Carbonatogenic Bacteria from Corallium rubrum Colonies
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of C. rubrum Colonies and Sampling of Coenosarc
2.2. Isolation of Culturable Heterotrophic Bacteria Associated with C. rubrum Coenosarc
2.3. Screening of Carbonatogenic Strains
2.4. Carbonate Bioformation
2.5. Molecular Identification of Bacterial Strains
2.6. Biochemical Activity of Bacterial Strains
2.7. Carbonate Solubilisation
2.8. Micro X-Ray Diffraction and SEM Observation of Precipitated Crystals
2.9. SEM Observation of Precipitated Crystals
3. Results and Discussion
3.1. Isolation of Culturable Heterotrophic Bacteria from C. rubrum
3.2. Screening of Carbonatogenic Strains
3.3. Carbonate Bioformation
3.3.1. Molecular Identification of Bacterial Strains
3.3.2. Biochemical Characteristics of Carbonatogenic Isolates
3.3.3. Carbonate and Calcium Phytate Solubilisation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, T.; Dittrich, M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Front. Bioeng. Biotechnol. 2016, 4, 4. [Google Scholar] [CrossRef]
- Jarwar, M.A.; Dumontet, S.; Pasquale, V.; Chen, C. Microbial Induced Carbonate Precipitation: Environments, applications, and mechanisms. Geomicrobiol. J. 2022, 39, 833–851. [Google Scholar] [CrossRef]
- Robles-Fernández, A.; Areias, C.; Daffonchio, D.; Vahrenkamp, V.C.; Sánchez-Román, M. The role of microorganisms in the nucleation of carbonates, environmental implications and applications. Minerals 2022, 12, 1562. [Google Scholar] [CrossRef]
- Riding, R. Microbialites, Stromatolites, and Thrombolites. In Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series; Reitner, J., Thiel, V., Eds.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Bosak, T.; Knoll, A.H.; Petroff, A.P. The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 2013, 41, 21–44. [Google Scholar] [CrossRef]
- Stal, L.J. Cyanobacterial mats and stromatolites. In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Whitton, B., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 65–125. [Google Scholar] [CrossRef]
- Ivanov, V.; Stabnikov, V. Biocoating of Surfaces. In Construction Biotechnology. Green Energy and Technology; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Rosenberg, E.; Koren, O.; Reshef, L.; Efrony, R.; Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 2007, 5, 355–362. [Google Scholar] [CrossRef]
- Luna, G.M.; Biavasco, F.; Danovaro, R. Bacteria associated with the rapid tissue necrosis of stony corals. Environ. Microbiol. 2007, 9, 1851–1857. [Google Scholar] [CrossRef]
- Sweet, M.; Villela, H.; Keller-Costa, T.; Costa, R.; Romano, S.; Bourne, D.G.; Cárdenas, A.; Huggett, M.J.; Kerwin, A.H.; Kuek, F.; et al. Insights into the cultured bacterial fraction of corals. Msystems 2021, 6, 1249. [Google Scholar] [CrossRef]
- Cattaneo-Vietti, R.; Bo, M.; Cannas, R.; Cau, A.; Follesa, C.; Meliadò, E.; Russo, G.F.; Sandulli, R.; Santangelo, G.; Bavestrello, G. An overexploited Italian treasure: Past and present distribution and exploitation of the precious red coral Corallium rubrum (L., 1758) (Cnidaria: Anthozoa). Ital. J. Zool. 2016, 83, 443–455. [Google Scholar] [CrossRef]
- Bavestrello, G.; Bo, M.; Canese, S.; Sandulli, R.; Cattaneo-Vietti, R. The red coral populations of the gulfs of Naples and Salerno: Human impact and deep mass mortalities. Ital. J. Zool. 2014, 81, 552–563. [Google Scholar] [CrossRef]
- Ferrigno, F.; Appolloni, L.; Donnarumma, L.; Rendina, F.; Russo, G.F.; Sandulli, R. Red coral (Corallium rubrum) populations and coralligenous characterization within “Regno di Nettuno MPA” (Tyrrhenian Sea, Italy). Eur. Zool. J. 2020, 87, 203–213. [Google Scholar] [CrossRef]
- Van de Water, J.A.; Allemand, D.; Ferrier-Pagès, C. Bacterial symbionts of the precious coral Corallium rubrum are differentially distributed across colony-specific compartments and differ among colormorphs. Environ. Microbiol. Rep. 2024, 16, e13236. [Google Scholar] [CrossRef]
- Koren, O.; Rosenberg, E. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl. Environ. Microbiol. 2006, 72, 5254–5259. [Google Scholar] [CrossRef]
- Kushmaro, A.; Loya, Y.; Fine, M.; Rosenberg, E. Bacterial infection and coral bleaching. Nature 1996, 380, 396. [Google Scholar] [CrossRef]
- Vezzulli, L.; Previati, M.; Pruzzo, C.; Marchese, A.; Bourne, D.G.; Cerrano, C. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ. Microbiol. 2010, 12, 2007–2019. [Google Scholar] [CrossRef]
- Pasquale, V.; Guida, M.; Cennamo, P.; Mastascusa, V.; Greco, M.; Sandulli, R. Cultivable heterotrophic bacteria associated to Corallium rubrum. Biol. Mar. Mediterr. 2011, 18, 274–275. [Google Scholar]
- Roeselers, G.; Van Loosdrecht, M.C.M. Microbial phytase-induced calcium-phosphate precipitation—A potential soil stabilization method. Folia Microbiol. 2010, 55, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Avramenko, M.; Nakashima, K.; Takano, C.; Kawasaki, S. Ecofriendly solidification of sand using microbially induced calcium phosphate precipitation. Sci. Rep. 2024, 14, 12412. [Google Scholar] [CrossRef] [PubMed]
- Graziani, G.; Sassoni, E.; Franzoni, E.; Scherer, G.W. Hydroxyapatite coatings for marble protection: Optimization of calcite covering and acid resistance. Appl. Surf. Sci. 2016, 368, 241–257. [Google Scholar] [CrossRef]
- Castro-Alonso, M.J.; Montañez-Hernandez, L.E.; Sanchez-Muñoz, M.A.; Macias Franco, M.R.; Narayanasamy, R.; Balagurusamy, N. Microbially Induced Calcium Carbonate Precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Front. Mater. 2019, 6, 126. [Google Scholar] [CrossRef]
- Jarwar, M.A.; Del Buey, P.; Sanz-Montero, M.E.; Dumontet, S.; Chianese, E.; Pasquale, V. Co-precipitation of Cd, Cr, Pb, Zn, and carbonates using Vibrio harveyi strain isolated from Mediterranean Sea sediment. Minerals 2023, 13, 627. [Google Scholar] [CrossRef]
- Okwadha, G.D.; Li, J. Optimum conditions for microbial carbonate precipitation. Chemosphere 2010, 81, 1143–1148. [Google Scholar] [CrossRef]
- Pasquale, V.; Fiore, S.; Hlayem, D.; Lettino, A.; Huertas, F.J.; Chianese, E.; Dumontet, S. Biomineralization of carbonates induced by the fungi Paecilomyces inflatus and Plectosphaerella cucumerina. Int. Biodeterior. Biodegrad. 2019, 140, 57–66. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Sato, T.; Weightman, A.J.; Martin, T.A.; Fry, J.C.; Hiom, S.J.; Wade, W.G. Design and evaluation of useful bacterium specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 1998, 64, 795–799. [Google Scholar] [CrossRef]
- Murray, P.R.; Baron, E.J.; Pfaller, M.A.; Tenover, F.C.; Yolken, R.H. (Eds.) Manual of Clinical Microbiology, 6th ed.; American Society for Microbiology: Washington, DC, USA, 1995; pp. 444–445. [Google Scholar]
- Anastasio, M.; Pepe, O.; Cirillo, T.; Palomba, S.; Blaiotta, G.; Villani, F. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation. J. Food Sci. 2010, 75, M28–M35. [Google Scholar] [CrossRef] [PubMed]
- Thakur, R.; Srivastava, S.; Yadav, S. Multitrait Pseudomonas sp. isolated from the rhizosphere of Bergenia ciliata acts as a growth-promoting bioinoculant for plants. Front. Sustain. Food Syst. 2023, 7, 1097587. [Google Scholar] [CrossRef]
- Sepúlveda, S.; Duarte-Nass, C.; Rivas, M.; Azócar, L.; Ramírez, A.; Toledo-Alarcón, J.; Gutiérrez, L.; Jeison, D.; Torres-Aravena, Á. Testing the capacity of Staphylococcus equorum for calcium and copper removal through MICP process. Minerals 2021, 11, 905. [Google Scholar] [CrossRef]
- Li, X.G.; Zhang, W.J.; Xiao, X.; Jian, H.H.; Jiang, T.; Tang, H.Z.; Qi, X.Q.; Wu, L.F. Pressure-regulated gene expression and enzymatic activity of the two periplasmic nitrate reductases in the deep-sea bacterium Shewanella piezotolerans WP3. Front. Microbiol. 2018, 9, 3173. [Google Scholar] [CrossRef]
- Manzella, G.M.; Gambetta, M. Implementation of real-time quality control procedures by means of a probabilistic estimate of seawater temperature and its temporal evolution. J. Atmos. Ocean. Technol. 2013, 30, 609–625. [Google Scholar] [CrossRef]
- Sparnocchia, S.; Schiano, M.E.; Picco, P.; Bozzano, R.; Cappelletti, A. The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean). Ann. Geophys. 2006, 24, 443–452. [Google Scholar] [CrossRef]
- Schleifer, K.H.; Kilpper-Bälz, R.; Devriese, L.A. Staphylococcus arlettae sp. nov., S. equorum sp. nov. and S. kloosii sp. nov.: Three new coagulase-negative, novobiocin-resistant species from animals. Syst. Appl. Microbiol. 1984, 5, 501–509. [Google Scholar] [CrossRef]
- Nováková, D.; Sedláček, I.; Pantůček, R.; Štětina, V.; Švec, P.; Petráš, P. Staphylococcus equorum and Staphylococcus succinus isolated from human clinical specimens. J. Med. Microbiol. 2006, 55, 523–528. [Google Scholar] [CrossRef]
- Irlinger, F.; Loux, V.; Bento, P.; Gibrat, J.F.; Straub, C.; Bonnarme, P.; Landaud, S.; Monnet, C. Genome sequence of Staphylococcus equorum subsp. equorum Mu2, isolated from a French smear-ripened cheese. J. Bacteriol. 2012, 194, 5141–5142. [Google Scholar] [CrossRef]
- Place, R.B.; Hiestand, D.; Gallmann, H.R.; Teuber, M. Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheeses. Syst. Appl. Microbiol. 2003, 26, 30–37. [Google Scholar] [CrossRef]
- Leroy, S.; Lebert, I.; Chacornac, J.P.; Chavant, P.; Bernardi, T.; Talon, R. Genetic diversity and biofilm formation of Staphylococcus equorum isolated from naturally fermented sausages and their manufacturing environment. Int. J. Food Microbiol. 2009, 134, 46–51. [Google Scholar] [CrossRef]
- Jeong, D.W.; Han, S.; Lee, J.H. Safety and technological characterization of Staphylococcus equorum isolates from jeotgal, a Korean high-salt-fermented seafood, for starter development. Int. J. Food Microbiol. 2014, 188, 108–115. [Google Scholar] [CrossRef]
- Jeong, D.W.; Heo, S.; Ryu, S.; Blom, J.; Lee, J.H. Genomic insights into the virulence and salt tolerance of Staphylococcus equorum. Sci. Rep. 2017, 7, 5383. [Google Scholar] [CrossRef]
- Wu, S.; Blake, J.I.; Guo, L.; Zhou, W. Naturally occurring and biomimetic synthesized calcite spherulites. Cryst. Growth Des. 2020, 20, 3537–3545. [Google Scholar] [CrossRef]
- Chafetz, H.; Barth, J.; Cook, M.; Guo, X.; Zhou, J. Origins of carbonate spherulites: Implications for Brazilian Aptian pre-salt reservoir. Sediment. Geol. 2018, 365, 21–33. [Google Scholar] [CrossRef]
- Mann, S.; Didymus, J.M.; Sanderson, N.P.; Heywood, B.R.; Samper, E.J.A. Morphological influence of functionalized and non-functionalized a, w-dicarboxylates on calcite crystallization. J. Chem. Soc. Faraday Trans. 1990, 86, 1873–1880. [Google Scholar] [CrossRef]
- Freeman, C.L.; Asteriadis, I.; Yang, M.; Harding, J.H. Interactions of organic molecules with calcite and magnesite surfaces. J. Phys. Chem. C 2009, 113, 3666–3673. [Google Scholar] [CrossRef]
- Shen, J.W.; Li, C.; van der Vegt, N.F.A.; Peter, C. Understanding the control of mineralization by polyelectrolyte additives: Simulation of preferential binding to calcite surfaces. J. Phys. Chem. C 2013, 117, 6904–6913. [Google Scholar] [CrossRef]
- Pasquale, V.; Romano, V.; Guida, M.; Mastascusa, V.; Greco, M.; Sandulli, R. Hydrolytic exoenzyme screening of heterotrophic bacteria associated with Corallium rubrum. Biol. Mar. Mediterr. 2012, 19, 188–189. [Google Scholar]
- Chiou, S.F.; Kuo, J.; Wong, T.Y.; Fan, T.Y.; Tew, K.S.; Liu, J.K. Analysis of the coral associated bacterial community structures in healthy and diseased corals from off-shore of southern Taiwan. J. Environ. Sci. Health Part B 2010, 45, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhang, X.; Xu, X.; He, F.; Qi, S. Diversity and chemical defense role of culturable non-actinobacterial bacteria isolated from the South China Sea gorgonians. J. Microbiol. Biotechnol. 2013, 23, 437–443. [Google Scholar] [CrossRef]
- Deng, H.; He, C.; Zhou, Z.; Liu, C.; Tan, K.; Wang, N.; Jiang, B.; Gao, X.; Liu, W. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture 2009, 287, 18–27. [Google Scholar] [CrossRef]
- Ture, M.; Misir, S.; Altuntas, C.; Kutlu, I. A survey of some bacterial fish pathogens on whiting (Merlangius merlanguseuxinus) in eastern Black Sea coast, Turkey. Turk. J. Fish. Aquat. Sci. 2018, 18, 1325–1329. [Google Scholar] [CrossRef]
- Hill, J.E.; Richardson, A.E. Isolation and assessment of microorganisms that utilize phytate. In Inositol Phosphates: Linking Agriculture and the Environment; Turner, B.L., Richardson, A.E., Mullaney, E.J., Eds.; CAB International Publ.: Wallingford, UK, 2007; pp. 61–77. Available online: http://hdl.handle.net/102.100.100/125489?index=1 (accessed on 15 May 2025).
- Oppliger, A.; Charrière, N.; Droz, P.O.; Rinsoz, T. Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Ann. Occup. Hyg. 2008, 52, 405–412. [Google Scholar] [CrossRef]
- Sun, H.; Xie, Z.; Yang, X.; Yang, B.; Liao, B.; Yin, J.; Xiao, B. New insights into microbial and metabolite signatures of coral bleaching. Sci. Total Environ. 2023, 892, 164258. [Google Scholar] [CrossRef]
- Shnit-Orland, M.; Sivan, A.; Kushmaro, A. Shewanella corallii sp. nov., a marine bacterium isolated from a Red Sea coral. Int. J. Syst. Evol. Microbiol. 2010, 60, 2293–2297. [Google Scholar] [CrossRef]
- Zeng, Z.; Tice, M.M. Promotion and nucleation of carbonate precipitation during microbial iron reduction. Geobiology 2014, 12, 362–371. [Google Scholar] [CrossRef]
- De Muynck, W.; Verbeken, K.; De Belie, N.; Verstraete, W. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol. Eng. 2010, 36, 99–111. [Google Scholar] [CrossRef]
- Hammes, F.; Verstraete, W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Re/Views Environ. Sci. Bio/Technol. 2002, 1, 3–7. [Google Scholar] [CrossRef]
- Subhas, A.V.; Adkins, J.F.; Rollins, N.E.; Naviaux, J.; Erez, J.; Berelson, W.M. Catalysis and chemical mechanisms of calcite dissolution in seawater. Proc. Natl. Acad. Sci. USA 2017, 114, 8175–8180. [Google Scholar] [CrossRef]
- Cubillas, P.; Köhler, S.; Prieto, M.; Chaïrat, C.; Oelkers, E.H. Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chem. Geol. 2005, 216, 59–77. [Google Scholar] [CrossRef]
- Kraus, E.A.; Beeler, S.R.; Mors, R.A.; Floyd, J.G.; Stamps, B.W.; Nunn, H.S.; Stevenson, B.S.; Johnson, H.A.; Shapiro, R.S.; Loyd, S.J.; et al. Microscale Biosignatures and Abiotic Mineral Authigenesis in Little Hot Creek, California. Front. Microbiol. 2018, 9, 997. [Google Scholar] [CrossRef]
- Lian, B.; Chen, Y.; Zhu, L.; Yang, R. Effect of Microbial Weathering on Carbonate Rocks. Earth Sci. Front. 2008, 15, 90–99. [Google Scholar] [CrossRef]
- Bennett, P.C.; Hiebert, F.K.; Rogers, J.R. Microbial control of mineral–groundwater equilibria: Macroscale to microscale. Hydrogeol. J. 2000, 8, 47–62. [Google Scholar] [CrossRef]
- Berthelin, J. Microbial weathering processes in natural environments. In Physical and Chemical Weathering in Geochemical Cycles; Springer: Dordrecht, The Netherlands, 1988; pp. 33–59. [Google Scholar] [CrossRef]
Sampling Site | Sample | Geographic Coordinates | Depth of Sampling (m) |
---|---|---|---|
1 | L 1–5 * | 43°44.67′ N 7°40.917′ E | 73 |
2 | L 6–10 * | 44°17.80′ N 9°12.140′ E | 68 |
3 | T 11–14 * | 42°38.40′ N 10°6.49′ E | 70 |
4 | T 15–19 * | 42°25.08′ N 10°04.81′ E | 85 |
5 | C 20–21 * | 40°45.386′ N 14°10.849′ E | 100 |
6 | C 22–25 * | 40°46.090′ N 14°16.165′ E | 120 |
7 | C-26 | 40°34.520′ N 14°25.022′ E | 180 |
8 | C 27–28 * | 40°34.619′ N 14°24.688′ E | 90 |
9 | C 29–31 * | 40°44.275′ N 14°01.097′ E | 60 |
10 | C 32 | 40°42.246′ N 13°50.944′ E | 120 |
11 | C 33 | 40°43.673′ N 13°49.493′ E | 80 |
12 | C 34–35 * | 40°44.987′ N 14°01.589′ E | 50 |
C. rubrum Samples | CHB UFC/cm2 | Number of Colonial Morphotypes | Strains Showing Ca++ Precipitation in CBB ≥ 67% | Carbonatogenic Strain Identification | |
---|---|---|---|---|---|
Code | Species (Accession Number) | ||||
L-1 | 150 | 8 | 0 | n.a. | n.a. |
L-2 | 18 | 6 | 2 | L-21 | Staphylococcus equorum (MH712951.1) |
L-22 | Staphylococcus equorum (LN774671.1) | ||||
L-3 | 33 | 4 | 0 | n.a. | n.a. |
L-4 | 180 | 5 | 0 | n.a. | n.a. |
L-5 | 5,400,000 | 9 | 4 | L-51 | Staphylococcus equorum (LN774671.1) |
L-52 | Staphylococcus equorum (KY940339.1) | ||||
L-53 | Staphylococcus equorum (LN774671.1) | ||||
L-54 | Staphylococcus equorum (LN774671.1) | ||||
L-6 | 9 | 2 | 1 | L-61 | Staphylococcus equorum (KY940339.1) |
L-7 | 6 | 5 | 1 | L-71 | Staphylococcus equorum (LN774671.1) |
L-8 | 18 | 6 | 2 | L-81 | Staphylococcus equorum (LN774671.1) |
L-82 | Shewanella sp. (KC592373.1) | ||||
L-9 | 18 | 3 | 2 | L-91 | Staphylococcus xylosus (MK696228.1) |
L-92 | Staphylococcus equorum (KY940339.1) | ||||
L-10 | 12 | 2 | 1 | L-101 | Staphylococcus equorum (LN774671.1) |
T-11 | 210 | 5 | 1 | T-111 | Staphylococcus equorum (KY940339.1) |
T-12 | 60 | 4 | 1 | T-121 | Staphylococcus equorum (KY940339.1) |
T-13 | 360 | 2 | 0 | n.a. | n.a. |
T-14 | 600 | 6 | 1 | T-141 | Staphylococcus equorum (LN774671.1) |
T-15 | 240 | 1 | 1 | T-151 | Staphylococcus equorum (LN774671.1) |
T-16 | 600 | 7 | 1 | T-161 | Staphylococcus equorum (LN774671.1) |
T-17 | 27,000 | 5 | 1 | T-171 | Staphylococcus equorum (LN774671.1) |
T-18 | 24,000 | 5 | 1 | T-181 | Staphylococcus equorum (LN774671.1) |
T-19 | 90,000 | 3 | 1 | T-191 | Staphylococcus equorum (LN774671.1) |
C-20 | 360 | 6 | 1 | C-201 | Staphylococcus equorum (KY940339.1) |
C-21 | 24 | 4 | 0 | n.a. | n.a. |
C-22 | 360 | 7 | 1 | C-221 | Staphylococcus equorum (KY940339.1) |
C-23 | 1,200,000 | 4 | 1 | C-231 | Staphylococcus equorum (LN774671.1) |
C-24 | 60 | 7 | 1 | C-241 | Staphylococcus equorum (KY940339.1) |
C-25 | 120 | 5 | 0 | n.a. | n.a. |
C-26 | 150 | 5 | 0 | n.a. | n.a |
C-27 | 45,300 | 7 | 0 | n.a. | n.a |
C-28 | 210 | 4 | 0 | n.a. | n.a. |
C-29 | 3 | 3 | 0 | n.a. | n.a. |
C-30 | 9 | 4 | 0 | n.a. | n.a. |
C-31 | 60 | 4 | 0 | n.a. | n.a. |
C-32 | 10 | 3 | 0 | n.a. | n.a. |
C-33 | 15 | 4 | 1 | C-331 | Staphylococcus equorum (LN774671.1) |
C-34 | 3,000,000 | 10 | 0 | n.a. | n.a. |
C-35 | 6,000,000 | 10 | 2 | C-351 | Staphylococcus equorum (KY940339.1) |
C-352 | Staphylococcus equorum (LN774671.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquale, V.; Sandulli, R.; Chianese, E.; Lettino, A.; Sanz-Montero, M.E.; Jarwar, M.A.; Dumontet, S. Carbonatogenic Bacteria from Corallium rubrum Colonies. Minerals 2025, 15, 839. https://doi.org/10.3390/min15080839
Pasquale V, Sandulli R, Chianese E, Lettino A, Sanz-Montero ME, Jarwar MA, Dumontet S. Carbonatogenic Bacteria from Corallium rubrum Colonies. Minerals. 2025; 15(8):839. https://doi.org/10.3390/min15080839
Chicago/Turabian StylePasquale, Vincenzo, Roberto Sandulli, Elena Chianese, Antonio Lettino, Maria Esther Sanz-Montero, Mazhar Ali Jarwar, and Stefano Dumontet. 2025. "Carbonatogenic Bacteria from Corallium rubrum Colonies" Minerals 15, no. 8: 839. https://doi.org/10.3390/min15080839
APA StylePasquale, V., Sandulli, R., Chianese, E., Lettino, A., Sanz-Montero, M. E., Jarwar, M. A., & Dumontet, S. (2025). Carbonatogenic Bacteria from Corallium rubrum Colonies. Minerals, 15(8), 839. https://doi.org/10.3390/min15080839