Comparative Analysis of CO2 Sequestration Potential in Shale Reservoirs: Insights from the Longmaxi and Qiongzhusi Formations
Abstract
1. Introduction
2. Materials and Methods
2.1. TOC, Ro and Mineralogy
2.1.1. Total Organic Carbon (TOC) Analysis
2.1.2. Thermal Maturity Assessment
2.1.3. Mineralogical Characterization
2.2. Mercury Intrusion Capillary Pressure (MICP)
2.3. N2 and CO2 Physisorption Experiments
2.4. FE-SEM Investigation and 3D Pore Network Reconstruction
2.5. Fractal and Multifractal Analysis
3. Results
3.1. Organic Geochemistry and Mineralogy
3.2. SEM Characterization of Minerals, OM, and Associated Porosity
3.2.1. Clay–Quartz–OM Assemblages and OM-Hosted Pores
3.2.2. Nanoporous Organic Matter Within Clay Frameworks
3.2.3. Illite–Pyrite Aggregates with Porosity
3.2.4. Nanoporous Organic Matter and Pyrite
3.2.5. Pore Characteristics in Discrete Organic Matter
3.2.6. Distribution and Pore Features of Accessory Minerals
3.3. CO2/N2 Adsorption Isotherms and Pore Size Distribution
3.4. Multifractality of Pore Structures
3.5. Fractal Properties of Reconstructed Shale Pore Structures
3.6. Estimation of CO2 Storage Capacity
3.7. CO2 Breakthrough Pressure and MICP-RGPZ Permeability
4. Discussion
4.1. Geological and Pore Structural Implications on CO2 Storage Potential
4.2. Multifractal Analysis and 3D Reconstruction of Pore Structures: Implications for CO2 Storage
4.3. Evaluating CO2 Storage Potential and Injectivity Constraints in Longmaxi–TY1 and Qiongzhusi–N206 Shales
5. Conclusions
- (1)
- Geological factors, including organic geochemistry, mineral composition, and diagenetic evolution, exert profound controls on micropore heterogeneity and connectivity are observed in both formations. Due to lower maturity, shallower burial, and intermedia diagenesis, mineral assemblages, like clay–quartz–OM, assist Longmaxi shales in preserving abundant organic-hosted mesopores. In contrast, Qiongzhusi’s over-maturity and deep-burial environment promote more authigenic mineral generation and high pressure, significantly reducing total accessible pore space.
- (2)
- Multifractal spectra and reconstructed 3D models highlight contrasting pore complexities. Longmaxi exhibits broader singularity spectra and higher succolarity values across orientations, consistent with meso-/macropore development and isotropic connectivity at the SEM scale. Qiongzhusi shows narrower multifractal spectra and lower succolarity, reflecting micropore-dominated, more heterogeneous and anisotropic networks. These metrics complement adsorption and MICP data by quantifying pore connectivity and heterogeneity across scales.
- (3)
- Adsorption and free-gas partitioning indicate that Longmaxi samples achieve higher total CO2 storage capacities (median ≈ 15.6 kg/m3, with adsorption contributing ~93%) than Qiongzhusi samples (median ≈ 12.8 kg/m3, with adsorption ~70% and free gas ~30%). This confirms that Longmaxi provides larger adsorption-dominated capacities due to better-developed micro–mesoporous networks.
- (4)
- Longmaxi samples exhibit nanometer-scale throats (D50 ≈ 10–25 nm), very high breakthrough pressures (P10 CO2 ≈ 0.57 MPa; P20 CO2 ≈ 2.65 MPa), and ultra-low RGPZ permeabilities (≈10−2 nD). In contrast, Qiongzhusi samples possess micrometer-scale throats (D50 ≈ 1–3 µm), extremely low breakthrough pressures (P10 CO2 ≈ 0.018 MPa; P20 CO2 ≈ 0.029 MPa), and permeabilities 5–6 orders of magnitude higher, suggesting much better injectivity.
- (5)
- Longmaxi shales are favorable for long-term CO2 retention owing to their adsorption-dominated capacities and sealing pore systems, but their injectivity is severely limited. Qiongzhusi shales, while offering smaller total capacities, exhibit superior injectivity and lower entry pressures, making them suitable as injection intervals provided regional seals are present.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Erathem | System | Series | Formation (Member) | Lithological Unit | Thickness (m) |
---|---|---|---|---|---|
Paleozoic | Silurian | Wenlockian | Huixingmiao Fm. | Siltstone/Shale | 0–150 |
Hanjiadian Fm. | Siltstone/Shale | 0–50 | |||
Llandovery | Shiniulan Fm. | Limestone/Siltstone/Shale | 240–500 | ||
Longmaxi Fm. | Shale | 100–680 | |||
Ordovician | Upper | Wufeng Fm. | Shale | 3–30 | |
Linxiang Fm. | Limestone | 18–80 | |||
Middle | Baota Fm. | Limestone | 10–40 | ||
Datangpo Fm. | Silty shale | 100–260 | |||
Lower | Luohanpo Fm. | Sandstone/Limestone | 50–160 | ||
Cambrian | Miaolingian | Xiangxi Fm. | Dolostone | 220–420 | |
Series 2 | Longwangmiao Fm. | Dolostone | 70–200 | ||
Terreneuvian | Canglangpu Fm. | Sandstone/Shale | 65–3000 | ||
Qiongzhusi Fm. | Shale | 90–400 |
Erathem | System | Series | Formation (Member) | Lithological Unit | Thickness (m) |
---|---|---|---|---|---|
Paleozoic | Permian | Lower | Qixia Fm. | Limestone/Dolomite | 267.70 |
Silurian | Lower | Hanjiadian Fm. | Limestone/Shale | 129.95 | |
Shiniulan Fm. | Limestone/Sandstone/Mudstone | 80.85 | |||
Longmaxi Fm. | Mudstone/Shale | 182.95 | |||
Ordovician | Upper | Wufeng Fm. | Shale | 20.20 | |
Jiancaogou Fm | Limestone | 6.00 | |||
Middle | Baota Fm. | Limestone | 28.32 |
Formation | Sample ID | Depth (m) | Quartz (%) | K-Feldspar (%) | Plagioclase (%) | Carbonate (%) | Pyrite (%) | Clay (%) |
---|---|---|---|---|---|---|---|---|
Longmaxi | TY1-1 | 622.6 | 29.35 | 4.99 | 12.05 | 12.59 | 0.84 | 40.17 |
TY1-2 | 647.3 | 34.43 | 1.82 | 6.47 | 11.57 | 0.85 | 44.87 | |
TY1-3 | 654.9 | 35.27 | 4.89 | 16.16 | 11.35 | 0.71 | 31.62 | |
TY1-4 | 659.8 | 38.92 | 1.9 | 5.47 | 12.05 | 2.37 | 39.29 | |
TY1-5 | 663.2 | 35.94 | 1.52 | 5.13 | 39.19 | 1.05 | 16.53 | |
TY1-9 | 665.0 | 18.52 | 1.1 | 4.07 | 59.06 | 1.3 | 15.94 | |
TY1-12 | 667.3 | 17.6 | 0.97 | 4.22 | 48.86 | 0.95 | 27.4 | |
TY1-14 | 670.0 | 29.54 | 2.56 | 9.54 | 32.66 | 5.37 | 20.77 | |
TY1-15 | 670.7 | 52.81 | 2.11 | 4.83 | 14.29 | 0.75 | 26.77 | |
TY1-20 | 677.5 | 45.14 | 2.82 | 5.92 | 1.33 | 1.99 | 42.81 | |
Average | / | / | 33.75 | 2.47 | 7.39 | 24.29 | 1.62 | 30.62 |
Qiongzhusi | N206-1 | 1846.53 | 40 | 0 | 12.2 | 6.7 | 2.8 | 38.3 |
N206-2 | 1851.35 | 49.1 | 0 | 8.7 | 7 | 2.9 | 32.3 | |
N206-3 | 1859.64 | 50.3 | 0 | 11.6 | 7.3 | 0 | 30.8 | |
N206-4 | 1861.42 | 46.8 | 0 | 9.2 | 9.9 | 3.1 | 31 | |
N206-5 | 1862.08 | 46.6 | 0 | 11.2 | 13.5 | 0 | 28.7 | |
N206-6 | 1863.32 | 43.8 | 0 | 9.5 | 9.9 | 5.4 | 31.4 | |
N206-8 | 1868.59 | 42 | 0 | 9.4 | 7.2 | 5.9 | 35.5 | |
N206-9 | 1885.46 | 41.8 | 0 | 0 | 4.9 | 19.4 | 26.4 | |
N206-10 | 1886.53 | 42.8 | 7.5 | 0 | 6.4 | 4.2 | 40.4 | |
N206-11 | 1888.26 | 58.9 | 6.2 | 0 | 3.9 | 10.1 | 27.1 | |
Average | / | / | 46.21 | / | 7.18 | 7.67 | 5.38 | 32.19 |
Formation | Sample ID | Depth (m) | Clay (%) | Illite (%) | Kaolinite (%) | Chlorite (%) | I/S (%) | %S | %I |
---|---|---|---|---|---|---|---|---|---|
Longmaxi | TY1-1 | 622.6 | 40.17 | 48 | 6 | 10 | 36 | 15 | 85 |
TY1-2 | 647.3 | 44.87 | 66 | 12 | 11 | 11 | 10 | 90 | |
TY1-3 | 654.9 | 31.62 | 71 | 3 | 11 | 15 | 10 | 90 | |
TY1-4 | 659.8 | 39.29 | 45 | 7 | 11 | 37 | 15 | 85 | |
TY1-5 | 663.2 | 16.53 | 45 | 9 | 16 | 30 | 15 | 85 | |
TY1-9 | 665.0 | 15.94 | 58 | 12 | 18 | 12 | 15 | 85 | |
TY1-12 | 667.3 | 27.4 | 32 | 17 | 28 | 23 | 20 | 80 | |
TY1-14 | 670.0 | 20.77 | 73 | 3 | 14 | 10 | 10 | 90 | |
TY1-15 | 670.7 | 26.77 | 75 | 2 | 15 | 8 | 10 | 90 | |
TY1-20 | 677.5 | 42.81 | 48 | 11 | 14 | 27 | 15 | 85 | |
Average | / | / | 30.62 | 56.1 | 8.2 | 14.8 | 20.9 | / | / |
Qiongzhusi | N206-1 | 1846.53 | 38.3 | 61 | 0 | 39 | 0 | 10 | 90 |
N206-2 | 1851.35 | 32.3 | 64 | 0 | 23 | 13 | 10 | 90 | |
N206-3 | 1859.64 | 30.8 | 68 | 0 | 29 | 3 | 10 | 90 | |
N206-4 | 1861.42 | 31 | 43 | 0 | 20 | 37 | 10 | 90 | |
N206-5 | 1862.08 | 28.7 | 71 | 0 | 29 | 0 | 10 | 90 | |
N206-6 | 1863.32 | 31.4 | 40 | 0 | 34 | 26 | 10 | 90 | |
N206-8 | 1868.59 | 35.5 | 81 | 0 | 19 | 0 | 10 | 90 | |
N206-9 | 1885.46 | 26.4 | 73 | 0 | 17 | 10 | 10 | 90 | |
N206-10 | 1886.53 | 40.4 | 68 | 0 | 17 | 15 | 10 | 90 | |
N206-11 | 1888.26 | 27.1 | 33 | 0 | 15 | 52 | 10 | 90 | |
Average | / | / | 32.19 | 60.2 | 0 | 24.2 | 15.6 | / | / |
Formation | Sample | Image Porosity (φ%) | SuTB (×10−5) | SuBT (×10−5) | SuLR (×10−5) | SuRL (×10−5) | SuFB (×10−5) | SuBF (×10−5) | Suaverage (×10−5) |
---|---|---|---|---|---|---|---|---|---|
Longmaxi | TY1-2 | 7.19 | 5.811 | 6.253 | 138.8 | 134.1 | 118.8 | 142.8 | 91.10 |
6.37 | 11.57 | 6.832 | 151.2 | 189.6 | 179.9 | 173.0 | 118.7 | ||
16.59 | 9151 | 8776 | 9135 | 9691 | 9166 | 9799 | 9286 | ||
TY1-4 | 2.24 | 0.8065 | 0.5388 | 31.39 | 24.17 | 26.19 | 27.40 | 18.42 | |
2.64 | 1.210 | 0.7596 | 32.97 | 39.73 | 40.92 | 36.03 | 25.27 | ||
3.26 | 0.9492 | 0.8798 | 47.68 | 43.97 | 58.69 | 54.16 | 34.39 | ||
13.51 | 120.1 | 71.35 | 811.7 | 948.2 | 1040 | 916.0 | 651.2 | ||
11.61 | 27.12 | 20.78 | 406.4 | 412.9 | 405.5 | 437.9 | 285.1 | ||
TY1-6 | 4.71 | 1.890 | 1.493 | 1.649 | 1.424 | 2.274 | 1.226 | 1.660 | |
6.66 | 4.844 | 4.230 | 4.731 | 4.729 | 5.651 | 4.132 | 4.720 | ||
7.39 | 8.198 | 7.094 | 7.880 | 5.565 | 7.707 | 7.393 | 7.306 | ||
10.88 | 19.06 | 23.05 | 15.68 | 16.83 | 23.83 | 18.15 | 19.43 | ||
Average | 7.75 | 779.4 | 743.3 | 898.8 | 959.4 | 923.0 | 968.1 | 878.6 | |
Qiongzhusi | N206-2 | 11.78 | 448.3 | 410.6 | 476.3 | 1589 | 1688 | 642.9 | 876.0 |
2.57 | 1.030 | 0.7149 | 1.010 | 0.7582 | 1.303 | 0.8475 | 0.9438 | ||
2.65 | 0.8996 | 0.6258 | 0.8406 | 0.6773 | 1.056 | 0.5.242 | 0.7706 | ||
3.31 | 1.450 | 0.6720 | 1.375 | 1.218 | 1.831 | 0.7210 | 1.211 | ||
2.48 | 0.9371 | 1.241 | 0.7.637 | 0.7144 | 1.117 | 1.043 | 0.9693 | ||
N206-5 | 1.98 | 0.4926 | 0.5923 | 0.4233 | 0.3569 | 0.8030 | 0.2178 | 0.4810 | |
1.3 | 0.2.21 | 0.1361 | 0.2126 | 0.07206 | 0.2705 | 0.09196 | 0.1659 | ||
2.24 | 1.156 | 0.9730 | 0.5490 | 0.7483 | 0.8256 | 0.9441 | 0.8660 | ||
N206-7 | 4.59 | 7.970 | 6.400 | 5.920 | 3.266 | 10.40 | 5.040 | 6.499 | |
1.58 | 0.6604 | 0.2545 | 0.5035 | 0.6630 | 0.5.033 | 0.5628 | 0.5246 | ||
Average | 3.45 | 46.31 | 42.22 | 48.79 | 159.8 | 170.6 | 65.29 | 88.84 |
Appendix B
References
- Zhironkin, S.; Abu-Abed, F. Fossil fuel prospects in the energy of the future (energy 5.0): A review. Energies 2024, 17, 5606. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, Q.; Zhang, G.; Xiong, B. Energy revolution: From a fossil energy era to a new energy era. Nat. Gas Ind. B 2016, 3, 1–11. [Google Scholar] [CrossRef]
- Xu, Y.; Lun, Z.; Wang, H.; Zhao, C.; Zhou, X.; Hu, W.; Zou, J.; Zhang, D. Understanding roles of moisture in CO2 adsorption and desorption hysteresis on deep gas-bearing shales under high temperature and pressure. Sep. Purif. Technol. 2024, 334, 125970. [Google Scholar] [CrossRef]
- Rui, Z.; Qian, C.; Liu, Y.; Zhao, Y.; Li, H.A.; Afanasyev, A.; Torabi, F. Adsorption characteristics of CO2/CH4/H2S mixtures in calcite nanopores with the implications for CO2 sequestration. SPE J. 2024, 29, 2748–2762. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Mo, X.; Tong, Z.; Wang, X.; Wang, D.; Su, Z.; Tang, X.; Gong, D. Characterization of an Angstrom-Scale Pore Structure in Organic- Rich Shales by Using Low-Pressure CO2 Adsorption and Multifractal Theory and Its Role in CH4/CO2 Gas Storage. Energy Fuels 2022, 36, 12085–12103. [Google Scholar] [CrossRef]
- Pang, J.; Liang, Y.; Mi, F.; Jiang, G.; Tsuji, T.; Ning, F. Nanoscale Understanding on CO2 Diffusion and Adsorption in Clay Matrix Nanopores: Implications for Carbon Geosequestration. Environ. Sci. Technol. 2024, 58, 20401–20411. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Fauchille, A.-L.; Ansari, H.; Chandler, M.; Ashby, P.; Taylor, K.; Pini, R.; Lee, P.D. Linking multi-scale 3D microstructure to potential enhanced natural gas recovery and subsurface CO2 storage for Bowland shale, UK. Energy Environ. Sci. 2021, 14, 4481–4498. [Google Scholar] [CrossRef]
- Ukaomah, C.F.; Sun, M.; Pan, Z.; Ostadhassan, M.; Liu, B.; Xu, Y.; Madaki, A.I.; Umeobi, H.I.; Aminu, M.D.; Yang, B. An insight into CO2 sequestration and EGR in Longmaxi and Niutitang shale formations via experimental analysis. Fuel 2022, 324, 124776. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Z.; Cao, Z.; Han, F.; Wang, Y.; Cheng, H. Molecular simulation of CO2 adsorption on kaolinite: Insights into geological storage of CO2. Appl. Clay Sci. 2024, 258, 107495. [Google Scholar] [CrossRef]
- Wang, D.; Hu, H.; Wang, T.; Tang, T.; Li, W.; Zhu, G.; Chen, X. Difference between of coal and shale pore structural characters based on gas adsorption experiment and multifractal analysis. Fuel 2024, 371, 132044. [Google Scholar] [CrossRef]
- Zeng, C.; Kalam, S.; Zhang, H.; Wang, L.; Luo, Y.; Wang, H.; Mu, Z.; Arif, M. Predicting absolute adsorption of CO2 on Jurassic shale using machine learning. Fuel 2025, 381, 133050. [Google Scholar] [CrossRef]
- Ou, C.; You, Z. Review of CO2 utilization and storage in adsorption-type unconventional natural gas reservoirs. Fuel 2024, 374, 132352. [Google Scholar] [CrossRef]
- Benson, S.M.; Cole, D.R. CO2 sequestration in deep sedimentary formations. Elements 2008, 4, 325–331. [Google Scholar] [CrossRef]
- Worden, R.H. Carbon dioxide capture and storage (CCS) in saline aquifers versus depleted gas fields. Geosciences 2024, 14, 146. [Google Scholar] [CrossRef]
- Raza, A.; Gholami, R.; Rabiei, M.; Rasouli, V.; Rezaee, R.; Fakhari, N. Impact of geochemical and geomechanical changes on CO2 sequestration potential in sandstone and limestone aquifers. Greenh. Gases: Sci. Technol. 2019, 9, 905–923. [Google Scholar] [CrossRef]
- Arif, H.; Abdulwahab, B.; Muhammad Naveed, B.; Muhammad Hammad, M.; Ardiansyah, K.; Abduljamiu, A.; Cornel, O.; Khalid, A.-R. Diagenetic variability in Tertiary, syn-rift mixed siliciclastic-carbonate depositional system (Lower Musayr Formation), Red Sea, Saudi Arabia. Sediment. Geol. 2024, 470, 106699. [Google Scholar] [CrossRef]
- Jiang, L.L.; Chen, Z.X.; Ali, S.M.F.; Zhang, J.S.; Chen, Y.P.; Chen, S.S. Storing carbon dioxide in deep unmineable coal seams for centuries following underground coal gasification. J. Clean. Prod. 2022, 378, 134565. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B.; Xuehai, F.; Jielin, L.; Manli, H.; Fanhua, Z. Potential, Efficiency, and Leakage Risk of CO2 Sequestration in Coal: A Review. Processes 2025, 13, 1680. [Google Scholar] [CrossRef]
- Grant Charles, M.; Melckzedeck Michael, M.; Mbega Ramadhani, N.; Long, Y. Recent advances on carbon dioxide sequestration potentiality in salt caverns: A review. Int. J. Greenh. Gas Control 2024, 133, 104109. [Google Scholar] [CrossRef]
- Matter, J.M.; Stute, M.; Snæbjörnsdottir, S.Ó.; Oelkers, E.H.; Gislason, S.R.; Aradottir, E.S.; Sigfusson, B.; Gunnarsson, I.; Sigurdardottir, H.; Gunnlaugsson, E.; et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 2016, 352, 1312–1314. [Google Scholar] [CrossRef]
- Kelemen, P.; Benson, S.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. An overview of the status and challenges of CO2 storage in minerals and geological formations. Front. Clim. 2019, 1, 9. [Google Scholar] [CrossRef]
- Hu, K.; Liu, Y.; Zhang, Q.; Song, Z.; Thaika, M.A.; Li, R.; Kuru, E.; Shi, J.; Liu, H. From Micropores to Macropores: Investigating Pore Characteristics of Longmaxi Shale in the Sichuan Basin. Energy Fuels 2024, 38, 3961–3981. [Google Scholar] [CrossRef]
- Adeyilola, A.; Zakharova, N.; Liu, K.; Gentzis, T.; Carvajal-Ortiz, H.; Fowler, H.; Harrison Iii, W.B. Porosity distribution in the Devonian Antrim Shale: Controlling factors and implications for gas sorption. Int. J. Coal Geol. 2023, 272, 104251. [Google Scholar] [CrossRef]
- Garum, M.; Glover, P.W.J.; Lorinczi, P.; Micklethwaite, S.; Hassanpour, A. Integration of Multiscale Imaging of Nanoscale Pore Microstructures in Gas Shales. Energy Fuels 2021, 35, 10721–10732. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, X.; Zhu, H.; Tang, Z.; Zhao, X.; Zhang, F.; Sepehrnoori, K. Engineering factor analysis and intelligent prediction of CO2 2 storage parameters in shale gas reservoirs based on deep learning. Appl. Energy 2025, 377, 124642. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Shan, X.; Ma, L.; Taylor, K.G. Potential for CO2 storage in shale basins in China. Int. J. Greenh. Gas Control 2024, 132, 104060. [Google Scholar] [CrossRef]
- Murugesu, M.P.; Joewondo, N.; Prasad, M. Carbon storage capacity of shale formations: Mineral control on CO2 adsorption. Int. J. Greenh. Gas Control 2023, 124, 103833. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, H.; Song, Y.; Perera, M.S.A.; Ranjith, P.G. Molecular simulation of the competitive adsorption of methane and carbon dioxide in the matrix and slit model of shale kerogen and the influence of water. Geoenergy Sci. Eng. 2024, 242, 213212. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Xia, X.; Tian, Z.; Qin, X.; Cai, J. Lattice Boltzmann prediction of CO2 and CH4 competitive adsorption in shale porous media accelerated by machine learning for CO2 sequestration and enhanced CH4 recovery. Appl. Energy 2024, 370, 123638. [Google Scholar] [CrossRef]
- Chang, X.; Lin, S.; Yang, C.; Guo, Y.; Dai, X. Enhancing shale gas recovery and CO2 sequestration: Microscopic mechanisms of adsorption and diffusion in shale pores. Phys. Fluids 2024, 36, 116614. [Google Scholar] [CrossRef]
- Hou, L.; Elsworth, D.; Zhang, L.; Gong, P.; Liu, H. Recalibration of CO2 storage in shale: Prospective and contingent storage resources, and capacity. Energy 2024, 290, 130067. [Google Scholar] [CrossRef]
- Fatah, A.; Bennour, Z.; Ben Mahmud, H.; Gholami, R.; Hossain, M.M. A review on the influence of CO2/shale interaction on shale properties: Implications of CCS in shales. Energies 2020, 13, 3200. [Google Scholar] [CrossRef]
- Heidarabad, R.G.; Shin, K. Carbon Capture and Storage in Depleted Oil and Gas Reservoirs: The Viewpoint of Wellbore Injectivity. Energies 2024, 17, 1201. [Google Scholar] [CrossRef]
- Shi, J.; Shen, G.; Zhao, H.; Sun, N.; Song, X.; Guo, Y.; Wei, W.; Sun, Y. Porosity at the interface of organic matter and mineral components contribute significantly to gas adsorption on shales. J. CO2 Util. 2018, 28, 73–82. [Google Scholar] [CrossRef]
- Lin, S.; Chang, X.; Wang, K.; Yang, C.; Guo, Y. Swelling damage characteristics induced by CO2 adsorption in shale: Experimental and modeling approaches. J. Rock Mech. Geotech. Eng. 2024, 17, 5526–5541. [Google Scholar] [CrossRef]
- Onwumelu, C.; Kolawole, O.; Bouchakour, I.; Ozotta, O.; Nordeng, S.; Alamooti, M. CO2-Induced alterations due to thermal maturation in shale: Implications for CO2 utilization and storage. Greenh. Gases-Sci. Technol. 2023, 13, 797–813. [Google Scholar] [CrossRef]
- Wang, L.; Liu, B.; Bai, L.; Ma, L.; Yu, Z.; Huo, Q.; Taylor, K.G. Differential mineral diagenetic evolution of lacustrine shale: Implications for CO2 storage. Int. J. Coal Geol. 2024, 295, 104629. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Tian, S.; Guo, Y.; Wang, L.; Yasin, Q.; Yang, J. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window. Int. J. Coal Geol. 2022, 261, 104079. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Cheng, H. Gas Adsorption Characterization of Pore Structure of Organic-rich Shale: Insights into Contribution of Organic Matter to Shale Pore Network. Nat. Resour. Res. 2021, 30, 2377–2395. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Pevear, D.R.; Hill, R.J. Mineral surface control of organic carbon in black shale. Science 2002, 295, 657–660. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Wagner, T. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proc. Natl. Acad. Sci. USA 2011, 108, 9776–9781. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Haughton, P.D.; Shannon, P.M.; Morris, E.A.; Pierce, C.S.; Omma, J.E. Mud-forced turbulence dampening facilitates rapid burial and enhanced preservation of terrestrial organic matter in deep-sea environments. Mar. Pet. Geol. 2021, 130, 105101. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Xin, G.; Ren, S. A Review of Molecular Models for Gas Adsorption in Shale Nanopores and Experimental Characterization of Shale Properties. Acs Omega 2023, 8, 13519–13538. [Google Scholar] [CrossRef]
- Fatah, A.; Ben Mahmud, H.; Bennour, Z.; Gholami, R.; Hossain, M.M. Geochemical and physical alteration of clay-rich shales under supercritical CO2 conditions. Appl. Geochem. 2022, 140, 105291. [Google Scholar] [CrossRef]
- Xie, W.; Chen, S.; Vandeginste, V.; Yu, Z.; Wang, H.; Wang, M. Review of the Effect of Diagenetic Evolution of Shale Reservoir on the Pore Structure and Adsorption Capacity of Clay Minerals. Energy Fuels 2022, 36, 4728–4745. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Shu, Z.; He, S.; Wu, Z. Differences in the Nanopore Structure of Organic-Rich Shales with Distinct Sedimentary Environments and Mineral Compositions. Energy Fuels 2021, 35, 16562–16577. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.; Hao, F.; Zhang, B.; Shu, Z.; Gou, Q.; Lu, Y.; Cong, F. Multiscale petrographic heterogeneity and their implications for the nanoporous system of the Wufeng-Longmaxi shales in Jiaoshiba area, Southeast China: Response to depositional-diagenetic process. Geol. Soc. Am. Bull. 2020, 132, 1704–1721. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Tian, Z.; Wei, W.; Zhou, S.; Wood, D.A.; Cai, J. Experimental and Fractal Characterization of the Microstructure of Shales from Sichuan Basin, China. Energy Fuels 2021, 35, 3899–3914. [Google Scholar] [CrossRef]
- Hawthorne, S.B.; Miller, D.J.; Pekot, L.J.; Azzolina, N.A.; Kurz, B.A.; Sorensen, J.A. Measured CO2 sorption isotherms with 25 Bakken Petroleum System rock samples from the Lower and Upper Shales, Middle Bakken, and Three Forks formations. Int. J. Greenh. Gas Control 2023, 127, 103930. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Z.; Jiang, S.; Chang, J.; Zhu, L.; Li, X.; Li, J. Full-Scale Pore Structure and Fractal Dimension of the Longmaxi Shale from the Southern Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Mercury Intrusion Porosimetry. Minerals 2019, 9, 543. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, S.; Xun, X.; Wang, H.; Sun, X.; He, M. Pore Structure and Fractal Characteristics of Coal-Measure Sedimentary Rocks Using Nuclear Magnetic Resonance (NMR) and Mercury Intrusion Porosimetry (MIP). Energies 2023, 16, 3812. [Google Scholar] [CrossRef]
- Zhou, B.; Han, Q.; Yang, P. Characterization of Nanoporous Systems in Gas Shales by Low Field NMR Cryoporometry. Energy Fuels 2016, 30, 9122–9131. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, J.; Xu, Z.; Wang, Z.; Hu, T.; Chen, D.; Li, Q.; Li, Y. Organic Matter Pore Characterization in Lacustrine Shales with Variable Maturity Using Nanometer-Scale Resolution X-ray Computed Tomography. Energy Fuels 2017, 31, 2669–2680. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Yang, F.; Zhang, B.; Shu, Z.; Zhang, A.; Wang, Y.; Lu, Y.; Cheng, X.; et al. Full-scale pores and micro-fractures characterization using FE-SEM, gas adsorption, nano-CT and micro-CT: A case study of the Silurian Longmaxi Formation shale in the Fuling area, Sichuan Basin, China. Fuel 2019, 253, 167–179. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, C.; Li, X.; Zhang, K.; Yuan, Y.; Zang, X.; Cui, W.; Liu, S.; Jiang, Z. Organic matter pores structure and evolution in shales based on the he ion microscopy (HIM): A case study from the Triassic Yanchang, Lower Silurian Longmaxi and Lower Cambrian Niutitang shales in China. J. Nat. Gas Sci. Eng. 2020, 84, 103682. [Google Scholar] [CrossRef]
- Huang, C.; Ju, Y.; Zhu, H.; Qi, Y.; Yu, K.; Sun, Y.; Ju, L. Nano-Scale Pore Structure and Fractal Dimension of Longmaxi Shale in the Upper Yangtze Region, South China: A Case Study of the Laifeng-Xianfeng Block Using HIM and N2 Adsorption. Minerals 2019, 9, 356. [Google Scholar] [CrossRef]
- Kelly, S.; El-Sobky, H.; Torres-Verdin, C.; Balhoff, M.T. Assessing the utility of FIB-SEM images for shale digital rock physics. Adv. Water Resour. 2016, 95, 302–316. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, S.; Feng, Q.; Zhang, M.; Cao, X.; Wang, X. Ultrahigh- Resolution Reconstruction of Shale Digital Rocks from FIB-SEM Images Using Deep Learning. SPE J. 2024, 29, 1434–1450. [Google Scholar] [CrossRef]
- Blach, T.; Radlinski, A.P.; Vu, P.; Ji, Y.; de Campo, L.; Gilbert, E.P.; Regenauer-Lieb, K.; Mastalerz, M. Accessibility of Pores to Methane in New Albany Shale Samples of Varying Maturity Determined Using SANS and USANS. Energies 2021, 14, 8438. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radlinski, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Wu, K.; Van Dijke, M.I.; Couples, G.D.; Jiang, Z.; Ma, J.; Sorbie, K.S.; Crawford, J.; Young, I.; Zhang, X. 3D stochastic modelling of heterogeneous porous media–applications to reservoir rocks. Transp. Porous Media 2006, 65, 443–467. [Google Scholar] [CrossRef]
- Luo, M.; Glover, P.W.; Zhao, P.; Li, D. 3D digital rock modeling of the fractal properties of pore structures. Mar. Pet. Geol. 2020, 122, 104706. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, P.; Zhang, J.; Ding, X. Methodological Study on the Full-Range Pore Structure and Fractal Characteristics of the Tight Reservoirs. Minerals 2023, 13, 587. [Google Scholar] [CrossRef]
- Li, Z.; Shen, X.; Qi, Z.; Hu, R. Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry, N2 adsorption and NMR methods. J. Nat. Gas Sci. Eng. 2018, 53, 12–21. [Google Scholar] [CrossRef]
- Liu, X.; Nie, B. Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel 2016, 182, 314–322. [Google Scholar] [CrossRef]
- He, H.; Liu, P.; Xu, L.; Hao, S.; Qiu, X.; Shan, C.; Zhou, Y. Pore structure representations based on nitrogen adsorption experiments and an FHH fractal model: Case study of the block Z shales in the Ordos Basin, China. J. Pet. Sci. Eng. 2021, 203, 108661. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Y.; He, D.; Sun, P.; Zou, X. Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry. Appl. Clay Sci. 2020, 196, 105758. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Hu, Q.; Sun, M.; Hu, D.; Yi, J. Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale, Sichuan Basin (China). Fuel 2017, 197, 91–99. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Zou, J.; Gentzis, T.; Rezaee, R.; Bubach, B.; Carvajal-Ortiz, H. Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale. Fuel 2018, 219, 296–311. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Hu, Q.; Liu, L.; Jia, L.; Gao, S.; Wang, Y. Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries. J. Pet. Sci. Eng. 2022, 208, 109313. [Google Scholar] [CrossRef]
- de Melo, R.H.C. Using Fractal Characteristics such as Fractal Dimension, Lacunarity and Succolarity to Characterize Texture Patterns on Images. 2007; pp. 1–85. Available online: https://app.uff.br/riuff/bitstream/handle/1/17146/Dissert-Rafael%20Melo.pdf?sequence=1&isAllowed=y (accessed on 10 September 2025).
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H.Freeman & Co Ltd.: New York, NY, USA, 1983; pp. 1–468. [Google Scholar]
- Li, B.; Panaitescu, C.-T.; Glover, P.W.J.; Lorinczi, P.; Wu, K.; Yu, B.; Wei, W.; Cui, J.; Shi, M. Unravelling 3D Succolarity to Quantify Multiscale Petrophysical and Structural Properties of Porous Media. Water Resour. Res. 2025. submitted. [Google Scholar] [CrossRef]
- Horsfield, B.; Zou, C.; Li, J.; Yang, S.; Mahlstedt, N.; Misch, D.; Gross, D.; Wei, M.; Wang, Y.; Tan, J. Prediction of the gas-generating characteristics of the Qiongzhusi and Longmaxi Formations, Yangtze Platform, southern China, using analogues. AAPG Bull. 2021, 105, 945–985. [Google Scholar] [CrossRef]
- Xu, C.; Yao, S.; Song, D.; Liu, Y. Types, chemical and porosity characteristics of hydrocarbon-generating organisms of the lower Paleozoic, south China-Taking Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin as examples. Mar. Pet. Geol. 2020, 119, 104508. [Google Scholar] [CrossRef]
- Liu, S.; Ma, W.; Luba, J.; Huang, W.; Zeng, X.; Zhang, C. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan basin, China. Acta Petrol. Sin. 2011, 27, 2239–2252. [Google Scholar] [CrossRef]
- Shi, M.; Yu, B.; Xue, Z.; Wu, J.; Yuan, Y. Pore characteristics of organic-rich shales with high thermal maturity: A case study of the Longmaxi gas shale reservoirs from well Yuye-1 in southeastern Chongqing, China. J. Nat. Gas Sci. Eng. 2015, 26, 948–959. [Google Scholar] [CrossRef]
- Gai, S.; Liu, H.; He, S.; Mo, S.; Chen, S.; Liu, R.; Huang, X.; Tian, J.; Lv, X.; Wu, D.; et al. Shale reservoir characteristics and exploration potential in the target: A case study in the Longmaxi Formation from the southern Sichuan Basin of China. J. Nat. Gas Sci. Eng. 2016, 31, 86–97. [Google Scholar] [CrossRef]
- Huang, J.; Zou, C.; Li, J.; Dong, D.; Wang, S.; Wang, S.; Cheng, K. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in the Southern Sichuan Basin, China. Pet. Explor. Dev. 2012, 39, 75–81. [Google Scholar] [CrossRef]
- Jiao, K.; Ye, Y.; Liu, S.; Ran, B.; Deng, B.; Li, Z.; Li, J.; Yong, Z.; Sun, W. Characterization and Evolution of Nanoporosity in Superdeeply Buried Shales: A Case Study of the Longmaxi and Qiongzhusi Shales from MS Well #1, North Sichuan Basin, China. Energy Fuels 2018, 32, 191–203. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, W.; Xu, H.; Zhou, Q.; Jiang, K.; Shang, F.; Gao, W.; Song, W.; Liu, D.; Zhao, H.; et al. Impact of Minerals and Sealing Systems on the Pore Characteristics of the Qiongzhusi Formation Shale in the Southern Sichuan Basin. ACS Omega 2022, 7, 15821–15840. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, Z.; Chen, L.; Yin, L.; Li, Z.; Zhang, C.; Tang, X.; Wang, G. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam He ion microscopy, nano-computerized tomography and gas adsorption analysis. Mar. Pet. Geol. 2016, 77, 1323–1337. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, D.; Lu, S.; Jiang, S.; Chen, L.; Guo, T.; Wu, L. Pore development of the Lower Longmaxi shale in the southeastern Sichuan Basin and its adjacent areas: Insights from lithofacies identification and organic matter. Mar. Pet. Geol. 2020, 122, 104662. [Google Scholar] [CrossRef]
- Chen, S.; Gong, Z.; Li, X.; Wang, H.; Wang, Y.; Zhang, Y. Pore structure and heterogeneity of shale gas reservoirs and its effect on gas storage capacity in the Qiongzhusi Formation. Geosci. Front. 2021, 12, 101244. [Google Scholar] [CrossRef]
- Wang, R.; Hu, Z.; Sun, C.; Liu, Z.; Zhang, C.; Gao, B.; Du, W.; Zhao, J.; Tang, W. Comparative analysis of shale reservoir characteristics in the Wufeng-Longmaxi (O3w-S1l) and Niutitang (Є1n) Formations: A case study of wells JY1 and TX1 in the southeastern Sichuan Basin and its neighboring areas, southwestern China. Interpret. -A J. Subsurf. Charact. 2018, 6, SN31–SN45. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Lu, Y.; Shu, Z.; Lu, Y.; Wang, Z.; Wang, Y. Evaluation of the exploration prospect and risk of marine gas shale, southern China: A case study of Wufeng-Longmaxi shales in the Jiaoshiba area and Niutitang shales in the Cen’gong area. Geol. Soc. Am. Bull. 2022, 134, 1585–1602. [Google Scholar] [CrossRef]
- Li, J. Reservoir Characteristics of Longmaxi Shale in the Southeast of Chongqing: A Case Study from Lujiao Outcrop Section and Well Yuye-1. Master’s Thesis, China University of Geosciences, Beijing China, 2013. [Google Scholar]
- Tan, J.; Horsfield, B.; Mahlstedt, N.; Zhang, J.; di Primio, R.; Vu, T.A.T.; Boreham, C.J.; van Graas, G.; Tocher, B.A. Physical properties of petroleum formed during maturation of Lower Cambrian shale in the upper Yangtze Platform, South China, as inferred from PhaseKinetics modelling. Mar. Pet. Geol. 2013, 48, 47–56. [Google Scholar] [CrossRef]
- Li, A.; Ding, W.; Jiu, K.; Wang, Z.; Wang, R.; He, J. Investigation of the pore structures and fractal characteristics of marine shale reservoirs using NMR experiments and image analyses: A case study of the Lower Cambrian Niutitang Formation in northern Guizhou Province, South China. Mar. Pet. Geol. 2018, 89, 530–540. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Li, Z.; Wang, D.; Wang, G.; Lai, F.; Li, Z.; He, J. Microscopic pore structure characteristics and controlling factors of marine shale: A case study of Lower Cambrian shales in the Southeastern Guizhou, Upper Yangtze Platform, South China. Front. Earth Sci. 2024, 12, 1368326. [Google Scholar] [CrossRef]
- Ran, L. Characteristics of oil-gas resources in Sichuan Basin. China Oil Gas 2006, 4, 24–27. [Google Scholar]
- Yong, M.; Zhejun, P.; Ningning, Z.; Luke, D.C.; David, I.D.; Wenlie, L.; Yi, Z. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China. Fuel 2016, 180, 106–115. [Google Scholar] [CrossRef]
- Shangbin, C.; Yanming, Z.; Hongyan, W.; Honglin, L.; Wei, W.; Junhua, F. Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy 2011, 36, 6609–6616. [Google Scholar] [CrossRef]
- Dong, D.; Shi, Z.; Guan, Q.; Jiang, S.; Zhang, M.; Zhang, C.; Wang, S.; Sun, S.; Yu, R.; Liu, D. Progress, challenges and prospects of shale gas exploration in the Wufeng–Longmaxi reservoirs in the Sichuan Basin. Nat. Gas Ind. B 2018, 5, 415–424. [Google Scholar] [CrossRef]
- Gou, Q.; Wang, Y.; Xu, S.; Hao, F.; Wang, Z. The exploration prospects of Ediacaran shales in the Yangtze Platform, South China: Insights from the coupling of generation, storage, and preservation. J. Asian Earth Sci. 2023, 256, 105829. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, M.; Wang, D.; Tong, Z.; Hou, X.; Niu, J.; Li, X.; Li, Z.; Zhang, P.; Huang, Y. Fields and directions for shale gas exploration in China. Nat. Gas Ind. B 2022, 9, 20–32. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Zhang, R.; He, L.; Anovitz, L.M.; Bleue, M.; Mildner, D.F.R.; Liu, S.; Zhu, Y. Evaluation of Nanoscale Accessible Pore Structures for Improved Prediction of Gas Production Potential in Chinese Marine Shales. Energy Fuels 2018, 32, 12447–12461. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, L.; Hu, Q.; Pan, Z.; Yu, B.; Sun, L.; Bai, L.; Fu, H.; Zhang, Y.; Zhang, C.; et al. Multiscale connectivity characterization of marine shales in southern China by fluid intrusion, small-angle neutron scattering (SANS), and FIB-SEM. Mar. Pet. Geol. 2020, 112, 104101. [Google Scholar] [CrossRef]
- Jacob, H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). Int. J. Coal Geol. 1989, 11, 65–79. [Google Scholar] [CrossRef]
- Schoenherr, J.; Littke, R.; Urai, J.L.; Kukla, P.A.; Rawahi, Z. Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen. Org. Geochem. 2007, 38, 1293–1318. [Google Scholar] [CrossRef]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Lastoskie, C.; Gubbins, K.E.; Quirke, N. Pore size distribution analysis of microporous carbons: A density functional theory approach. J. Phys. Chem. 1993, 97, 4786–4796. [Google Scholar] [CrossRef]
- Seaton, N.; Walton, J. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 1989, 27, 853–861. [Google Scholar] [CrossRef]
- Do, D.; Do, H. Pore characterization of carbonaceous materials by DFT and GCMC simulations: A review. Adsorpt. Sci. Technol. 2003, 21, 389–423. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 721–741. [Google Scholar] [CrossRef]
- Qian, W.; Titterington, D. Multidimensional Markov chain models for image textures. J. R. Stat. Soc. Ser. B (Methodol.) 1991, 53, 661–674. [Google Scholar] [CrossRef]
- Qian, W.; Titterington, D. Pixel labelling for three-dimensional scenes based on Markov mesh models. Signal Process. 1991, 22, 313–328. [Google Scholar] [CrossRef]
- Ahammer, H.; Reiss, M.A.; Hackhofer, M.; Andronache, I.; Radulovic, M.; Labra-Spröhnle, F.; Jelinek, H.F. ComsystanJ: A collection of Fiji/ImageJ2 plugins for nonlinear and complexity analysis in 1D, 2D and 3D. PLoS ONE 2023, 18, e0292217. [Google Scholar] [CrossRef]
- Ferreiro, J.P.; Wilson, M.; Vázquez, E.V. Multifractal description of nitrogen adsorption isotherms. Vadose Zone J. 2009, 8, 209–219. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Boast, C.W.; Bullock, D.G. Multifractal analysis of soil spatial variability. Agron. J. 1999, 91, 1033–1041. [Google Scholar] [CrossRef]
- Caniego, F.J.; Martin, M.A.; San Jose, F. Renyi dimensions of soil pore size distribution. Geoderma 2003, 112, 205–216. [Google Scholar] [CrossRef]
- Rényi, A. On a new axiomatic theory of probability. Acta Math. Hung. 1955, 6, 285–335. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Du, J.; Cai, J.; Long, S.; Gao, B.; Feng, D.; Peng, Z.; Zeng, X. The control of diagenesis and mineral assemblages on brittleness of mudstones. Front. Earth Sci. 2021, 9, 758046. [Google Scholar] [CrossRef]
- Qin, X.; Han, D.-H.; Zhao, L. Elastic characteristics of overpressure due to smectite-to-illite transition based on micromechanism analysis. Geophysics 2019, 84, WA23–WA42. [Google Scholar] [CrossRef]
- Pytte, A.; Reynolds, R. The thermal transformation of smectite to illite. In Thermal History of Sedimentary Basins: Methods and Case Histories; Springer: Berlin/Heidelberg, Germany, 1989; pp. 133–140. [Google Scholar]
- Worden, R.H.; Griffiths, J.; Wooldridge, L.J.; Utley, J.E.P.; Lawan, A.Y.; Muhammed, D.D.; Simon, N.; Armitage, P.J. Chlorite in sandstones. Earth-Sci. Rev. 2020, 204, 103105. [Google Scholar] [CrossRef]
- Worden, R.H.; Morad, S. Clay minerals in sandstones: Controls on formation, distribution and evolution. In Clay Mineral Cements in Sandstones; John Wiley & Sons: Hoboken, NJ, USA, 1999; pp. 1–41. [Google Scholar]
- Grigsby, J.D. Origin and growth mechanism of authigenic chlorite in sandstones of the lower Vicksburg Formation, south Texas. J. Sediment. Res. 2001, 71, 27–36. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Y.; Wang, G.; Ni, G.; Wang, L. Comparative analysis of pore structure parameters of coal by using low pressure argon and nitrogen adsorption. Fuel 2022, 309, 122120. [Google Scholar] [CrossRef]
- Perfect, E.; Kay, B.D. Applications of fractals in soil and tillage research: A review. Soil Tillage Res. 1995, 36, 1–20. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M. Quantification of the microstructures of Bakken shale reservoirs using multi-fractal and lacunarity analysis. J. Nat. Gas Sci. Eng. 2017, 39, 62–71. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Kong, L. Multifractal characteristics of Longmaxi Shale pore structures by N2 adsorption: A model comparison. J. Pet. Sci. Eng. 2018, 168, 330–341. [Google Scholar] [CrossRef]
- Sun, W.; Zuo, Y.; Wu, Z.; Liu, H.; Xi, S.; Shui, Y.; Wang, J.; Liu, R.; Lin, J. Fractal analysis of pores and the pore structure of the Lower Cambrian Niutitang shale in northern Guizhou province: Investigations using NMR, SEM and image analyses. Mar. Pet. Geol. 2019, 99, 416–428. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Katie, A.C.; Matthias, T. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Tiina, L.; Ilkka, M.; Jani, K.; Juha, T. Utilization of Pisat temperature-dependency in modelling adsorption on zeolites. Chem. Eng. Sci. 2012, 69, 503–513. [Google Scholar] [CrossRef]
- Taotao, C.; Mo, D.; Juanyi, X.; Hu, L.; Anyang, P.; Qinggu, C. Reservoir characteristics of marine–continental transitional shale and gas-bearing mechanism:Understanding based on comparison with marine shale reservoir. J. Nat. Gas Geosci. 2023, 8, 169–185. [Google Scholar] [CrossRef]
- Mu, Y.; Hu, Z.; Guo, Q.; Duan, X.; Chang, J.; Niu, W.; Wu, Z. Water Distribution in Marine Shales: Based on Two-Dimensional Nuclear Magnetic Resonance and Low-Temperature Nitrogen Adsorption. Energy Fuels 2023, 37, 5034–5047. [Google Scholar] [CrossRef]
- Span, R.; Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Stavropoulou, E.; Laloui, L. Evaluating CO2 breakthrough in a shaly caprock material: A multi-scale experimental approach. Sci. Rep. 2022, 12, 10706. [Google Scholar] [CrossRef] [PubMed]
- Ukaomah, C.F.; Zhang, L.; Xu, Y.; Sun, M.; Yang, B.; Madaki, A.I.; Umeobi, H.I.; Aminu, M.D. Pore Structure and Seal Capacity of Ilaro Formation Shales in the Eastern Dahomey Basin: Implications from Mercury Injection Capillary Pressure and Spontaneous Imbibition Analyses. Energy Fuels 2021, 35, 10086–10101. [Google Scholar] [CrossRef]
- Celeste, D.L.; Paul, C.H. Using mercury injection pressure analyses to estimate sealing capacity of the Tuscaloosa marine shale in Mississippi, USA: Implications for carbon dioxide sequestration. Int. J. Greenh. Gas Control 2018, 78, 375–387. [Google Scholar] [CrossRef]
- Xiaojin, Z.; Espinoza, D.N. Multiphase CO2-brine transport properties of synthetic fault gouge. Mar. Pet. Geol. 2021, 129, 105054. [Google Scholar] [CrossRef]
- Guiltinan, E.J.; Espinoza, D.N.; Cockrell, L.P.; Cardenas, M.B. Textural and compositional controls on mudrock breakthrough pressure and permeability. Adv. Water Resour. 2018, 121, 162–172. [Google Scholar] [CrossRef]
- Cristian, R.M.; Maria, M.; Richard, W.L.; John, A.R. A novel multi-technique approach used in the petrophysical characterization of the Maquoketa Group (Ordovician) in the southeastern portion of the Illinois Basin: Implications for seal efficiency for the geologic sequestration of CO2. Int. J. Greenh. Gas Control 2020, 93, 102883. [Google Scholar] [CrossRef]
- Ding, S.; Wen, F.; Wang, N.; Zhang, Y.; Lu, R.; Gao, Y.; Yu, H. Multi-objective optimization of CO2 enhanced oil recovery and storage processes in low permeability reservoirs. Int. J. Greenh. Gas Control 2022, 121, 103802. [Google Scholar] [CrossRef]
- Yue, P.; Zhang, R.; Sheng, J.J.; Yu, G.; Liu, F. Study on the Influential Factors of CO2 Storage in Low Permeability Reservoir. Energies 2022, 15, 344. [Google Scholar] [CrossRef]
- Fan, Z.; Tian, M.; Li, M.; Mi, Y.; Jiang, Y.; Song, T.; Cao, J.; Liu, Z. Assessment of CO2 Sequestration Capacity in a Low-Permeability Oil Reservoir Using Machine Learning Methods. Energies 2024, 17, 3979. [Google Scholar] [CrossRef]
- Tran, H.; Sakhaee-Pour, A.; Bryant, S.L. A Simple Relation for Estimating Shale Permeability. Transp. Porous Media 2018, 124, 883–901. [Google Scholar] [CrossRef]
- Feng, X.; Ma, F.; Zhao, H.; Liu, G.; Guo, J. Gas Multiple Flow Mechanisms and Apparent Permeability Evaluation in Shale Reservoirs. Sustainability 2019, 11, 2114. [Google Scholar] [CrossRef]
- Wasaki, A.; Akkutlu, I.Y. Permeability of Organic-Rich Shale. Spe J. 2015, 20, 1384–1396. [Google Scholar] [CrossRef]
- Glover, P.W. A generalized Archie’s law for n phases. Geophysics 2010, 75, E247–E265. [Google Scholar] [CrossRef]
- Glover, P.; Walker, E. Grain-size to effective pore-size transformation derived from electrokinetic theory. Geophysics 2009, 74, E17–E29. [Google Scholar] [CrossRef]
- Rashid, F.; Glover, P.; Lorinczi, P.; Collier, R.; Lawrence, J. Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq. J. Pet. Sci. Eng. 2015, 133, 147–161. [Google Scholar] [CrossRef]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercuty intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Ji, M.; Choi, S.; Kim, M.; Choi, B.; Min, B. Numerical investigation of CO2-carbonated water-alternating-gas on enhanced oil recovery and geological carbon storage. J. CO2 Util. 2023, 74, 102544. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, J.-H.; Hu, Q.-H.; Liu, K.-Y.; Wu, W.; Luo, C.; Zhao, S.-H.; Zhang, Y.-Y. Origin of carbonate minerals and impacts on reservoir quality of the Wufeng and Longmaxi Shale, Sichuan Basin. Pet. Sci. 2023, 20, 3311–3336. [Google Scholar] [CrossRef]
- Ayachit, U. The Paraview Guide: A Parallel Visualization Application; Kitware, Inc.: Clifton Park, NY, USA, 2015. [Google Scholar]
- Ahrens, J.; Geveci, B.; Law, C.; Hansen, C.; Johnson, C. 36-paraview: An end-user tool for large-data visualization. In The Visualization Handbook; Scientific Research Publishing Inc.: Wuhan, China, 2005; pp. 717–731. [Google Scholar]
- Team, T.M.D. Matplotlib: Visualization with Python (v3.10.0). Zenodo 2024. [Google Scholar] [CrossRef]
- Origin (Pro), Version 2024; OriginLab Corporation: Northampton, MA, USA, 2024.
Formation | Sample ID | Depth (m) | Shale Lithofacies Types | Ro (%) | TOC (%) |
---|---|---|---|---|---|
Longmaxi | TY1-1 | 622.6 | Clay-siliciclastic shale | 1.95 | 4.39 |
TY1-2 | 647.3 | Clay-siliciclastic shale | 2.38 | 7.2 | |
TY1-3 | 654.9 | Siliciclastic-rich shale | 2.06 | 0.54 | |
TY1-4 | 659.8 | Clay-siliciclastic shale | 1.94 | 4.15 | |
TY1-5 | 663.2 | Calcareous shale | 1.83 | 6.25 | |
TY1-9 | 665.0 | Calcareous shale | 2.18 | 0.45 | |
TY1-12 | 667.3 | Calcareous shale | 2.53 | 5.25 | |
TY1-14 | 670.0 | Mixed shale | 2.12 | 7.58 | |
TY1-15 | 670.7 | Siliciclastic-rich shale | 1.95 | 5.30 | |
TY1-20 | 677.5 | Clay-siliciclastic shale | 2.61 | 2.93 | |
Average | / | / | / | 2.16 | 4.40 |
Qiongzhusi | N206-1 | 1846.53 | Clay-siliciclastic shale | 3.62 | 1.04 |
N206-2 | 1851.35 | Siliciclastic-rich shale | 3.79 | 2.19 | |
N206-3 | 1859.64 | Siliciclastic-rich shale | 3.88 | 3.11 | |
N206-4 | 1861.42 | Siliciclastic-rich shale | 3.95 | 2.68 | |
N206-5 | 1862.08 | Siliciclastic-rich shale | 3.97 | 2.27 | |
N206-6 | 1863.32 | Siliciclastic-rich shale | 3.83 | 2.15 | |
N206-8 | 1868.59 | Siliciclastic-rich shale | 4.39 | 2.07 | |
N206-9 | 1885.46 | Siliciclastic-rich shale | 4.58 | 2.63 | |
N206-10 | 1886.53 | Clay-siliciclastic shale | 4.39 | 3.04 | |
N206-11 | 1888.26 | Siliciclastic-rich shale | 4.25 | 2.49 | |
Average | / | / | / | 4.07 | 2.37 |
Formation | Sample ID | CO2 Sorption | N2 Sorption | MICP | ||||
---|---|---|---|---|---|---|---|---|
Micropore Volume (cc/g) | Micropore Surface Area (m2/g) | Adsorption Energy (kJ/mol) | Pore Volume (cc/g) | MultiPoint BET Surface Area (m2/g) | Pore Volume (cc/g) | Surface Area (m2/g) | ||
Longmaxi | TY1-1 | 0.002 | 4.768 | 32.256 | 0.0108 | 8.165 | 0.0025 | 0.7318 |
TY1-2 | 0.005 | 15.027 | 27.437 | 0.0208 | 21.64 | 0.0024 | 0.53 | |
TY1-3 | 0.006 | 16.746 | 29.565 | 0.0213 | 23.21 | 0.0042 | 1.2 | |
TY1-4 | 0.001 | 3.866 | 34.001 | 0.0091 | 7.018 | 0.0025 | 0.71 | |
TY1-5 | 0.003 | 7.508 | 29.354 | 0.0142 | 14.73 | 0.0035 | 0.88 | |
TY1-9 | 0.001 | 4.492 | 31.069 | 0.0126 | 11.64 | 0.0035 | 0.88 | |
TY1-12 | 0.002 | 4.975 | 29.67 | 0.0137 | 11.85 | 0.0028 | 0.74 | |
TY1-14 | 0.008 | 22.698 | 29.246 | 0.0336 | 33.03 | 0.0068 | 2.03 | |
TY1-15 | 0.006 | 16.67 | 29.062 | 0.0261 | 24.13 | 0.0038 | 1.11 | |
TY1-20 | 0.004 | 13.153 | 29.793 | 0.0252 | 20.94 | 0.0062 | 2.0898 | |
Average | / | 0.0038 | 10.99 | 30.145 | 0.0187 | 17.635 | 0.0038 | 1.09 |
Qiongzhusi | N206-1 | 0.003 | 6.685 | 28.24 | 0.0105 | 2.925 | 0.0028 | 0.0121 |
N206-2 | 0.005 | 12.222 | 30.385 | 0.0154 | 5.899 | 0.0034 | 0.0195 | |
N206-3 | 0.006 | 14.851 | 30.317 | 0.0142 | 6.999 | 0.0101 | 0.0445 | |
N206-4 | 0.004 | 10.302 | 30.317 | 0.0135 | 5.662 | 0.0123 | 0.0553 | |
N206-5 | 0.005 | 12.706 | 29.259 | 0.0112 | 5.614 | 0.0029 | 0.0143 | |
N206-6 | 0.005 | 12.043 | 29.464 | 0.0132 | 5.266 | 0.0082 | 0.0338 | |
N206-8 | 0.004 | 10.909 | 28.589 | 0.0124 | 2.819 | 0.0035 | 0.022 | |
N206-9 | 0.002 | 5.675 | 29.943 | 0.0067 | 1.761 | 0.0059 | 0.0151 | |
N206-10 | 0.005 | 12.646 | 29.062 | 0.0109 | 2.229 | 0.0094 | 0.0339 | |
N206-11 | 0.005 | 13.355 | 28.636 | 0.0107 | 2.256 | 0.0056 | 0.0375 | |
Average | / | 0.0044 | 11.139 | 29.421 | 0.0119 | 4.143 | 0.0064 | 0.0288 |
Formation | Sample | D10+ | D10− | D0 | D1 | D2 | D0 − D1 | D10− − D10+ | H |
---|---|---|---|---|---|---|---|---|---|
Longmaxi | TY1-1 | 0.6561 | 1.2610 | 1.0000 | 0.9215 | 0.8429 | 0.0785 | 0.6049 | 0.9215 |
TY1-2 | 0.7070 | 1.1091 | 1.0000 | 0.9451 | 0.8902 | 0.0549 | 0.4021 | 0.9451 | |
TY1-3 | 0.6784 | 1.1362 | 1.0000 | 0.9301 | 0.8602 | 0.0699 | 0.4578 | 0.9301 | |
TY1-4 | 0.7335 | 1.0982 | 1.0000 | 0.9501 | 0.9001 | 0.0499 | 0.3647 | 0.9501 | |
TY1-5 | 0.7419 | 1.1910 | 1.0000 | 0.9430 | 0.8860 | 0.0570 | 0.4491 | 0.9430 | |
TY1-9 | 0.6197 | 1.1824 | 1.0000 | 0.9084 | 0.8167 | 0.0916 | 0.5628 | 0.9084 | |
TY1-12 | 0.6940 | 1.1664 | 1.0000 | 0.9382 | 0.8764 | 0.0618 | 0.4723 | 0.9382 | |
TY1-14 | 0.7364 | 1.1159 | 1.0000 | 0.9510 | 0.9019 | 0.0490 | 0.3795 | 0.9510 | |
TY1-15 | 0.7350 | 1.1092 | 1.0000 | 0.9504 | 0.9008 | 0.0496 | 0.3742 | 0.9504 | |
TY1-20 | 0.7103 | 1.1400 | 1.0000 | 0.9404 | 0.8808 | 0.0596 | 0.4296 | 0.9404 | |
Average | / | 0.7012 | 1.1509 | 1.0000 | 0.9378 | 0.8756 | 0.0622 | 0.4497 | 0.9378 |
Qiongzhusi | N206-1 | 0.7277 | 1.0560 | 1.0000 | 0.9637 | 0.9274 | 0.0363 | 0.3283 | 0.9637 |
N206-2 | 0.6523 | 1.0817 | 1.0000 | 0.9399 | 0.8798 | 0.0601 | 0.4294 | 0.9399 | |
N206-3 | 0.6690 | 1.0813 | 1.0000 | 0.9438 | 0.8877 | 0.0562 | 0.4123 | 0.9438 | |
N206-4 | 0.6718 | 1.0834 | 1.0000 | 0.9443 | 0.8885 | 0.0557 | 0.4116 | 0.9443 | |
N206-5 | 0.6960 | 1.0797 | 1.0000 | 0.9496 | 0.8991 | 0.0504 | 0.3837 | 0.9496 | |
N206-6 | 0.6887 | 1.0869 | 1.0000 | 0.9489 | 0.8978 | 0.0511 | 0.3982 | 0.9489 | |
N206-8 | 0.7234 | 1.0724 | 1.0000 | 0.9585 | 0.9170 | 0.0415 | 0.3489 | 0.9585 | |
N206-9 | 0.6576 | 1.1009 | 1.0000 | 0.9391 | 0.8782 | 0.0609 | 0.4432 | 0.9391 | |
N206-10 | 0.7926 | 1.0694 | 1.0000 | 0.9690 | 0.9381 | 0.0310 | 0.2768 | 0.9690 | |
N206-11 | 0.7236 | 1.1002 | 1.0000 | 0.9530 | 0.9061 | 0.0470 | 0.3765 | 0.9530 | |
Average | / | 0.7003 | 1.0812 | 1.0000 | 0.9510 | 0.9020 | 0.0490 | 0.3809 | 0.9510 |
Formation | Sample | α10+ | α10− | α0 | α10− − α10+ | α0 − α10+ | α10− − α0 | Rd |
---|---|---|---|---|---|---|---|---|
Longmaxi | TY1-1 | 0.5968 | 1.3709 | 1.0531 | 0.7741 | 0.4563 | 0.3178 | 0.1385 |
TY1-2 | 0.6448 | 1.1566 | 1.0312 | 0.5117 | 0.3864 | 0.1253 | 0.2611 | |
TY1-3 | 0.6184 | 1.2044 | 1.0248 | 0.5860 | 0.4064 | 0.1796 | 0.2268 | |
TY1-4 | 0.6729 | 1.1295 | 1.0302 | 0.4566 | 0.3573 | 0.0993 | 0.2580 | |
TY1-5 | 0.6907 | 1.2597 | 1.0483 | 0.5690 | 0.3576 | 0.2114 | 0.1462 | |
TY1-9 | 0.5623 | 1.2555 | 1.0548 | 0.6932 | 0.4925 | 0.2007 | 0.2918 | |
TY1-12 | 0.6322 | 1.2543 | 1.0379 | 0.6221 | 0.4057 | 0.2164 | 0.1893 | |
TY1-14 | 0.6765 | 1.1626 | 1.0311 | 0.4861 | 0.3545 | 0.1315 | 0.2230 | |
TY1-15 | 0.6736 | 1.1467 | 1.0315 | 0.4730 | 0.3578 | 0.1152 | 0.2426 | |
TY1-20 | 0.6499 | 1.1920 | 1.0392 | 0.5420 | 0.3892 | 0.1528 | 0.2364 | |
Average | / | 0.6418 | 1.2132 | 1.0382 | 0.5714 | 0.3964 | 0.1750 | 0.2214 |
Qiongzhusi | N206-1 | 0.6589 | 1.0754 | 1.0177 | 0.4166 | 0.3588 | 0.0577 | 0.3011 |
N206-2 | 0.5886 | 1.1077 | 1.0274 | 0.5192 | 0.4389 | 0.0803 | 0.3585 | |
N206-3 | 0.6046 | 1.1111 | 1.0263 | 0.5064 | 0.4217 | 0.0847 | 0.3370 | |
N206-4 | 0.6073 | 1.1132 | 1.0266 | 0.5060 | 0.4193 | 0.0867 | 0.3326 | |
N206-5 | 0.6303 | 1.1059 | 1.0256 | 0.4756 | 0.3953 | 0.0803 | 0.3150 | |
N206-6 | 0.6227 | 1.1205 | 1.0259 | 0.4978 | 0.4032 | 0.0946 | 0.3085 | |
N206-8 | 0.6555 | 1.0967 | 1.0220 | 0.4413 | 0.3665 | 0.0747 | 0.2918 | |
N206-9 | 0.5948 | 1.1464 | 1.0291 | 0.5517 | 0.4343 | 0.1174 | 0.3169 | |
N206-10 | 0.7256 | 1.0978 | 1.0161 | 0.3722 | 0.2905 | 0.0817 | 0.2088 | |
N206-11 | 0.6596 | 1.1356 | 1.0286 | 0.4760 | 0.3690 | 0.1070 | 0.2620 | |
Average | / | 0.6348 | 1.1110 | 1.0245 | 0.4763 | 0.3898 | 0.0865 | 0.3032 |
Formation | Sample | D10+ | D10− | D0 | D1 | D2 | D0 − D1 | D10− − D10+ | H |
---|---|---|---|---|---|---|---|---|---|
Longmaxi | TY1-1 | 0.4529 | 1.1986 | 1.0000 | 0.8277 | 0.6553 | 0.1723 | 0.7457 | 0.8277 |
TY1-2 | 0.4115 | 1.1643 | 1.0000 | 0.8402 | 0.6804 | 0.1598 | 0.7528 | 0.8402 | |
TY1-3 | 0.4084 | 1.2231 | 1.0000 | 0.7950 | 0.5900 | 0.2050 | 0.8148 | 0.7950 | |
TY1-4 | 0.3205 | 1.1928 | 1.0000 | 0.7912 | 0.5824 | 0.2088 | 0.8724 | 0.7912 | |
TY1-5 | 0.3100 | 1.2345 | 1.0000 | 0.7804 | 0.5608 | 0.2196 | 0.9245 | 0.7804 | |
TY1-9 | 0.4714 | 1.1952 | 1.0000 | 0.8336 | 0.6671 | 0.1664 | 0.7238 | 0.8336 | |
TY1-12 | 0.4835 | 1.1630 | 1.0000 | 0.8608 | 0.7217 | 0.1392 | 0.6795 | 0.8608 | |
TY1-14 | 0.3501 | 1.2418 | 1.0000 | 0.8048 | 0.6097 | 0.1952 | 0.8916 | 0.8048 | |
TY1-15 | 0.4589 | 1.1954 | 1.0000 | 0.8596 | 0.7191 | 0.1404 | 0.7366 | 0.8596 | |
TY1-20 | 0.5186 | 1.1997 | 1.0000 | 0.8693 | 0.7387 | 0.1307 | 0.6811 | 0.8693 | |
Average | / | 0.4186 | 1.2008 | 1.0000 | 0.8263 | 0.6525 | 0.1737 | 0.7823 | 0.8263 |
Qiongzhusi | N206-1 | 0.2803 | 1.2313 | 1.0000 | 0.7186 | 0.4371 | 0.2814 | 0.9511 | 0.7186 |
N206-2 | 0.3376 | 1.2276 | 1.0000 | 0.7532 | 0.5063 | 0.2468 | 0.8900 | 0.7532 | |
N206-3 | 0.2404 | 1.3039 | 1.0000 | 0.7004 | 0.4007 | 0.2996 | 1.0636 | 0.7004 | |
N206-4 | 0.2290 | 1.2872 | 1.0000 | 0.6920 | 0.3840 | 0.3080 | 1.0581 | 0.6920 | |
N206-5 | 0.2964 | 1.2706 | 1.0000 | 0.7379 | 0.4759 | 0.2621 | 0.9741 | 0.7379 | |
N206-6 | 0.2363 | 1.2676 | 1.0000 | 0.6984 | 0.3969 | 0.3016 | 1.0313 | 0.6984 | |
N206-8 | 0.2198 | 1.2816 | 1.0000 | 0.6836 | 0.3672 | 0.3164 | 1.0618 | 0.6836 | |
N206-9 | 0.2073 | 1.2946 | 1.0000 | 0.6740 | 0.3481 | 0.3260 | 1.0873 | 0.6740 | |
N206-10 | 0.2008 | 1.3070 | 1.0000 | 0.6677 | 0.3354 | 0.3323 | 1.1062 | 0.6677 | |
N206-11 | 0.2108 | 1.2891 | 1.0000 | 0.6754 | 0.3507 | 0.3246 | 1.0782 | 0.6754 | |
Average | / | 0.2459 | 1.2761 | 1.0000 | 0.7001 | 0.4002 | 0.2999 | 1.0302 | 0.7001 |
Formation | Sample | α10+ | α10− | α0 | α10− − α10+ | α0 − α10+ | α10− − α0 | Rd |
---|---|---|---|---|---|---|---|---|
Longmaxi | TY1-1 | 0.4166 | 1.2356 | 1.0828 | 0.8190 | 0.6662 | 0.1528 | 0.5134 |
TY1-2 | 0.3615 | 1.2012 | 1.0652 | 0.8397 | 0.7037 | 0.1360 | 0.5677 | |
TY1-3 | 0.3738 | 1.2601 | 1.1019 | 0.8863 | 0.7281 | 0.1582 | 0.5699 | |
TY1-4 | 0.2850 | 1.2335 | 1.0737 | 0.9485 | 0.7887 | 0.1597 | 0.6290 | |
TY1-5 | 0.2725 | 1.2911 | 1.0876 | 1.0186 | 0.8151 | 0.2035 | 0.6116 | |
TY1-9 | 0.4332 | 1.2251 | 1.0860 | 0.7918 | 0.6528 | 0.1390 | 0.5137 | |
TY1-12 | 0.4372 | 1.1938 | 1.0661 | 0.7566 | 0.6289 | 0.1276 | 0.5013 | |
TY1-14 | 0.3047 | 1.2899 | 1.0946 | 0.9851 | 0.7899 | 0.1953 | 0.5946 | |
TY1-15 | 0.4097 | 1.2362 | 1.0733 | 0.8264 | 0.6636 | 0.1629 | 0.5007 | |
TY1-20 | 0.4725 | 1.2376 | 1.0770 | 0.7651 | 0.6046 | 0.1606 | 0.4440 | |
Average | / | 0.3767 | 1.2404 | 1.0808 | 0.8637 | 0.7042 | 0.1596 | 0.5446 |
Qiongzhusi | N206-1 | 0.2527 | 1.2627 | 1.1203 | 1.0100 | 0.8676 | 0.1424 | 0.7252 |
N206-2 | 0.3045 | 1.2701 | 1.1113 | 0.9656 | 0.8068 | 0.1587 | 0.6481 | |
N206-3 | 0.2163 | 1.3583 | 1.1462 | 1.1419 | 0.9298 | 0.2121 | 0.7177 | |
N206-4 | 0.2061 | 1.3374 | 1.1399 | 1.1313 | 0.9338 | 0.1975 | 0.7363 | |
N206-5 | 0.2668 | 1.3223 | 1.1276 | 1.0555 | 0.8608 | 0.1947 | 0.6661 | |
N206-6 | 0.2127 | 1.3079 | 1.1347 | 1.0952 | 0.9220 | 0.1732 | 0.7487 | |
N206-8 | 0.1979 | 1.3240 | 1.1408 | 1.1262 | 0.9429 | 0.1832 | 0.7597 | |
N206-9 | 0.1865 | 1.3346 | 1.1504 | 1.1481 | 0.9639 | 0.1842 | 0.7797 | |
N206-10 | 0.1807 | 1.3545 | 1.1529 | 1.1738 | 0.9722 | 0.2016 | 0.7706 | |
N206-11 | 0.1897 | 1.3278 | 1.1485 | 1.1381 | 0.9587 | 0.1794 | 0.7793 | |
Average | / | 0.2214 | 1.3200 | 1.1373 | 1.0986 | 0.9159 | 0.1827 | 0.7331 |
Formation | Sample | Image Porosity (φ%) | Volume Porosity (φ%) | Fractal Dimension | Lacunarity |
---|---|---|---|---|---|
Longmaxi | TY1-2 | 7.19 | 7.19 | 2.7049 | 0.1190 |
6.37 | 6.37 | 2.6333 | 0.1832 | ||
16.59 | 16.59 | 2.8418 | 0.0970 | ||
TY1-4 | 2.24 | 2.24 | 2.4191 | 0.2562 | |
2.64 | 2.64 | 2.4294 | 0.2864 | ||
3.26 | 3.26 | 2.5042 | 0.2187 | ||
13.51 | 13.51 | 2.7854 | 0.1302 | ||
11.61 | 11.61 | 2.7927 | 0.0949 | ||
TY1-6 | 4.71 | 4.71 | 2.5935 | 0.1725 | |
6.66 | 6.66 | 2.6597 | 0.1549 | ||
7.39 | 7.39 | 2.6768 | 0.1556 | ||
10.88 | 10.88 | 2.7804 | 0.0976 | ||
Average | 7.75 | 7.75 | 2.6518 | 0.1639 | |
Qiongzhusi | N206-2 | 11.78 | 11.78 | 2.7115 | 0.2536 |
2.57 | 2.57 | 2.4354 | 0.2697 | ||
2.65 | 2.65 | 2.4463 | 0.2545 | ||
3.31 | 3.31 | 2.4935 | 0.2379 | ||
2.48 | 2.48 | 2.4215 | 0.2828 | ||
N206-5 | 1.98 | 1.98 | 2.3792 | 0.2988 | |
1.3 | 1.3 | 2.3013 | 0.3012 | ||
2.24 | 2.24 | 2.4069 | 0.2779 | ||
N206-7 | 4.59 | 4.59 | 2.5610 | 0.2232 | |
1.58 | 1.58 | 2.3141 | 0.3513 | ||
Average | 3.45 | 3.45 | 2.4471 | 0.2751 |
Formation | Sample | Porosity (%) | P10 (MPa) | P20 (MPa) | P50 (MPa) | D50 (nm) | P10 CO2 (MPa) | P20 CO2 (MPa) |
---|---|---|---|---|---|---|---|---|
Longmaxi | TY1-1 | 0.6530 | 2.4975 | 13.398 | 118.106 | 12.4710 | 0.1998 | 1.0719 |
TY1-2 | 0.6403 | 2.6432 | 49.916 | 57.999 | 25.4478 | 0.2115 | 3.9933 | |
TY1-3 | 1.1000 | 2.1610 | 19.647 | 115.376 | 12.7554 | 0.1729 | 1.5718 | |
TY1-4 | 0.6750 | 6.9298 | 30.771 | 101.343 | 14.5348 | 0.5544 | 2.4617 | |
TY1-5 | 0.9248 | 3.2693 | 15.877 | 93.146 | 15.8134 | 0.2615 | 1.2702 | |
TY1-9 | 0.9190 | 2.2158 | 43.01 | 89.636 | 16.4259 | 0.1773 | 3.4408 | |
TY1-12 | 0.7645 | 36.3973 | 40.041 | 67.95 | 23.3977 | 2.9118 | 3.2032 | |
TY1-14 | 1.8240 | 3.4600 | 26.579 | 121.593 | 12.0952 | 0.2768 | 2.1263 | |
TY1-15 | 0.9911 | 1.9760 | 49.824 | 96.435 | 15.2562 | 0.1581 | 3.9859 | |
TY1-20 | 1.6119 | 10.005 | 42.205 | 149.775 | 9.8281 | 0.8004 | 3.3764 | |
Average | / | 1.0104 | 7.1555 | 33.127 | 101.136 | 15.8026 | 0.5725 | 2.6502 |
Qiongzhusi | N206-1 | 0.7207 | 0.2837 | 0.5469 | 1.3597 | 1084.47 | 0.0227 | 0.0437 |
N206-2 | 0.8750 | 0.2292 | 0.3821 | 1.1926 | 1239.86 | 0.0183 | 0.0306 | |
N206-3 | 2.5168 | 0.2014 | 0.2747 | 0.6588 | 2235.43 | 0.0161 | 0.0220 | |
N206-4 | 3.1863 | 0.1983 | 0.2694 | 0.6578 | 2238.88 | 0.0159 | 0.0215 | |
N206-5 | 0.7522 | 0.2715 | 0.5250 | 1.4041 | 1048.94 | 0.0217 | 0.0420 | |
N206-6 | 2.1046 | 0.2080 | 0.2872 | 0.6894 | 2136.17 | 0.0166 | 0.0230 | |
N206-8 | 0.8983 | 0.2419 | 0.4346 | 1.3414 | 1097.25 | 0.0194 | 0.0348 | |
N206-9 | 1.5371 | 0.1817 | 0.2389 | 0.5170 | 2849.71 | 0.0145 | 0.0191 | |
N206-10 | 2.4311 | 0.1948 | 0.2564 | 0.5881 | 2503.58 | 0.0156 | 0.0205 | |
N206-11 | 1.4642 | 0.2501 | 0.3809 | 0.9947 | 1481.04 | 0.0200 | 0.0305 | |
Average | / | 1.6486 | 0.2261 | 0.3596 | 0.9404 | 1791.53 | 0.0181 | 0.0288 |
Formation | Sample | dpore throat (um) | kRGPZ (nD) |
---|---|---|---|
Longmaxi | TY1-1 | 0.0126 | 3.86 × 10−3 |
TY1-2 | 0.0262 | 1.57 × 10−2 | |
TY1-3 | 0.0076 | 6.75 × 10−3 | |
TY1-4 | 0.0077 | 1.61 × 10−3 | |
TY1-5 | 0.0076 | 3.98 × 10−3 | |
TY1-9 | 0.0159 | 1.70 × 10−2 | |
TY1-12 | 0.0351 | 4.80 × 10−2 | |
TY1-14 | 0.0071 | 2.67 × 10−2 | |
TY1-15 | 0.0072 | 4.35 × 10−3 | |
TY1-20 | 0.0078 | 2.22 × 10−2 | |
Average | / | 0.0135 | 1.50 × 10−2 |
Qiongzhusi | N206-1 | 0.6547 | 1.40 × 101 |
N206-2 | 0.6547 | 2.50 × 101 | |
N206-3 | 0.6319 | 5.54 × 102 | |
N206-4 | 0.6319 | 1.13 × 103 | |
N206-5 | 0.5921 | 1.30 × 101 | |
N206-6 | 2.8010 | 6.37 × 103 | |
N206-8 | 0.5864 | 2.17 × 101 | |
N206-9 | 3.9190 | 4.86 × 103 | |
N206-10 | 5.1500 | 3.32 × 104 | |
N206-11 | 0.5981 | 9.78 × 101 | |
Average | / | 1.6220 | 4.63 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Yu, B.; Glover, P.W.J.; Lorinczi, P.; Wu, K.; Panaitescu, C.-T.; Wei, W.; Cui, J.; Shi, M. Comparative Analysis of CO2 Sequestration Potential in Shale Reservoirs: Insights from the Longmaxi and Qiongzhusi Formations. Minerals 2025, 15, 997. https://doi.org/10.3390/min15090997
Li B, Yu B, Glover PWJ, Lorinczi P, Wu K, Panaitescu C-T, Wei W, Cui J, Shi M. Comparative Analysis of CO2 Sequestration Potential in Shale Reservoirs: Insights from the Longmaxi and Qiongzhusi Formations. Minerals. 2025; 15(9):997. https://doi.org/10.3390/min15090997
Chicago/Turabian StyleLi, Bo, Bingsong Yu, Paul W. J. Glover, Piroska Lorinczi, Kejian Wu, Ciprian-Teodor Panaitescu, Wei Wei, Jingwei Cui, and Miao Shi. 2025. "Comparative Analysis of CO2 Sequestration Potential in Shale Reservoirs: Insights from the Longmaxi and Qiongzhusi Formations" Minerals 15, no. 9: 997. https://doi.org/10.3390/min15090997
APA StyleLi, B., Yu, B., Glover, P. W. J., Lorinczi, P., Wu, K., Panaitescu, C.-T., Wei, W., Cui, J., & Shi, M. (2025). Comparative Analysis of CO2 Sequestration Potential in Shale Reservoirs: Insights from the Longmaxi and Qiongzhusi Formations. Minerals, 15(9), 997. https://doi.org/10.3390/min15090997