Mineralogical Characterization and Provenance of Black Sand in the Xiahenan Area, Tarim Large Igneous Province
Abstract
1. Introduction
2. Geological Setting
3. Analytical Methods
3.1. TESCAN Integrated Mineral Analyzer (TIMA)
3.2. Electron Probe Micro-Analyzer (EPMA)
3.3. LA-ICP-MS Analysis of Magnetite
4. Mineral Composition and Classification of Grains from the Black Sand
- (1)
- Sand I: It is mainly composed of plagioclase (An90–100), ilmenite, olivine, and a small amount of magnetite. Irregular Fe–Ti oxides and olivine fill the spaces between the feldspars (Figure 3c). The content of magnetite in Sand I is relatively low, and the surface of the magnetite particles is clean and flat. Ilmenite within it can be seen in long, blade-like and lattice-like forms exsolved parallel to the (111) plane of the magnetite (Figure 4a). The ilmenite particles in Sand I are relatively large, occurring in anhedral to subhedral grains, and they often coexist with magnetite (Figure 4a). Olivine mostly coexists with ilmenite and often develops a corrosion rim structure (Figure 4b). Locally, olivine can be seen distributed in a poikilitic texture within the relatively large ilmenite grains.
- (2)
- Sand II: It is mainly composed of plagioclase (An0–10), magnetite, and a small amount of ilmenite and apatite (Figure 3d). The magnetite is distributed in the plagioclase (An0–10) in the form of star-shaped dots and sparse disseminations. The interior of the particles is rough, and the surface has many pits (Figure 4c,d). The ilmenite has a small particle size and mostly coexists with magnetite (Figure 4c).
- (3)
- Sand III: It is mainly composed of minerals such as magnetite, hornblende, ilmenite, and plagioclase (An10–90) (Figure 3e). The magnetite occurs in a vein-like form, cutting through the hornblende, with a vein width of about 2–5 μm (Figure 4e). The surface of the magnetite is clean, without exsolution traces. Ilmenite often coexists with magnetite (Figure 4f).
5. Chemical Composition of Characteristic Minerals
5.1. Magnetite
5.2. Ilmenite
5.3. Olivine
6. Discussion
6.1. Genesis of Minerals
6.1.1. Magnetite Genesis
6.1.2. Ilmenite Genesis
6.1.3. Olivine Genesis
6.2. Source of the Black Sand
7. Conclusions
- (1)
- The black sand is composed of grains that were eroded from three different magmatic rocks: Sand I is composed of plagioclase, ilmenite, olivine, and magnetite; Sand II is composed of plagioclase and fine-grained magnetite; and Sand III is composed of hornblende and vein-like magnetite.
- (2)
- Magnetite is present in all three types of sands. The magnetite in Sand I and Sand II is of magmatic origin, being the products of the weathering of magmatic rock at different stages of differentiation of mafic–ultramafic rocks. The magnetite in Sand III is distributed in veins and is of hydrothermal origin. Meanwhile, ilmenite and olivine are mainly distributed in Sand I, both exhibiting characteristics of magmatic origin.
- (3)
- The geochemical characteristics of the mineral elements of magnetite, ilmenite, and olivine indicate that the three types of black sand are all derived from the Xiahenan basalt. Basalt generated during magmatic events weathered to form Sand I and subsequently Sand II. During the post magmatic hydrothermal events, fine veins of magnetite developed and cut through the basalt. These basalts with developed veins formed Sand III after weathering.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Stage | Sample | CaO | MgO | TiO2 | SiO2 | Al2O3 | FeO | Fe2O3 | MnO | Cr2O3 | NiO | Na2O | K2O | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand Ⅰ | Mag Ⅰ-1 | b.d.l. | 0.14 | 15.90 | 0.07 | 2.05 | 44.02 | 35.32 | 1.97 | 0.34 | b.d.l. | 0.06 | 0.02 | 99.90 |
Mag Ⅰ-2 | b.d.l. | 0.24 | 20.27 | 0.02 | 2.42 | 47.47 | 25.25 | 1.77 | 0.25 | b.d.l. | b.d.l. | b.d.l. | 97.69 | |
Mag Ⅰ-3 | b.d.l. | 0.15 | 18.05 | 0.05 | 1.79 | 46.33 | 31.22 | 1.37 | 0.29 | 0.07 | 0.04 | 0.02 | 99.38 | |
Mag Ⅰ-4 | b.d.l. | 0.03 | 19.60 | 0.03 | 2.25 | 47.97 | 28.71 | 1.84 | 0.24 | 0.07 | 0.02 | b.d.l. | 100.76 | |
Mag Ⅰ-5 | b.d.l. | 1.40 | 16.23 | 0.04 | 2.64 | 43.53 | 33.78 | 0.40 | 0.24 | 0.06 | 0.02 | 0.01 | 98.34 | |
Mag Ⅰ-6 | b.d.l. | 1.55 | 21.27 | 0.32 | 2.17 | 47.10 | 24.61 | 1.84 | 0.28 | 0.03 | 0.02 | b.d.l. | 99.17 | |
Mag Ⅰ-7 | b.d.l. | 0.17 | 25.31 | 0.19 | 2.04 | 53.28 | 16.54 | 1.27 | 0.22 | 0.11 | 0.03 | 0.02 | 99.18 | |
Mag Ⅰ-9 | b.d.l. | 0.20 | 17.85 | 0.19 | 1.85 | 46.08 | 30.87 | 1.38 | 0.28 | 0.06 | 0.04 | b.d.l. | 98.80 | |
Mag Ⅰ-10 | b.d.l. | 2.08 | 15.45 | 0.02 | 0.11 | 41.74 | 39.75 | 0.55 | 0.09 | 0.15 | b.d.l. | b.d.l. | 99.92 | |
Sand Ⅱ | Mag Ⅱ-1 | 0.22 | 0.31 | 3.14 | 0.27 | 0.22 | 32.33 | 59.73 | 0.15 | 0.01 | 0.02 | 0.02 | 0.01 | 96.43 |
Mag Ⅱ-2 | b.d.l. | 0.73 | 3.53 | 1.26 | 0.18 | 34.76 | 59.31 | 0.10 | b.d.l. | 0.02 | 0.01 | 0.04 | 99.96 | |
Mag Ⅱ-3 | 0.13 | 3.99 | 8.68 | 0.00 | 1.21 | 31.87 | 52.84 | 1.09 | 0.06 | b.d.l. | b.d.l. | 0.03 | 99.90 | |
Mag Ⅱ-4 | b.d.l. | 3.85 | 8.18 | 0.07 | 1.33 | 31.37 | 52.36 | 1.11 | 0.05 | 0.06 | 0.01 | 0.03 | 98.42 | |
Mag Ⅱ-5 | 0.13 | 4.11 | 9.46 | 0.02 | 1.24 | 31.88 | 50.40 | 1.17 | 0.03 | 0.09 | 0.01 | 0.02 | 98.55 | |
Mag Ⅱ-6 | 0.12 | 4.84 | 10.32 | 0.04 | 0.54 | 31.20 | 48.80 | 0.99 | 0.02 | 0.03 | 0.03 | 0.01 | 96.93 | |
Mag Ⅱ-7 | b.d.l. | 1.27 | 4.67 | 0.33 | 0.19 | 33.25 | 58.69 | 0.21 | b.d.l. | b.d.l. | b.d.l. | 0.02 | 98.64 | |
Mag Ⅱ-8 | 0.04 | 0.65 | 3.81 | 0.37 | 0.20 | 33.81 | 60.43 | 0.06 | 0.01 | b.d.l. | 0.01 | 0.03 | 99.42 | |
Mag Ⅱ-9 | 0.02 | 0.34 | 2.66 | 1.33 | 0.38 | 34.31 | 59.98 | 0.21 | b.d.l. | 0.05 | 0.04 | 0.02 | 99.36 | |
Mag Ⅱ-10 | b.d.l. | 0.33 | 3.33 | 0.27 | 0.32 | 32.69 | 59.00 | 0.08 | 0.03 | 0.04 | b.d.l. | 0.01 | 96.11 | |
San Ⅲ | Mag Ⅲ-1 | 0.23 | 0.28 | 0.26 | 2.59 | 0.24 | 34.21 | 62.68 | 0.04 | 0.01 | b.d.l. | 0.06 | 0.02 | 100.62 |
Mag Ⅲ-2 | 0.26 | 0.14 | 0.36 | 2.26 | 0.23 | 33.76 | 62.74 | 0.06 | b.d.l. | 0.03 | 0.04 | 0.04 | 99.91 | |
Mag Ⅲ-3 | 0.22 | 0.23 | 0.40 | 2.48 | 0.19 | 32.61 | 59.01 | 0.03 | b.d.l. | b.d.l. | 0.05 | 0.04 | 95.26 | |
Mag Ⅲ-4 | 0.32 | 0.17 | 0.27 | 2.41 | 0.17 | 32.48 | 59.64 | 0.01 | b.d.l. | b.d.l. | 0.04 | 0.04 | 95.54 | |
Mag Ⅲ-5 | 0.37 | 0.19 | 0.48 | 2.34 | 0.16 | 32.65 | 59.79 | 0.02 | b.d.l. | b.d.l. | 0.13 | 0.03 | 96.16 | |
Mag Ⅲ-6 | 0.20 | 0.12 | 0.29 | 1.96 | 0.18 | 33.63 | 63.93 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.03 | 100.34 | |
Mag Ⅲ-7 | 0.12 | 0.05 | 0.43 | 1.35 | 0.13 | 33.46 | 65.82 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.03 | 101.39 | |
Mag Ⅲ-8 | 0.26 | 0.31 | 0.25 | 2.61 | 0.23 | 34.00 | 62.51 | 0.05 | b.d.l. | 0.04 | 0.03 | 0.04 | 100.32 | |
Mag Ⅲ-9 | 0.28 | 0.21 | 0.31 | 2.33 | 0.19 | 33.76 | 62.93 | 0.03 | 0.02 | 0.06 | 0.07 | 0.05 | 100.20 | |
Mag Ⅲ-10 | 0.30 | 0.42 | 0.28 | 2.70 | 0.19 | 34.07 | 62.60 | 0.05 | 0.03 | b.d.l. | 0.04 | 0.03 | 100.72 |
Serial Number | Sand Ⅰ | Sand Ⅱ | Sand Ⅲ | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mag1-1 | Mag1-2 | Mag1-3 | Mag1-4 | Mag1-5 | Mag1-6 | Mag2-1 | Mag2-2 | Mag2-3 | Mag2-4 | Mag3-1 | Mag3-2 | Mag3-3 | Mag3-4 | Mag3-5 | Mag3-6 | |
Y | 8.44 | 8.19 | 24.29 | 28.88 | 16.91 | 17.95 | 12.83 | 8.93 | 19.65 | 4.96 | 2.13 | 0.91 | 1.45 | 11.24 | 1.25 | 14.78 |
Pb | 27.01 | 23.15 | 18.18 | 17.25 | 70.39 | 108.03 | 61.43 | 37.84 | 135.42 | 115.37 | 16.92 | 12.83 | 14.38 | 29.80 | 17.45 | 39.54 |
Zr | 23.40 | 43.34 | 26.14 | 18.01 | 33.02 | 50.41 | 249.01 | 336.92 | 215.16 | 231.54 | 45.36 | 38.67 | 58.05 | 120.12 | 27.74 | 108.54 |
Hf | 0.44 | 1.07 | 0.26 | 0.16 | 0.66 | 0.98 | 5.71 | 6.93 | 4.18 | 4.25 | 0.44 | 0.31 | 0.52 | 1.9711 | 0.22 | 1.32 |
Al | 0.50 | 0.5481 | 0.12 | 0.08 | 0.36 | 1.72 | 2.67 | 1.09 | 1.80 | 1.551 | 0.47 | 0.26 | 2.18 | 2.01 | 0.28 | 3.14 |
Cu | 9.51 | 22.9112 | 6.83 | 4.97 | 36.97 | 50.95 | 18.56 | 6.05 | 49.73 | 29.37 | 8.05 | 2.45 | 14.18 | 12.54 | 4.43 | 26.85 |
Sn | 0.11 | 0.32 | 0.11 | 0.08 | 4.24 | 4.36 | 14.74 | 14.28 | 15.16 | 15.09 | 3.2 | 2.60 | 6.98 | 3.548 | 2.60 | 5.84 |
Ga | 1.07 | 1.05 | 1.12 | 1.23 | 1.16 | 3.91 | 12.760 | 5.74 | 7.92 | 6.07 | 1.77 | 0.75 | 2.80 | 5.68 | 0.97 | 8.37 |
Mn | 0.11 | 0.11 | 0.16 | 0.17 | 0.02 | 0.02 | 0.06 | 0.06 | 0.38 | 0.42 | 0.03 | 0.02 | 0.04 | 0.06 | 0.03 | 0.08 |
Mg | 0.86 | 0.88 | 0.93 | 1.26 | 0.13 | 0.17 | 1.42 | 0.65 | 1.70 | 1.45 | 0.24 | 0.13 | 0.64 | 0.72 | 0.11 | 0.49 |
Zn | 72.59 | 72.52 | 93.40 | 100.82 | 11.15 | 18.34 | 241.39 | 124.40 | 925.47 | 934.51 | 20.10 | 9.79 | 21.72 | 57.54 | 13.07 | 114.11 |
Co | 15.30 | 15.25 | 13.26 | 17.27 | 4.48 | 6.49 | 41.88 | 26.94 | 21.89 | 21.05 | 3.96 | 1.49 | 5.90 | 9.75 | 1.70 | 24.52 |
V | 3.02 | 3.77 | 0.88 | 0.70 | 31.93 | 36.70 | 368.61 | 400.25 | 386.65 | 546.54 | 39.30 | 76.98 | 68.82 | 78.53 | 41.71 | 195.03 |
Ni | 29.95 | 27.98 | 31.59 | 40.84 | 23.27 | 29.10 | 96.99 | 39.52 | 159.74 | 149.42 | 12.05 | 10.32 | 18.80 | 18.20 | 9.82 | 28.16 |
Cr | 1.46 | 1.13 | 0.11 | 0.49 | 3.32 | 6.58 | 3.81 | 29.42 | 15.96 | 9.91 | 1.01 | 0.57 | 0.34 | 0.91 | 0.51 | 2.66 |
La | 6.25 | 5.79 | 22.00 | 29.98 | 40.55 | 39.71 | 39.55 | 30.98 | 57.40 | 49.15 | 4.749 | 2.72 | 3.25 | 14.03 | 3.67 | 14.71 |
Ce | 11.23 | 10.29 | 43.29 | 59.06 | 76.12 | 80.12 | 76.16 | 55.60 | 81.44 | 66.78 | 5.02 | 3.08 | 3.87 | 24.95 | 4.38 | 18.05 |
Pr | 1.09 | 0.95 | 5.16 | 6.87 | 7.06 | 7.48 | 8.59 | 5.65 | 8.97 | 5.08 | 0.41 | 0.25 | 0.43 | 2.88 | 0.34 | 1.76 |
Nd | 3.72 | 3.15 | 20.59 | 28.17 | 24.25 | 26.23 | 34.16 | 21.47 | 35.26 | 15.93 | 1.59 | 0.87 | 1.63 | 12.16 | 1.10 | 8.14 |
Sm | 0.72 | 0.66 | 4.20 | 5.27 | 4.47 | 4.42 | 6.47 | 3.68 | 5.76 | 2.01 | 0.23 | 0.09 | 0.23 | 2.53 | 0.1524 | 1.71 |
Eu | 0.13 | 0.16 | 0.66 | 0.97 | 1.45 | 1.68 | 1.77 | 0.95 | 2.29 | 0.96 | 0.16 | 0.08 | 0.15 | 0.73 | 0.10 | 1.30 |
Gd | 0.99 | 0.74 | 4.05 | 5.47 | 3.63 | 3.671 | 4.911 | 2.88 | 5.02 | 1.53 | 0.33 | 0.12 | 0.33 | 2.63 | 0.19 | 2.12 |
Tb | 0.18 | 0.15 | 0.63 | 0.82 | 0.65 | 0.51 | 0.59 | 0.38 | 0.63 | 0.25 | 0.05 | 0.02 | 0.05 | 0.38 | 0.03 | 0.30 |
Dy | 1.25 | 1.16 | 3.64 | 4.55766 | 3.52 | 3.38 | 2.88 | 1.87 | 3.49 | 1.31 | 0.31 | 0.14 | 0.33 | 2.04 | 0.19 | 2.14 |
Ho | 0.33 | 0.33 | 0.79 | 0.98 | 0.69 | 0.71 | 0.53 | 0.33 | 0.66 | 0.23 | 0.08 | 0.02 | 0.05 | 0.43 | 0.04 | 0.51 |
Er | 1.12 | 1.08 | 2.54 | 2.73 | 1.87 | 1.89 | 1.39 | 0.94 | 1.89 | 0.73 | 0.34 | 0.14 | 0.16 | 1.21 | 0.15 | 2.07 |
Tm | 0.20 | 0.18 | 0.36 | 0.40 | 0.26 | 0.31 | 0.18 | 0.14 | 0.28 | 0.10 | 0.06 | 0.02 | 0.03 | 0.16 | 0.03 | 0.35 |
Yb | 1.58 | 1.65 | 2.60 | 2.51 | 1.50 | 2.28 | 1.05 | 0.89 | 1.67 | 0.76 | 0.40 | 0.23 | 0.21 | 1.16 | 0.24 | 2.83 |
Lu | 0.24 | 0.28 | 0.40 | 0.35 | 0.29 | 0.33 | 0.14 | 0.17 | 0.27 | 0.15 | 0.09 | 0.04 | 0.04 | 0.17 | 0.04 | 0.54 |
Sample Number | Ilm-1 | Ilm-2 | Ilm-3 | Ilm-4 | Ilm-5 | Ilm-6 | Ilm-7 | Ilm-8 | Ilm-9 | Ilm-10 | Ilm-11 | Ilm-12 | Ilm-13 | Ilm-14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CaO | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
MgO | 3.05 | 2.93 | 3.01 | 2.91 | 2.84 | 2.75 | 2.78 | 2.65 | 2.85 | 2.68 | 2.69 | 2.99 | 2.54 | 2.30 |
TiO2 | 50.29 | 50.36 | 50.26 | 49.93 | 50.31 | 50.59 | 50.79 | 50.55 | 50.00 | 50.62 | 50.60 | 50.33 | 51.54 | 49.85 |
SiO2 | 0.05 | b.d.l. | b.d.l. | 0.04 | 0.04 | 0.01 | 0.01 | b.d.l. | 0.01 | 0.04 | 0.02 | 0.03 | 0.01 | 0.03 |
Al2O3 | 0.02 | 0.05 | 0.05 | 0.06 | 0.05 | 0.08 | 0.06 | 0.11 | 0.08 | 0.08 | 0.09 | 0.05 | 0.06 | 0.08 |
FeO | 39.34 | 39.51 | 39.24 | 39.24 | 39.61 | 40.06 | 40.17 | 40.25 | 39.22 | 40.08 | 40.10 | 39.39 | 41.32 | 40.13 |
Fe2O3 | 6.21 | 6.30 | 6.77 | 5.80 | 5.45 | 6.36 | 4.74 | 5.92 | 6.23 | 5.66 | 5.25 | 5.87 | 3.68 | 6.25 |
MnO | 0.51 | 0.54 | 0.53 | 0.54 | 0.52 | 0.53 | 0.55 | 0.49 | 0.55 | 0.59 | 0.51 | 0.58 | 0.49 | 0.52 |
Cr2O3 | 0.10 | 0.06 | 0.05 | 0.09 | 0.03 | 0.01 | 0.02 | 0.06 | 0.06 | 0.05 | 0.07 | 0.13 | 0.01 | 0.03 |
NiO | b.d.l. | b.d.l. | 0.01 | b.d.l. | 0.03 | b.d.l. | b.d.l. | 0.01 | 0.04 | 0.04 | 0.02 | b.d.l. | 0.03 | b.d.l. |
Na2O | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.01 | b.d.l. | b.d.l. | 0.01 | 0.01 | 0.02 | b.d.l. | b.d.l. | 0.02 |
K2O | b.d.l. | 0.01 | 0.02 | b.d.l. | 0.02 | b.d.l. | b.d.l. | b.d.l. | 0.02 | 0.01 | 0.01 | b.d.l. | b.d.l. | 0.01 |
Total | 99.55 | 99.75 | 99.94 | 98.62 | 98.91 | 100.39 | 99.13 | 100.03 | 99.06 | 99.86 | 99.38 | 99.36 | 99.69 | 99.21 |
The number of cations based on three oxygen atoms | ||||||||||||||
Ti | 0.940 | 0.940 | 0.936 | 0.942 | 0.947 | 0.940 | 0.954 | 0.943 | 0.940 | 0.945 | 0.949 | 0.943 | 0.964 | 0.939 |
K | b.d.l. | b.d.l. | 0.001 | b.d.l. | 0.001 | b.d.l. | b.d.l. | b.d.l. | 0.001 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Si | 0.001 | b.d.l. | b.d.l. | 0.001 | 0.001 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.001 | 0.001 | 0.001 | b.d.l. | 0.001 |
Fe2+ | 0.817 | 0.820 | 0.812 | 0.823 | 0.829 | 0.827 | 0.839 | 0.834 | 0.819 | 0.832 | 0.836 | 0.820 | 0.859 | 0.841 |
Mg | 0.113 | 0.108 | 0.111 | 0.109 | 0.106 | 0.101 | 0.103 | 0.098 | 0.106 | 0.099 | 0.100 | 0.111 | 0.094 | 0.086 |
Mn | 0.011 | 0.011 | 0.011 | 0.011 | 0.011 | 0.011 | 0.012 | 0.010 | 0.012 | 0.012 | 0.011 | 0.012 | 0.010 | 0.011 |
Ca | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Fe3+ | 0.116 | 0.118 | 0.126 | 0.110 | 0.103 | 0.118 | 0.089 | 0.110 | 0.117 | 0.106 | 0.099 | 0.110 | 0.069 | 0.118 |
Cr | 0.002 | 0.001 | 0.001 | 0.002 | 0.001 | b.d.l. | b.d.l. | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | b.d.l. | b.d.l. |
Al | b.d.l. | 0.001 | 0.002 | 0.002 | 0.001 | 0.002 | 0.002 | 0.003 | 0.002 | 0.002 | 0.003 | 0.001 | 0.002 | 0.002 |
V | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Zn | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
P | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Cu | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Na | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.001 | 0.001 | 0.001 | b.d.l. | b.d.l. | 0.001 |
Pb | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Ni | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.001 | b.d.l. | b.d.l. | b.d.l. | 0.001 | 0.001 | b.d.l. | b.d.l. | 0.001 | b.d.l. |
Total | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 |
End-member composition/% | ||||||||||||||
Fe2O3 | 11.63 | 11.78 | 12.64 | 10.98 | 10.28 | 11.84 | 8.93 | 11.06 | 11.71 | 10.60 | 9.88 | 11.01 | 6.90 | 11.82 |
FeTiO3 | 81.85 | 82.10 | 81.37 | 82.52 | 83.06 | 82.83 | 84.01 | 83.63 | 82.19 | 83.43 | 83.84 | 82.18 | 86.05 | 84.30 |
MnTiO3 | 1.083 | 1.13 | 1.11 | 1.15 | 1.11 | 1.12 | 1.17 | 1.02 | 1.17 | 1.25 | 1.08 | 1.22 | 1.04 | 1.10 |
MgTiO3 | 11.31 | 10.85 | 11.11 | 10.90 | 10.63 | 10.12 | 10.35 | 9.81 | 10.64 | 9.94 | 10.02 | 11.12 | 9.44 | 8.60 |
Sample | Sample Number | CaO | NiO | SiO2 | FeO | MnO | MgO | Total | Fo | Fa | Ni (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Ol-1 | 0.25 | 0.02 | 34.65 | 43.83 | 0.70 | 19.91 | 99.36 | 44.35 | 54.76 | 141 |
Ol-2 | 0.30 | 0.07 | 34.65 | 44.03 | 0.71 | 20.94 | 100.69 | 45.48 | 53.64 | 558 | |
Ol-3 | 0.27 | 0.06 | 34.33 | 42.71 | 0.66 | 20.92 | 98.94 | 46.22 | 52.95 | 464 | |
Ol-4 | 0.22 | 0.05 | 34.80 | 42.52 | 0.64 | 21.00 | 99.24 | 46.44 | 52.75 | 416 | |
Ol-5 | 0.28 | 0.09 | 34.60 | 42.32 | 0.70 | 21.17 | 99.14 | 46.72 | 52.41 | 723 | |
Ol-6 | 0.22 | 0.02 | 34.61 | 43.19 | 0.74 | 20.79 | 99.57 | 45.75 | 53.32 | 181 | |
Ol-7 | 0.33 | 0.02 | 34.77 | 42.33 | 0.71 | 21.54 | 99.70 | 47.15 | 51.97 | 141 | |
Ol-8 | 0.25 | 0.05 | 34.67 | 42.80 | 0.72 | 21.12 | 99.60 | 46.38 | 52.72 | 401 | |
Ol-9 | 0.35 | 0.10 | 34.59 | 42.96 | 0.70 | 20.87 | 99.57 | 46.00 | 53.13 | 817 | |
Ol-10 | 0.30 | 0.05 | 34.56 | 42.52 | 0.69 | 20.95 | 99.07 | 46.35 | 52.78 | 361 | |
Ol-11 | 0.24 | 0.05 | 34.69 | 42.86 | 0.71 | 21.31 | 99.85 | 46.57 | 52.55 | 361 | |
Ol-12 | 0.30 | 0.05 | 34.74 | 43.57 | 0.75 | 20.43 | 99.83 | 45.11 | 53.96 | 401 | |
Ol-13 | 0.28 | 0.01 | 34.71 | 42.86 | 0.64 | 20.53 | 99.03 | 45.68 | 53.50 | 79 | |
Basalt | Ol-1 | 0.13 | 0.07 | 33.60 | 47.69 | 0.81 | 17.90 | 100.19 | 39.67 | 59.31 | 519 |
Ol-2 | 0.15 | 0.03 | 33.76 | 46.54 | 0.84 | 18.45 | 99.76 | 40.97 | 57.98 | 196 | |
Ol-3 | 0.11 | 0.02 | 33.77 | 46.42 | 0.81 | 18.40 | 99.53 | 40.97 | 58.00 | 181 | |
Ol-4 | 0.16 | 0.05 | 33.37 | 46.43 | 0.77 | 18.37 | 99.15 | 40.96 | 58.06 | 361 | |
Ol-5 | 0.15 | 0.07 | 33.57 | 46.48 | 0.77 | 18.67 | 99.69 | 41.32 | 57.72 | 519 | |
Ol-6 | 0.15 | 0.11 | 33.51 | 46.10 | 0.78 | 19.34 | 99.99 | 42.37 | 56.66 | 857 | |
Ol-7 | 0.16 | 0.06 | 33.98 | 45.38 | 0.81 | 19.48 | 99.87 | 42.91 | 56.08 | 503 | |
Ol-8 | 0.22 | 0.01 | 33.64 | 47.33 | 0.85 | 17.99 | 100.03 | 39.95 | 58.97 | 39 | |
Ol-9 | 0.12 | 0.03 | 33.75 | 45.53 | 0.84 | 19.54 | 99.80 | 42.88 | 56.07 | 244 | |
Ol-10 | 0.13 | 0.01 | 34.18 | 46.17 | 0.82 | 18.83 | 100.15 | 41.67 | 57.31 | 102 |
References
- Irvine, T.N. Crystallization sequences in Muskox intrusion and other layered intrusions-II. Origin of chromitite layers and similar deposits of other magmatic ores. Geochim. Cosmochim. Acta 1975, 39, 991–1020. [Google Scholar] [CrossRef]
- Charlier, B.; Duchesne, J.C.; Vander Auwera, J. Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe–Ti ores in massif-type anorthosites. Chem. Geol. 2006, 234, 264–290. [Google Scholar] [CrossRef]
- Peck, D.C.; Huminicki, M. Value of mineral deposits associated with mafic and ultramafic magmatism: Implications for exploration strategies. Ore Geol. Rev. 2016, 72, 269–298. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Hou, T.; Cheng, Z.G. Mineralization related to Large Igneous Provinces. Acta Geol. Sin. 2022, 96, 131–154, (In Chinese with English Abstract). [Google Scholar]
- Bai, Z.J.; Zhong, H.; Hu, R.Z.; Zhu, W.G. World-class Fe-Ti-V oxide deposits formed in feeder conduits by removing cotectic silicates. Econ. Geol. 2021, 116, 681–691. [Google Scholar] [CrossRef]
- Zhang, C.L.; Xu, Y.G.; Li, Z.X.; Wang, H.-Y.; Ye, H.-M. Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume. Lithos 2010, 119, 537–552. [Google Scholar] [CrossRef]
- Cao, J.; Wang, C.Y.; Xing, C.M.; Xu, Y.G. Origin of the early Permian Wajilitag igneous complex and associated Fe–Ti oxide mineralization in the Tarim large igneous province, NW China. J. Asian Earth Sci. 2014, 84, 51–68. [Google Scholar] [CrossRef]
- Li, Z.L.; Li, Y.Q.; Zou, S.Y.; Sun, H.W.; Li, D.X. The Temporospatial Characteristics and Magma Dynamics of the Early Permian Tarim Large Igneous Province. Bull. Mineral. Petrol. Geochem. 2017, 36, 418–431+358, (In Chinese with English Abstract). [Google Scholar]
- Zhu, S.Z.; Huang, X.L.; Yang, F.; He, P.L. Petrology and geochemistry of early Permian mafic–ultramafic rocks in the Wajilitag area of the southwestern Tarim Large Igneous Province: Insights into Fe-rich magma of mantle plume activity. Lithos 2021, 398–399, 106355. [Google Scholar] [CrossRef]
- Li, L.X.; Chen, M.H.; Li, H.M.; Yang, C.D.; Yang, G.; Fu, Q.; Chen, G.; Ren, C.H.; Tang, W.H.; An, P.; et al. Iron-titanium metallogenic characteristics and resource utilization prospect of Xiaohaizi intrusion in Bachu area, Xinjiang. Miner. Depos. 2024, 43, 29–42, (In Chinese with English Abstract). [Google Scholar]
- Xu, Y.G.; Wei, X.; Luo, Z.Y.; Liu, H.Q.; Cao, J. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos 2014, 204, 20–35. [Google Scholar] [CrossRef]
- Yu, X.; Yang, S.F.; Chen, H.L.; Li, Z.L.; Li, Y.Q.; Qiu, Z.L. Petrogeochemical characteristics and geological implications of layered basalts from Xiahenan area, Tarim Basin. Acta Petrol. Sin. 2017, 33, 1729–1740. [Google Scholar]
- Lu, S.N.; Li, H.K.; Zhang, C.L.; Niu, G.H. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Res. 2008, 160, 94–107. [Google Scholar] [CrossRef]
- Zhang, C.L.; Li, X.H.; Li, Z.X.; Ye, H.M.; Li, C.N. A Permian Layered Intrusive Complex in the Western Tarim Block, Northwestern China: Product of a Ca. 275-Ma Mantle Plume. J. Geol. 2008, 116, 269–287. [Google Scholar] [CrossRef]
- Zhang, C.L.; Li, H.K.; Santosh, M.; Li, Z.X.; Zou, H.B.; Wang, H. Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG–potassic granite suite and Paleoproterozoic metamorphic belt. J. Asian Earth Sci. 2012, 47, 5–20. [Google Scholar] [CrossRef]
- Wei, X.; Xu, Y.G.; Feng, Y.X.; Zhao, J.X. Plume–lithosphere interaction in the generation of the Tarim large Igneous Province, NW China: Geochronological and geochemical constraints. Am. J. Sci. 2014, 314, 314–356. [Google Scholar] [CrossRef]
- Liu, H.; Leng, W. Tarim large igneous province caused by a wide and wet mantle plume. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019001. [Google Scholar] [CrossRef]
- Yang, S.F.; Chen, H.L.; Li, Z.L. Early Permian Tarim large igneous province in northwest China. Sci. China Earth Sci. 2013, 56, 2015–2026. [Google Scholar] [CrossRef]
- Tian, W.; Campbell, I.H.; Allen, C.M.; Guan, P.; Pan, W.Q.; Chen, M.M.; Yu, H.J.; Zhu, W.P. The Tarim picrite-basaltrhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contrib. Mineral. Petrol. 2010, 160, 407–425, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Lang, M.D.; Cheng, Z.G.; Zhang, Z.C.; Wang, F.Y.; Mao, Q.; Santosh, M. Hisingerite in trachydacite from Tarim: Implications for voluminous felsic rocks in transitional Large Igneous Province. J. Earth Sci. 2020, 31, 875–883. [Google Scholar] [CrossRef]
- Xia, M.Z.; Jiang, C.Y.; Li, C.; Xia, Z.D. Characteristics of a newly discovered Ni-Cu sulfide deposit hosted in the Poyi ultramafic intrusion, Tarim Craton, NW China. Econ. Geol. 2013, 108, 1865–1878. [Google Scholar] [CrossRef]
- Lu, Y.G.; Lesher, C.M.; Deng, J. Geochemistry and genesis of magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) deposits in China. Ore Geol. Rev. 2019, 107, 863–887. [Google Scholar] [CrossRef]
- Ruan, B.X.; Wei, W.; Yu, Y.M.; Lv, X.B. Geology, geochronology, mineral chemistry and geochemistry of the Hongnieshan mafic–ultramafic complex in the Beishan area, southern Central Asian orogenic Belt, NW China: Implications for petrogenesis and regional Ni mineralization. Ore Geol. Rev. 2021, 139, 104423. [Google Scholar] [CrossRef]
- Liu, C.S.; Guo, J.L.; Zhang, L.T. Analysis of Sequence Stratigraphy of Permian in Bachu and Tazhong of Tarim Basin. Bull. Geol. Sci. Technol. 2009, 28, 28–33, (In Chinese with English Abstract). [Google Scholar]
- Xu, G.F.; Shao, J.L. The typomorphic characteristicsand significances of the magnetite. Geol. Explor. 1979, 3, 30–37, (In Chinese with English Abstract). [Google Scholar]
- Nadoll, P.; Angerer, T.; Mauk, J.L.; French, D.; Walshe, J. The chemistry of hydrothermal magnetite: A review. Ore Geol. Rev. 2014, 61, 1–32. [Google Scholar] [CrossRef]
- Huang, X.W.; Gao, J.F.; Qi, L.; Meng, Y.M.; Wang, Y.C.; Dai, Z.H. In-situ LA–ICP–MS trace elements analysis of magnetite: The Fenghuangshan Cu-Fe-Au deposit, Tongling, Eastern China. Ore Geol. Rev. 2016, 72, 746–759. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.J.; Beaudoin, G.; Méric, J.; Boutroy, E.; Potvin, D.C. Trace elements in magnetite as petrogenetic indicators. Miner. Depos. 2014, 49, 785–796. [Google Scholar] [CrossRef]
- Hong, S.; Zuo, R.G.; Hu, H.; Xiong, Y.H.; Wang, Z.Y. Magnetite geochemical big data: Dataset construction and application in genetic classification of ore deposits. Earth Sci. Front. 2021, 28, 87–96, (In Chinese with English Abstract). [Google Scholar]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Weill, D.F.; Drake, M.J. Europium anomaly in plagioclase feldspar: Experimental results and semiquantitative model. Science 1973, 180, 1059–1060. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust: Treatise on Geochemistry, 3rd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar]
- McDonough, W.F.; Sun, S. Chemical and Isotopic Systematics of Oceanic Basalts Implications for Mantle Composition and Processes; Geological Society, London, Special Publications: London, UK, 1989; Volume 42, pp. 333–347. [Google Scholar]
- Yan, Q.S.; Shi, X.F. Olivine chemistry of Cenozoic basalts in the South China Sea and the potential temperature of the mantle. Acta Petrol. Sin. 2008, 24, 176–184, (In Chinese with English Abstract). [Google Scholar]
- Mirmohammadi, M.; Kananian, A.; Tarkian, M. The nature and origin of Fe-Ti-P-rich rocks in the Qareaghaj mafic-ultramafic intrusion, NW Iran. Mineral. Petrol. 2007, 91, 71–100. [Google Scholar] [CrossRef]
- Dong, Z.X. Ilmenite in kimberlites. Acta Mineral. Sin. 1991, 11, 141–147, (In Chinese with English Abstract). [Google Scholar]
- Gambogi, J. Titanium and Titanium Dioxide. In Mineral Commodity Summaries 2021; U.S. Geological Survey: Reston, VA, USA, 2021; pp. 174–175. [Google Scholar]
- Chen, G.Y.; Sun, D.S.; Yin, H.A. Genetic Mineralogy and Prospecting Mineralogy; Chongqing Press: Chongqing, China, 1989; pp. 1–874, (In Chinese with English Abstract). [Google Scholar]
- Dupuis, C.; Beaudoin, G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner. Depos. 2011, 46, 319–335. [Google Scholar] [CrossRef]
- Seifert, W.; Rhede, D.; Förster, H.J.; Naumann, R.; Thomas, R.; Ulrych, J. Macrocrystic Corundum and Fe–Ti Oxide Minerals Entrained in Alkali Basalts from the Eger (Ohře) Rift: Mg—Fe3+-rich Ilmenite as Tracer of an Oxidized Upper Mantle. Miner. Petrol. 2014, 7, 324–340. [Google Scholar] [CrossRef]
- Wager, L.R.; Brown, G.M. Layered Igneous Rocks, 1st ed.; Oliver and Boyd: Edinburgh, UK; London, UK, 1968; p. 588. [Google Scholar]
- Wilson, J.R.; Robins, B.; Nielsen, F.M.; Duchesne, J.C. The Bjerkhreim–Sokndal layered intrusion, Southwest Norway. In Layered Intrusions; Cawthorn, R.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 231–255. [Google Scholar]
- Pang, K.N.; Li, C.; Zhou, M.F.; Ripley, E.M. Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China. Lithos 2009, 110, 199–214. [Google Scholar] [CrossRef]
- Park, Y.R.; Ripley, E.M.; Miller, J.J.D.; Li, C.; Mariga, J.; Shafer, P. Stable isotopic constraints on fluid–rock interaction and Cu–PGE–S redistribution in the Sonju Lake Intrusion, Minnesota. Econ. Geol. 2004, 99, 325–338. [Google Scholar] [CrossRef]
- Li, C.; Naldrett, A.J.; Ripley, E.M. Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic-ultramafic intrusions: Principles, modeling, and examples from Voisey’s Bay. Earth Sci. Front. 2007, 14, 177–183. [Google Scholar] [CrossRef]
- Yu, X.; Yang, S.F.; Chen, H.L.; Chen, Z.Q.; Li, Z.L. Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U–Pb dating and geochemical characteristics. Gondwana Res. 2011, 20, 485–497. [Google Scholar] [CrossRef]
- Li, Y.Q.; Li, Z.L.; Chen, H.L.; Yang, S.F.; Yu, X. Mineral characteristics and metallogenesis of the Wajilitag layered mafic–ultramafic intrusion and associated Fe–Ti–V oxide deposit in the Tarim large igneous province, northwest China. J. Asian Earth Sci. 2012, 49, 161–174. [Google Scholar] [CrossRef]
- Roeder, P.; Emslie, R. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 1970, 29, 275–289. [Google Scholar] [CrossRef]
- Zheng, Q.R. Calculation of the Fe3+ and Fe2+ contents in silicate and Ti-Fe oxide minerals from EPMA data. Acta Mineral. Sin. 1983, 10, 55–62, (In Chinese with English Abstract). [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zeng, R.; Duan, S.; Pan, J.; Liang, D.; Yan, J.; Wan, J.; Liu, Q.; Zhang, Y. Mineralogical Characterization and Provenance of Black Sand in the Xiahenan Area, Tarim Large Igneous Province. Minerals 2025, 15, 884. https://doi.org/10.3390/min15080884
Zhang S, Zeng R, Duan S, Pan J, Liang D, Yan J, Wan J, Liu Q, Zhang Y. Mineralogical Characterization and Provenance of Black Sand in the Xiahenan Area, Tarim Large Igneous Province. Minerals. 2025; 15(8):884. https://doi.org/10.3390/min15080884
Chicago/Turabian StyleZhang, Songqiu, Renyu Zeng, Shigang Duan, Jiayong Pan, Dong Liang, Jie Yan, Jianjun Wan, Qing Liu, and You Zhang. 2025. "Mineralogical Characterization and Provenance of Black Sand in the Xiahenan Area, Tarim Large Igneous Province" Minerals 15, no. 8: 884. https://doi.org/10.3390/min15080884
APA StyleZhang, S., Zeng, R., Duan, S., Pan, J., Liang, D., Yan, J., Wan, J., Liu, Q., & Zhang, Y. (2025). Mineralogical Characterization and Provenance of Black Sand in the Xiahenan Area, Tarim Large Igneous Province. Minerals, 15(8), 884. https://doi.org/10.3390/min15080884