = 1 ∀ η,m ∈ Λ
with η 6= m. Since Γ is α-admissible and Λ = ζ[a, b] is a complete metric space, the
iteration scheme converges to some point o ∈ Λ, i.e., lim

β→∞
ηβ → o. From the continuity,

we show that o is a fixed point of Γ. It follows that T o = o. Clearly, Fix(T ) 6= ∅. Now,
∀ η,m ∈ Fix(Γ), α(o, o∗) = 1. This shows that Γ is α∗-admissible. Thus, all the affirmations
of Theorem 2 are held and hence, Γ has a unique fixed point solution o ∈ Λ.

The example below demonstrates the existence of a singular integral operator solution
meeting each of the conditions in Theorem 3.

Example 11. Let Λ = ζ[0, 1] be a set of all continuous function on [0, 1], v(s) = 7
15s

2 and
K(s, t, η(t)) = 1

4s
2(1 + t

2 )(η(t) + 1). Then, (18) becomes

Γη(s) =
7
15

s2 +
∫ 1

0

1
4
s2(1 +

t

2
)(η(t) + 1)dt. (21)

Now,
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1. max | 14s2(1 + t
2 )| ≤ 1

2 for all (s, t) ∈ [0, 1]× [0, 1];
2. For all η,m ∈ Λ with η 6= m and (s, t) ∈ [0, 1]× [0, 1] and using (18), we obtain

|Γη − Γm| ≤ |η −m|.

By the above inequality, we obtain Γ is not an F-contraction. Now, we obtain∣∣∣∣Γ2η(s)− Γ2m(s)

∣∣∣∣ =∣∣∣∣ ∫ 1

0
K
(
s, t, v(s) +

∫ 1

0
K
(
s, t, η(s)

)
dt

)
dt−

∫ 1

0
K
(
s, t, v(s)

+
∫ 1

0
K
(
s, t,m(s)

)
dt

)
dt

∣∣∣∣
≤
∫ 1

0

∫ 1

0

∣∣∣∣[s2(1 + t
2 )

4

](
η(t)−m(t)

)∣∣∣∣dtdt
≤ max

s∈[0,1]

∫ 1

0

∫ 1

0

∣∣∣∣[s2(1 + t
2 )

4

](
η(t)−m(t)

)∣∣∣∣dtdt
≤ 1

2

∣∣∣∣η −m

∣∣∣∣
= e−µp1(η,m).

Therefore,
∣∣∣∣Γ2η(s)− Γ2m(s)

∣∣∣∣ ≤ e−µp1(η,m), where In 1
2 = −µ. Set α : Λ×Λ→ [0, ∞)

by α(η,m) = 1, for all η,m ∈ Λ and z ∈ = such that z(x) = ln(x), x > 0. Therefore, we obtain

α(η,m)|Γ2η − Γ2m| ≤ p1(η,m).

Applying the logarithm on both sides, we get

µ + ln α(η,m)d(Γ2η, Γ2m) ≤ ln p1(η,m),

that is,

µ +z(α(η,m)d(Γ2η, Γ2m)) ≤ z(p1(η,m)).

We conclude that Γ is an α-z-convex contraction with [ = 1 ∀ η,m ∈ Λ. Thus, all the
affirmations of Theorem 2 are held and therefore, Equation (18) has a unique solution. It follows that
η(s) = s2 is the exact solution of Equation (18). Using Equations (20), (21) becomes

ηβ+1(s) = Γηβ(s) =
7
15

s2 +
∫ 1

0

1
4
s2(1 +

t

2
)(ηβ(t) + 1)dt. (22)

Letting η0(s) = 0 be an initial solution. Letting β = 0, 1, 2, ..., respectively, in (22), we get

η1(s) = 0.7791666667s2, η2(s) = 0.8684461806s2, η3(s) = 0.8786761249s2,

η4(s) = 0.879848306s2, η5(s) = 0.8799826184s2, η6(s) = 0.8799980084s2,

η7(s) = 0.8799997718s2, η8(s) = 0.8799999739s2, η9(s) = 0.8799999959s2,

η10(s) = 0.8799999984s2, η11(s) = 0.8799999998s2, η12(s) = 0.88s2,

η13(s) = 0.88s2.

Figure 1 discuss about the convergence criterion by using the η(s) numerical values.
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Figure 1. Convergence criterion

Therefore, η(s) = 0.88s2 has the unique solution. 183

4. Conclusion 184

This study introduces convexity conditions to α −𭟋− contraction mappings with 185

possible seven values. This research proves that the fixed point for α −𭟋 two-sided convex 186

contraction mappings in a complete metric space is unique. The solution of nonlinear 187

integral equation is obtained via α −𭟋− convex contraction mappings. This research 188

work has many potentials as the fixed point for these newly introduced convex contraction 189

mappings can be established in different abstract spaces. Faraji and Radenovi´c provided 190

some fixed point results for convex contraction mappings on F-metric spaces. This will 191

provide a structural method for finding a value of a fixed point. It is an interesting open 192

problem to study the fixed-point results α −𭟋− convex contraction mappings on complete 193

F-metric spaces. 194
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2. Istrătescu, V.I. Some fixed point theorems for convex contraction mappings and convex non 199

expansive mappings (I). Liberta Math., 1981, 1, 151–163. 200

3. Alghamdi, M. A.; Alnafei, S. H.; Radenovic, S.; Shahzad, N. Fixed point theorems for convex 201

contraction mappings on cone metric spaces. Math. Comput. Model., 2011, 54, 2020–2026. 202

4. Miculescu, R.; Mihail, A. A generalization of Istrătescu’s fixed point theorem for convex con- 203
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Therefore, η(s) = 0.88s2 is the unique solution.

4. Conclusions

This study introduced convexity conditions to α-z-contraction mappings with pos-
sible seven values. This research proved that the fixed point for α-z two-sided convex
contraction mappings in a complete metric space was unique. The solution of a nonlinear
integral equation was obtained via α-z-convex contraction mappings. This research work
has many potential applications as the fixed point for these newly introduced convex
contraction mappings can be established in different abstract spaces. Faraji and Radenovic
provided some fixed-point results for convex contraction mappings on F-metric spaces.
This will provide a structural method for finding a value of a fixed point. It is an interest-
ing open problem to study the fixed-point results α-z-convex contraction mappings on
complete F-metric spaces.
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31. Nallaselli, G.; Gnanaprakasam, A.J.; Mani, G.; Mitrović, Z.D.; Aloqaily, A.; Mlaiki, N. Integral equation via fixed point theorems

on a new type of convex contraction in b-metric and 2-metric spaces. Mathematics 2023, 11, 344.
32. Liu, Y.; Liu, Z.; Wen, C.F.; Yao, J.C.; Zeng, S. Existence of solutions for a class of noncoercive variational-hemivariational

inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059.
33. Liu, Y.; Migórski, S.; Nguyen, V.T.; Zeng, S. Existence and convergence results for an elastic frictional contact problem with

nonmonotone subdifferential boundary conditions. Acta Math. Sci. 2021, 41, 1151–1168.
34. Zeng, S.; Migórski, S.; Khan, A.A. Nonlinear quasi-hemivariational inequalities: existence and optimal control. SIAM J. Control

Optim. 2021, 59, 1246–1274.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction and Preliminaries
	Main Results
	Application
	Conclusions
	References

