Spodumene: The Lithium Market, Resources and Processes
Abstract
1. Introduction
2. Lithium Usage and Resources
2.1. Usage
2.2. Resources
3. The Different Spodumene Phases
3.1. The Pegmatite Formation
3.2. The α, β, γ System
- α-spodumene:
- β-spodumene and γ-spodumene:
3.3. General Flow Sheets
4. Production of Lithium from Spodumene
4.1. The Traditional Process
- α-spodumene is almost completely resilient toward acid roasting contrary to β-spodumene
- β-spodumene density is significantly lower than that of α-spodumene.
- The structure of the leached β-spodumene is very similar to that of β-spodumene.
4.2. Other Processes of Extracting Lithium from Spodumene
4.3. Conversion Processes of Spodumene
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Christmann, P.; Gloaguen, E.; Labbé, J.F.; Melleton, J.; Piantone, P. Global lithium resources and sustainability issues. In Lithium Process Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–40. [Google Scholar]
- Coplen, B.; Böhlke, J.K.; De Bièvre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; et al. Isotope-abundance variations of selected elements (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 1987–2017. [Google Scholar] [CrossRef]
- Tomascak, P.B. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Rev. Mineral. Geochem. 2004, 55, 153–195. [Google Scholar] [CrossRef]
- Audi, G.; Kondev, F.G.; Wang, M.; Pfeiffer, B.; Sun, X.; Blachot, J.; MacCormick, M. The NUBASE2012 evaluation of nuclear properties. Chin. Phys. C 2012, 36, 1157–1286. [Google Scholar] [CrossRef]
- Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A.H. The Nubase evaluation of nuclear and decay properties. Nuc. Phys. A 2003, 729, 3–128. [Google Scholar] [CrossRef]
- Cyburt, R.H.; Fields, B.D.; Olive, K.A. Primordial nucleosynthesis in light of WMAP. Phys. Lett. B 2003, 567, 227–237. [Google Scholar] [CrossRef]
- Coc, A.; Vangioni-Flam, E.; Descouvemont, P.; Adahchour, A.; Angulo, C. Updated big bang nucleosynthesis compared with wilkinson microwave anisotropic probe observations and the abundance of light elements. Am. Astron. Soc. 2004, 600, 544–552. [Google Scholar]
- Asplund, M.; Lambert, D.L.; Nissen, P.E.; Primas, F.; Smith, V.V. Lithium isotopic abundances in metal-poor halo stars. Am. Astron. Soc. 2006, 644, 229–259. [Google Scholar] [CrossRef]
- Hou, S.Q.; He, J.J.; Parikh, A.; Kahl, D.; Bertulani, C.A.; Kajino, T.; Mathews, G.J.; Zhao, G. Non-extensive statistics to the cosmological lithium problem. Astrophys. J. 2017, 834, 165–170. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral commodity summaries 2016: U.S. Geological Survey Lithium; USGS: Reston, VA, USA, 2016; p. 202.
- Labbé, J.F.; Daw, G. Panorama 2011 du marché du lithium; Rapport public 2012, BRGM/RP-61340-FR; BRGM: Orléans, France, 2012; p. 94. [Google Scholar]
- Grosjean, C.; Miranda, P.H.; Perrin, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 2012, 166, 1735–1744. [Google Scholar] [CrossRef]
- Jaskula, B.W. Lithium. In Mineral Commodity Summaries 2019; USGS: Reston, VA, USA, 2019; pp. 98–99. [Google Scholar]
- Kesler, S.E.; Gruber., P.W.; Medina., P.A.; Keoleian., G.A.; Everson., M.P.; Wallington., T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- Sociedad Quimica y Minera de Chile, 2003 to 2013, Annual Reports; SQM: Santiago, Chile, 2003–2013.
- Yaksic, A.; Tilton, J.E. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resour. Policy 2009, 34, 185–194. [Google Scholar] [CrossRef]
- SignumBOX. Analysis: Lithium, Batteries and Vehicles/Perspectives and Trends; SignumBOX: Santiago, Chile, 2014; p. 8. [Google Scholar]
- Jaskula, B.W. Lithium, 2016 Mineral Yearbook 2018; USGS: Reston, VA, USA, 2018; p. 44.1.
- Jaskula, B.W. Lithium, Mineral Commodity Summaries 2018; USGS: Reston, VA, USA, 2018; p. 1.
- Laznicka, P. Giant Metallic Deposits; Springer: Berlin, Germany, 2006. [Google Scholar]
- Lithium-ion Batteries Market Development & Raw Materials; Roskill: London, England, 2018.
- Jahns, R.H.; Tuttle, O.F. Layered Pegmatite-Aplite Intrusives; Mineralogical Society of America: Chantilly, VA, USA, 1963; pp. 78–92. [Google Scholar]
- Swanson, S.E. Mineralogy of Spodumene Pegmatites and Related Rocks in the Tin-Spodumene Belt of North Carolina and South Carolina, USA. Can. Mineral. 2012, 50, 1589–1608. [Google Scholar] [CrossRef]
- Stewart, D.B. Petrogenesis of lithium-rich pegmatites. Am. Mineral. 1978, 63, 970–980. [Google Scholar]
- Barros, R.; Menuge, J.F. The Origin of Spodumene Pegmatites Associated with the Leinster Granite in Southeast Ireland. Can. Mineral. 2016, 54, 847–862. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- London, D. Pegmatites. Can. Mineral. 2008, 10, 18. [Google Scholar]
- Trueman, D.L.; Černý, P. Exploration for rare-element granitic pegmatites. In Short Course Granitic Pegmatites in Science and Industry; Mineralogical Association of Canada: Québec, QC, Canada, 1982; Volume 8, pp. 463–494. [Google Scholar]
- French, B.M.; Jezek, P.A.; Appleman, D.E. Virgilite, a new lithium aluminum silicate mineral from the Macusani glass, Peru. Am. Mineral. 1978, 63, 461–465. [Google Scholar]
- London, D. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: A petrogenetic grid for lithium-rich pegmatites. Am. Mineral. 1984, 69, 995–1004. [Google Scholar]
- d’Andrada, J.B. Der eigenschaften und kennzeichen einiger neuen fossilien aus Schweden und Norwegen nebst einigen chemischen bemerkungen ueber dieselben. Allgemeines J. Chem. 1800, 4, 28–39. [Google Scholar]
- Sthulman, O. The thermophosphorescent radiations of Hidennite and Kunzite. J. Opt. Soc. Am. Rev. Sci. Instrum. 1929, 18, 365–369. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Spodumene. In Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 2015; Available online: http://www.handbookofmineralogy.org/ (accessed on 12 March 2019).
- Li, C.T.; Peacor, D.R. The crystal structure of LiAlSi2O6-II (β-spodumene). Zeitschrift für Kristallographie 1967, 126, 46–65. [Google Scholar] [CrossRef]
- Keat, P.P. A new crystalline silica. Science 1954, 120, 328–330. [Google Scholar] [CrossRef]
- Lu, H. Formation of β-Eucryptite and β-spodumene from Topaz Mixture. Ph.D Thesis, University of New South Wales, Sydney, Australia, 2005. [Google Scholar]
- Peltosaari, O.; Tanskanen, P.A.; Heikkinen, E.P.; Fabritius, T. α→γ→β-phase transformation of spodumene with hybrid microwave and conventional furnaces. Miner. Eng. 2015, 82, 54–60. [Google Scholar] [CrossRef]
- Li, C.T. The crystal structure of LiAlSi2O6 III (high-quartz solid solution). Zeitschrift für Kristallographie 1967, 127, 327–334. [Google Scholar]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Virgilite. In Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 2015; Available online: http://www.handbookofmineralogy.org/ (accessed on 12 March 2019).
- Fasshauer, D.W.; Chatterjee, N.D.; Cemic, L. A thermodynamic analysis of the system LiAlSiO4-NaAlSiO4-Al2O3-SiO2-H2O based on new heat capacity, thermal expansion, and compressibility data for selected phases. Contrib. Mineral. Petrol. 1998, 133, 186–198. [Google Scholar] [CrossRef]
- Robie, R.A.; Hemingway, B.S. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures; USGS: Reston, VA, USA, 1995; Volume 2131, pp. 1–461.
- Salakjani, N.K.; Singh, P.; Nikoloski, A.N. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 1: Conventionnal heating. Miner. Eng. 2016, 98, 71–79. [Google Scholar] [CrossRef]
- Botto, I.L.; Arazi, S.C.; Krenkel, T.G. Aplicación de la teoría de Delmon al estudio des mecanismo de la transformación polimórfica espodumeno I en espodumeno II. Boletin Sociedad Española Cerámica Vidrio 1976, 15, 5–10. [Google Scholar]
- Brook, R.J. Concise Encyclopedia of Advanced Ceramic Materials; Pergamon Press: Oxford, England, 1991. [Google Scholar]
- Tran, T.; Luong, V.T. Lithium production processes. In Lithium Process Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 81–124. [Google Scholar]
- Seeley, F.G.; Baldwin, W.H. Extraction of lithium from neutral salt solutions with fluorinated β-diketones. J. Inorg. Nucl. Chem. 1976, 38, 1049–1052. [Google Scholar] [CrossRef]
- Wang, X.; Jing, Y.; Liu, H.; Yao, Y.; Shi, C.; Xiao, J.; Wang, S.; Jia, Y. Extraction of lithium from salt lake brines by bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids. Chem. Phys. Lett. 2018, 707, 8–12. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, X.; Hu, S.; Xiang, X. Higly efficient extraction of lithium from salt lake brine by LiAl-layered double hydroxides as lithium-ion-selective capturing material. J. Energy Chem. 2019, 34, 80–87. [Google Scholar] [CrossRef]
- Ellestad, R.B.; Leute, K.M. Method of extracting lithium values from spodumene ores. U.S. Patent 2,516,109, 25 July 1950. [Google Scholar]
- Hader, R.N.; Nielsen, R.L.; Herre, M.G. Lithium and its compounds. Ind. Eng. Chem. 1951, 43, 2636–2646. [Google Scholar] [CrossRef]
- Skinner, B.J.; Evans, H.T. β-spodumene solid solutions and the join Li2O–Al2O3–SiO2. Am. J. Sci. 1960, 258-A, 312–324. [Google Scholar]
- Archambault, M.; Macewan, J.U.; Olivier, C.A. Method of producing lithium carbonate from spodumene. U.S. Patent 3,017,243, 16 January 1962. [Google Scholar]
- Xiao, M.; Wang, S.; Zhang, Q.; Zhang, J. Leaching mechanism of the spodumene sulphuric acid process. Rare Met. (Beijing) 1997, 16, 36–44. [Google Scholar]
- Lajoie-Leroux, F. Étude sur le Grillage Acide du β-spodumene: Comportements des impuretés, Maîtrise; Université de Sherbrooke: Sherbrooke, QC, Canada, 2018. [Google Scholar]
- Clifford, M.N. Production of lithium compounds. U.S. Patent 2,413,644, 31 December 1946. [Google Scholar]
- Hayes, E.T.; Sternberg, W.M.; Williams, F.P. Production of lithium chloride from spodumene. U.S. Patent 2,533,246, 12 December 1950. [Google Scholar]
- Adolphe, V.K. Method of recovering lithium compounds from lithium minerals. U.S. Patent 2,662,809, 15 December 1953. [Google Scholar]
- Cunningham, G.L. Preparation of lithium chloride from spodumene. U.S. Patent 2,627,452, 3 February 1953. [Google Scholar]
- Dwyer, T.E. Recovery of lithium from spodumene ores. U.S. Patent 2,801,153, 30 July 1957. [Google Scholar]
- Peterson, J.A.; Gloss, G.H. Lithium values recovery process. U.S. Patent 2,893,828, 7 July 1959. [Google Scholar]
- Peterson, J.A. Process for recovering lithium values. U.S. Patent 2,924,507, 9 February 1960. [Google Scholar]
- Chubb, P.A. Treatment of lithium ores. U.S. Patent 3,073,673, 15 January 1963. [Google Scholar]
- Lemay, H.P.; Archambault, M.; Savard, M.A.O.C. Sodium-ammonium compounds process for extracting lithium from spodumene. U.S. Patent 3,112,170, 23 November 1963. [Google Scholar]
- Archambault, M.; Olivier, C.A. Carbonatizing roast of lithium bearing ores. U.S. Patent 3,380,802, 30 April 1968. [Google Scholar]
- Dunn, W.E.; Van Jahnke, J. Cyclical Vacuum Chlorination Processes, Including Lithium Extraction. U.S. Patent 7,588,741, 15 September 2009. [Google Scholar]
- Medina, L.F.; El-Naggar, M.M.A.A. An alternative method for the recovery of lithium from spodumene. Metall. Trans. B 1984, 15, 725–726. [Google Scholar] [CrossRef]
- Mast, E. Lithium Production from Spodumene. Master’s Thesis, McGill University, Montréal, QC, USA, 1989. [Google Scholar]
- Rezza, I.; Salinas, E.; Calvente, V.; Benuzzi, D.; De Tosetti, M.I.S. Extraction of lithium from spodumene by bioleaching. Lett. Appl. Microbiol. 1997, 25, 172–176. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, Q.; Chen, B.; Shi, X.; Liao, T. Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process. Hydrometallurgy 2011, 109, 43–46. [Google Scholar] [CrossRef]
- Bieseki, L.; Melo, V.R.M.; Sobrinho, E.V.; Melo, D.M.A.; Pergher, S.B.C. Extração de lítio de amostras de β-espodumênio. Cerâmica 2013, 59, 557–562. [Google Scholar] [CrossRef]
- Rosales, G.D.; Ruiz, M.D.C.; Rodriguez, M.H. Novel process for the extraction of lithium from -spodumene by leaching with HF. Hydrometallurgy 2014, 147–148, 1–6. [Google Scholar] [CrossRef]
- Barbosa, L.I.; Valente, G.; Oorosco, R.P.; González, J.A. Lithium extraction from β-spodumene through chlorination with chlorine gas. Miner. Eng. 2014, 56, 29–34. [Google Scholar] [CrossRef]
- Barbosa, L.I.; González, J.A.; Del Carmen Ruiz, M. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride. Thermochim. Acta 2015, 605, 63–67. [Google Scholar] [CrossRef]
- Kuang, G.; Liu, Y.; Li, H.; Xing, S.; Li, F.; Guo, H. Extraction of lithium from β-spodumene unsing sodium sulphate solution. Hydrometallurgy 2018, 177, 49–56. [Google Scholar] [CrossRef]
- Smith, J.C.; Harriott, P. Unit Operations of Chemical Engineering, 6th ed.; McGraw-Hill: New York, NY, USA, 1956; p. 966. [Google Scholar]
- Gupta, C.K. Chemical Metallurgy; Principles and Practice, Wiley-VCH: Weinheim, Germany, 2003; p. 133. [Google Scholar]
- Lajoie-Leroux, F.; Dessemond, C.; Soucy, G.; Laroche, N.; Magnan, J.F. Impact of the impurities on lithium extraction from β-spodumene in the sulphuric acid process. Miner. Eng. 2018, 129, 1–8. [Google Scholar] [CrossRef]
- Botto, I.L.; Arazi, S.C.; Krenkel, T.G. Estudio cinético de la transformación polimórfica espodumeno I en espodumeno II. Boletin dela Sociedad Española de Cerámica y Vidrio 1975, 14, 225–230. [Google Scholar]
- Mellor, J.W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Volume VI, Part II, Si, Silicates, 1st ed.; Longmans, Green and Co. LTD: London, UK, 1930; 991p. [Google Scholar]
- White, G.D.; McVoy, T.N. Some Aspects of the Recovery of Lithium from Spodumene; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1958; pp. 1–17.
- Kotsupalo, N.P.; Menzheres, L.T.; Ryabtsev, A.D.; Boldyrev, V.V. Mechanical Activation of α-Spodumene for Further Processing into Lithium Compounds. Theor. Found. Chem. Eng. 2010, 44, 503–507. [Google Scholar] [CrossRef]
- Salakjani, N.K.; Nikoloski, A.N.; Singh, P. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 2: Microwave heating. Miner. Eng. 2017, 100, 191–199. [Google Scholar] [CrossRef]
- Hatch, R.A. Phase Equilibrium in the system: Li2O-Al2O3-SiO2. American Mineralogist 1943, 28, 471–496. [Google Scholar]
- Shoucri, A. Étude de la Conversion α vers β d’un Minerai de Spodumene, Maîtrise; Université de Sherbrooke: Sherbrooke, QC, Canada, 2015. [Google Scholar]
- Dessemond, C.; Lajoie-Leroux, F.; Soucy, G.; Laroche, N.; Magnan, J.F. Revisiting the Traditionnal Process of Spodumene Conversion and Impact on Lithium Extraction. In Proceedings of the First Global Conference on Extractive Metallurgy; The Minerals, Metals and Materials Society: Pittsburgh, PA, USA, 2018; pp. 2281–2291. [Google Scholar]
Mineral | Formula | Theoretical Li Content (%) |
---|---|---|
Spodumene | LiAlSi2O6 | 3.73 |
Petalite | LiAlSi4O10 | 2.27 |
Eucryptite | LiAlSiO4 | 5.51 |
Bikitaite | LiAlSi2O6.H2O | 3.40 |
Lepidolite | KLi2AlSi3O10(OH,F)2 | ~3.84 |
Zinnwaldite | KLiFeAl2Si3O10(F,OH)2 | 1.59 |
Amblygonite | (Li,Na)AlPO4(OH,F) | 4.73 |
Montebrasite | LiAl(PO4)(OH) | 1 to 4 |
Lithiophylite | LiMnPO4 | 4.43 |
Triphylite | LiFePO4 | 4.40 |
Hectorite | Na0,3(Mg,Li)3Si4O10(OH)2 | ~1.93 |
Jadarite | LiNaAlSiB2O7(OH) | 2.85 |
Zabuyelite | Li2CO3 | 18.79 |
Elbaite | Na(Li1,5Al1,5)Al6Si6B3O27(OH)4 | 1.11 |
Form | Structure | Space Group | a (Å) | b (Å) | c (Å) | Angles (°) | Z |
---|---|---|---|---|---|---|---|
α-spodumene | Monoclinic | C2/c | 9.45 | 8.39 | 5.215 | β = 110 | 4 |
β-spodumene | Tetragonal | P43212 | 7.541 | - | 9.156 | - | 4 |
γ-spodumene | Hexagonal | P6222 | 5.217 | - | 5.464 | - | 1 |
Form | Cp(298 K) (J∙K−1∙mol−1) | H0i (kJ∙mol−1) | S0i (J∙K−1∙mol−1) |
---|---|---|---|
α-spodumene | 158.93 | −3053.500 | 129.412 |
β-spodumene | 162.77 | −3031.888 | 155.376 |
γ-spodumene | 162.77 | −3032.128 | 162.038 |
Reagent(s) | Size (µm) | Yield (%) | Decrepitation (°C) | Temperature (°C) | Duration | Reference |
---|---|---|---|---|---|---|
H2SO4 (l) | <600 | 90 | 1000 | 250 | « Short » | [49] |
Ca(OH)2 (aq.) | <100 | 90 | 1100 | 100–205 | 2 h | [55] |
CaCO3 (s) + CaSO4 (s) | <75 | 85–90 | - | During the decrepitation | [56] | |
CaO (s) | - | 84–100 | - | 700 | - | [57] |
CaCO3 (s) + CaCl2 (s) + SiO2 (s) | <175 | 90–95 | 900–1100 | 1100–1200 | - | [58] |
(NH4)2SO4/NH4HSO4 (l) | <175 | - | 1030 | 150–370 | - | [59] |
KCl (s) + KCl·NaCl (s) | <150 | 100 | 1050 | During the decrepitation | [60] | |
NaCOOH + Na2CO3 | <300 | 98–100 | 100 | 290 | 30–90 min | [61] |
SO3 (g) | <600 | 97 | 870 | 335–450 | 15 min | [52] |
NaOH/Na2CO3 (aq.) + CaO/Ca(OH)2 (aq.) | - | - | 1010 | 100–200 | - | [62] |
NaOH/Na2SiO3/2Na2O·B2O3/Na2S (aq.) | <150 | 93 | - | 70–130 | 1–48 h | [63] |
Na2CO3 (s) | - | 85–97 | 1000 | 450–750 | 10–120 min | [64] |
Cl2 (g) + CO (g) | <44 | 90 | 1040 | 1000 | - | [65] |
Reagent(s) | Size (µm) | Yield (%) | Decrepitation (°C) | Temperature (°C) | Duration | Reference |
---|---|---|---|---|---|---|
CaMg2Cl6·12H2O (s) | <75 | 87 | 1100 | During the decrepitation | [66] | |
Mg(l) | - | 100 | 1050 | 1500 | - | [67] |
Bacteria (aq.) | - | <10 | No decrepitation | Room | 30 d | [68] |
Na2CO3 (aq.) | - | 94 | 1050 | 225 | 1 h | [69] |
Na2CO3 (s)/H2O/H2O + NH4HCO3 (aq.) | - | <10 | - | 600 then room | 30 min then 4 h | [70] |
HF (aq) | - | 90 | 1100 | 75 | 20 min | [71] |
Cl2 (g) | <50 | 99 | 1180 | 1000 | 3 h | [72] |
CaCl2 (s) | <50 | 90 | 1180 | 900 | 2 h | [73] |
Na2SO4 (aq)/NaOH or CaO (aq.) | <75 | 90 | 1100 | 230 | - | [74] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dessemond, C.; Lajoie-Leroux, F.; Soucy, G.; Laroche, N.; Magnan, J.-F. Spodumene: The Lithium Market, Resources and Processes. Minerals 2019, 9, 334. https://doi.org/10.3390/min9060334
Dessemond C, Lajoie-Leroux F, Soucy G, Laroche N, Magnan J-F. Spodumene: The Lithium Market, Resources and Processes. Minerals. 2019; 9(6):334. https://doi.org/10.3390/min9060334
Chicago/Turabian StyleDessemond, Colin, Francis Lajoie-Leroux, Gervais Soucy, Nicolas Laroche, and Jean-François Magnan. 2019. "Spodumene: The Lithium Market, Resources and Processes" Minerals 9, no. 6: 334. https://doi.org/10.3390/min9060334
APA StyleDessemond, C., Lajoie-Leroux, F., Soucy, G., Laroche, N., & Magnan, J.-F. (2019). Spodumene: The Lithium Market, Resources and Processes. Minerals, 9(6), 334. https://doi.org/10.3390/min9060334