High-Pressure and High-Temperature Phase Transitions in Fe2TiO4 and Mg2TiO4 with Implications for Titanomagnetite Inclusions in Superdeep Diamonds
Abstract
1. Introduction
2. Experimental Methods
3. Results
3.1. Phase Transitions in Mg2TiO4
3.2. Phase Transitions in Fe2TiO4
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wechsler, B.A.; Lindsley, D.H.; Prewitt, C.T. Crystal structure and cation distribution in titanomagnetites (Fe3−x,TixO4). Am. Mineral. 1984, 69, 754–770. [Google Scholar]
- Yamanaka, T.; Mine, T.; Asogawa, S.; Nakamoto, Y. Jahn-Teller transition of Fe2TiO4 observed by maximum entropy method at high pressure and low temperature. Phys. Rev. 2009, B80, 134120. [Google Scholar] [CrossRef]
- Wechsler, B.A.; Von Dreele, R.B. Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction. Acta Cryst. 1989, B45, 542–549. [Google Scholar] [CrossRef]
- Yamanaka, T.; Kyono, A.; Nakamoto, Y.; Meng, Y.; Kharlamova, S.; Struzhkin, V.V.; Mao, H.K. High-pressure phase transitions of Fe3−xTixO4 solid solution up to 60 GPa correlated with electronic spin transition. Am. Mineral. 2013, 98, 736–744. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, X.; Qin, S. Pressure-induced phase transition of Fe2TiO4: X-ray diffraction and Mössbauer spectroscopy. J. Sold State Chem. 2012, 185, 72–75. [Google Scholar] [CrossRef]
- Xu, W.M.; Hearne, G.R.; Layek, S.; Levy, D.; Itie, J.-P.; Pasternak, M.P.; Rozenberg, G.K.; Greenberg, E. Site-specific spin crossover in Fe2TiO4 post-spinel under high pressure up to nearly a megabar. Phys. Rev. 2017, B96, 045108. [Google Scholar] [CrossRef]
- Akimoto, S.; Syono, Y. High-pressure decomposition of some titanate spinels. J. Chem. Phys. 1967, 47, 1813–1817. [Google Scholar] [CrossRef]
- Liebermann, R.C.; Jackson, I.; Ringwood, A.E. Elasticity and phase equilibria of spinel disproportionation reactions. Geophys. J. R. Astr. Soc. 1977, 50, 553–586. [Google Scholar] [CrossRef]
- Anderson, O.L. Equations of State of Solids for Geophysics and Ceramic Science; Oxford Univ. Press: New York, NY, USA, 1995; 405p. [Google Scholar]
- Walter, M.J.; Kohn, S.C.; Araujo, D.; Bulanova, G.P.; Smith, C.B.; Gaillou, E.; Wang, J.; Steele, A.; Shirey, S.B. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science 2011, 334, 54–57. [Google Scholar] [CrossRef]
- Wenz, M.D.; Jacobsen, S.D.; Zhang, D.; Regier, M.; Bausch, H.J.; Dera, P.K.; Rivers, M.; Eng, P.; Shirey, S.B.; Pearson, D.G. Fast identification of mineral inclusions in diamond at GSECARS using synchrotron X-ray microtomography, radiography and diffraction. J. Synchrotron Rad. 2019, 26, 1–6. [Google Scholar] [CrossRef]
- Ito, E. Theory and Practice—Multianvil cells and high-pressure experimental methods. In Mineral Physics; Price, G.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2, pp. 197–230. [Google Scholar]
- Dunn, K.J.; Bundy, F.P. Materials and techniques for pressure calibration by resistance-jump transitions up to 500 kilobars. Rev. Sci. Instrum. 1978, 49, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Morishima, H.; Kato, T.; Suto, M.; Ohtani, E.; Urakawa, S.; Utsumi, W.; Shimomura, O.; Kikegawa, T. The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 1994, 265, 1202–1203. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Ohtani, E.; Morishima, H.; Kubo, T.; Kanbe, Y.; Kondo, T. In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys. Res. Lett. 2000, 27, 803–806. [Google Scholar] [CrossRef]
- Fei, Y.; Van Orman, J.; Li, J.; Van Westrenen, W.; Sanloup, C.; Minarik, W.; Hirose, K.; Komabayashi, T. Experimentally determined post-spinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Linton, J.A.; Fei, Y.; Navrotsky, A. The MgTiO3-FeTiO3 join at high pressure and temperature. Am. Mineral. 1999, 84, 1595–1603. [Google Scholar] [CrossRef]
- El Goresy, A.; Chen, M.; Dubrovinsky, L.; Gillet, P.; Graup, G. An ultradense polymorph of rutile with seven-coordinated titanium from the Ries Crater. Science 2001, 293, 1467–1470. [Google Scholar] [CrossRef] [PubMed]
- El Goresy, A.; Dubrovinsky, L.; Gillet, P.; Graup, G.; Chen, M. Akaogiite: An ultra-dense polymorph of TiO2 with the baddeleyite-type structure, in shocked garnet gneiss from the Ries Crater, Germany. Am. Mineral. 2010, 95, 892–895. [Google Scholar] [CrossRef]
- Akaogi, M.; Kusaba, K.; Susaki, J.; Yagi, T.; Matsui, M.; Kikegawa, T.; Yusa, H.; Ito, E. High-pressure high -temperature stability of αPbO2-type TiO2 and MgSiO3 majorite: Calorimetric and in situ x-ray diffraction studies. In High-Pressure Research: Application to Earth and Planetary Sciences; Syono, Y., Manghnani, M.H., Eds.; Am. Geophys. Union: Washington, DC, USA, 1992; pp. 447–455. [Google Scholar]
- Tang, J.; Endo, S. P-T boundary of α-PbO2 type and baddeleyite type high-pressure phases of titanium dioxide. J. Am. Ceram. Soc. 1993, 76, 796–798. [Google Scholar] [CrossRef]
- Kojitani, H.; Yamazaki, M.; Kojima, M.; Inaguma, Y.; Mori, D.; Akaogi, M. Thermodynamic investigation of the phase equilibrium boundary between TiO2 rutile and its α-PbO2-type high-pressure polymorph. Phys. Chem. Min. 2018, 45, 963–980. [Google Scholar] [CrossRef]
- Dubrovinskaia, N.A.; Dubrovinsky, L.S.; Ahuja, R.; Prakapenka, V.B.; Dmitriev, V.; Weber, H.P.; Osorio-Guillen, J.M.; Johansson, B. Experimental and theoretical identification of a new high-pressure TiO2 polymorph. Phys. Rev. Lett. 2001, 87, 275501. [Google Scholar] [CrossRef]
- Al-Khatatbeh, Y.; Lee, K.K.M.; Kiefer, B. High-pressure behavior of TiO2 as determined by experiment and theory. Phys. Rev. 2009, B79, 134114. [Google Scholar] [CrossRef]
- Akaogi, M.; Arai, S.; Abe, K.; Kojitani, H. Unpublished work. 2018.
- Akaogi, M.; Abe, K.; Yusa, H.; Ishii, T.; Tajima, T.; Kojitani, H.; Mori, D.; Inaguma, Y. High-pressure high-temperature phase relations in FeTiO3 up to 35 GPa and 1600 °C. Phys. Chem. Min. 2017, 44, 63–73. [Google Scholar] [CrossRef]
- Leinenweber, K.; Utsumi, W.; Tsuchida, Y.; Yagi, T.; Kurita, K. Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3. Phys. Chem. Min. 1991, 18, 244–250. [Google Scholar] [CrossRef]
- Dubrovinsky, L.; El Goresy, A.; Gillet, P.; Wu, X.; Simionivici, A. A novel natural shock-induced high- pressure polymorph of FeTiO3 ilmenite with the Li-niobate structure from the Ries crater, Germany. Meteorit. Planet. Sci. 2009, 44, A64. [Google Scholar]
- Xie, X.; Gu, X.; Yang, H.; Chen, M.; Li, K. Wangdaodeite. IMA 2016-007. CNMNC Newsletter, No. 31. Mineral. Mag. 2016, 80, 691–697. [Google Scholar]
- Nishio-Hamane, D.; Zhang, M.; Yagi, T.; Ma, Y. High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure. Am. Mineral. 2012, 97, 568–572. [Google Scholar] [CrossRef]
- Hazen, R.M. Effects of temperature and pressure on the cell dimension and X-ray temperature factors of periclase. Am Mineral. 1976, 66, 266–271. [Google Scholar]
- Linton, J.A.; Fei, Y.; Navrotsky, A. Complete Fe-Mg solid solution in lithium niobate and perovskite structures in titanates at high pressures and temperatures. Am. Mineral. 1997, 82, 639–642. [Google Scholar] [CrossRef]
- Nishio-Hamane, D.; Shimizu, A.; Nakahira, R.; Niwa, K.; Sano-Furukawa, A.; Okada, T.; Yagi, T.; Kikegawa, T. The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa. Phys. Chem. Min. 2010, 37, 129–136. [Google Scholar] [CrossRef]
- McCammon, C.A. Effect of pressure on the composition of the lower mantle end member FexO. Science 1993, 259, 66–68. [Google Scholar] [CrossRef]
- Ming, L.C.; Kim, Y.H.; Uchida, T.; Wang, Y.; Rivers, M. In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation. Am. Mineral. 2006, 91, 120–126. [Google Scholar] [CrossRef]
- Kennedy, C.S.; Kennedy, G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81, 2467–2470. [Google Scholar] [CrossRef]
- Yamanaka, T.; Uchida, A.; Nakamoto, Y. Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressure up to 80 GPa. Am. Mineral. 2008, 93, 1874–1881. [Google Scholar] [CrossRef]
- Ishii, T.; Kojitani, H.; Tsukamoto, S.; Fujino, K.; Mori, D.; Inaguma, Y.; Tsujino, N.; Yoshino, T.; Yamazaki, D.; Higo, Y. High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. Am. Mineral. 2014, 99, 1788–1797. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Oganov, A.R. Thermodynamics, phase transitions, equations of state, and elasticity of minerals at high pressures and temperatures. In Mineral Physics, 2nd ed.; Price, G.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 179–201. [Google Scholar]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Akaogi, M.; Tanaka, A.; Kobayashi, M.; Fukushima, N.; Suzuki, T. High-pressure transformations in NaAlSiO4 and thermodynamic properties of jadeite, nepheline, and calcium ferrite-type phase. Phys. Earth Planet. Inter. 2002, 130, 49–58. [Google Scholar] [CrossRef]
- Ono, A.; Akaogi, M.; Kojitani, H.; Yamashita, K.; Kobayashi, M. High-pressure phase relations and thermodynamic properties of hexagonal aluminous phase and calcium-ferrite phase in the systems NaAlSiO4-MgAl2O4 and CaAl2O4-MgAl2O4. Phys. Earth Planet. Inter. 2009, 174, 39–49. [Google Scholar] [CrossRef]
- Woodland, A.B.; Frost, D.J.; Trots, D.M.; Klimm, K.; Mezouar, M. In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures. Am. Mineral. 2012, 97, 1808–1811. [Google Scholar] [CrossRef]
- O’Neill, H.S.C.; Annersten, H.; Virgo, D. The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and Mössbauer spectroscopy. Am. Mineral. 1992, 77, 725–740. [Google Scholar]
- Syono, Y.; Fukai, Y.; Ishikawa, Y. Anomalous elastic properties of Fe2TiO4. J. Phys. Soc. Jpn. 1971, 31, 471–476. [Google Scholar] [CrossRef]
- Xiong, Z.; Liu, X.; Shieh, S.R.; Wang, F.; Wu, X.; Hong, X.; Shi, Y. Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03)Ti1.00O4.00, at ambient temperature. Phys. Chem. Miner. 2015, 42, 171–177. [Google Scholar] [CrossRef]
Run No. | Pressure (GPa) | Temperature (°C) | (min) | Run Product |
---|---|---|---|---|
O160915 | 21 | 1000 | 120 | Pe, Ln |
O161025 | 23 | 1000 | 90 | Pe, α |
O161017 | 21 | 1300 | 90 | Pe, Ln |
O170116 | 22.5 | 1300 | 50 | Ln, Pe, α |
O161128 | 23.5 | 1300 | 60 | Pe, α, Ln(tr) |
O160909 | 24.5 | 1300 | 60 | Pe, α |
O160924 | 28 | 1300 | 90 | Pe, α |
O161106 | 28 | 1400 | 90 | Pe, α, Ln(tr) |
O170219 | 22 | 1500 | 90 | Ln, Pe, α |
O170202 | 25 | 1500 | 60 | Pe, α |
O170126 | 28 | 1500 | 60 | Pe, α |
O161021 | 21 | 1600 | 90 | Pe, Ln |
O161124 | 22 | 1600 | 60 | Pe, Ln |
O161209 | 23.5 | 1600 | 60 | Ln, Pe, α |
O160903 | 24.5 | 1600 | 60 | Pe, α, Ln(tr) |
Comp. | Structure | V0 (cm3/mol) | Ref. | Comp. | Structure | V0 (cm3/mol) | Ref. |
---|---|---|---|---|---|---|---|
MgO | rock-salt | 11.24 | a | FeO | rock-salt | 12.17 | i |
MgTiO3 | ilmenite | 30.86 | b | FeTiO3 | ilmenite | 31.72 | j |
MgTiO3 | perovskite | 29.31 | c | FeTiO3 | perovskite | 30.34 | k |
MgTiO3 | LiNbO3 | 30.71 | d | FeTiO3 | LiNbO3 | 31.34 | j |
Mg2TiO4 | spinel | 45.25 | e | Fe2TiO4 | spinel | 46.84 | e |
TiO2 | αPbO2 | 18.41 | f | Fe2TiO4 | CaTi2O4 | 42.41 | e |
TiO2 | baddeleyite | 16.90 | g | ||||
TiO2 | OI | 16.83 | h |
Run no. | Pressure (GPa) | Temperature (°C) | Time (min) | Run Product * |
---|---|---|---|---|
M150109 | 12.5 | 1000 | 60 | Ilm, Wu |
M150107 | 12.5 | 1100 | 60 | Ilm, Wu |
M140806 | 13 | 1100 | 60 | Ilm, Ln, Wu |
M150115 | 14 | 1100 | 60 | Ln, Wu |
M141128 | 15.5 | 1100 | 60 | Ln, Wu |
M140707 | 16 | 1100 | 60 | CT |
M150218 | 17 | 1100 | 60 | CT |
M150603 | 20 | 1100 | 60 | CT |
M150226 | 23 | 1100 | 60 | CT |
M150516 | 24 | 1100 | 60 | CT |
M150127 | 12.5 | 1200 | 60 | Ilm, Ln, Wu |
M150416 | 18 | 1200 | 60 | CT |
M150707 | 11 | 1300 | 60 | Ilm, Wu |
M150725 | 12 | 1300 | 60 | Ilm, Wu |
M140728 | 13 | 1300 | 60 | Ln, Wu |
M150625 | 14 | 1300 | 60 | Ln, Wu |
M150202 | 15 | 1300 | 60 | CT |
M140626 | 15 | 1300 | 60 | CT, Ln, Wu |
M140701 | 18 | 1300 | 60 | CT |
M140710 | 18 | 1300 | 60 | CT |
M150227 | 20 | 1300 | 60 | CT |
M150606 | 22 | 1300 | 60 | CT |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akaogi, M.; Tajima, T.; Okano, M.; Kojitani, H. High-Pressure and High-Temperature Phase Transitions in Fe2TiO4 and Mg2TiO4 with Implications for Titanomagnetite Inclusions in Superdeep Diamonds. Minerals 2019, 9, 614. https://doi.org/10.3390/min9100614
Akaogi M, Tajima T, Okano M, Kojitani H. High-Pressure and High-Temperature Phase Transitions in Fe2TiO4 and Mg2TiO4 with Implications for Titanomagnetite Inclusions in Superdeep Diamonds. Minerals. 2019; 9(10):614. https://doi.org/10.3390/min9100614
Chicago/Turabian StyleAkaogi, Masaki, Taisuke Tajima, Masaki Okano, and Hiroshi Kojitani. 2019. "High-Pressure and High-Temperature Phase Transitions in Fe2TiO4 and Mg2TiO4 with Implications for Titanomagnetite Inclusions in Superdeep Diamonds" Minerals 9, no. 10: 614. https://doi.org/10.3390/min9100614
APA StyleAkaogi, M., Tajima, T., Okano, M., & Kojitani, H. (2019). High-Pressure and High-Temperature Phase Transitions in Fe2TiO4 and Mg2TiO4 with Implications for Titanomagnetite Inclusions in Superdeep Diamonds. Minerals, 9(10), 614. https://doi.org/10.3390/min9100614