Report of CA. 760 Ma Mafic Rocks in the Eastern Himalayan Orogen: Petrogenesis and Geodynamic Implications
Abstract
1. Introduction
2. Geological Setting and Samples
3. Analytical Methods
3.1. Zircon U–Pb Dating and Zircon Trace Element
3.2. Zircon Hf Isotopic Compositons
3.3. Whole-Rock Major and Trace Element Analyses
3.4. Whole-Rock Sr–Nd Isotopes
4. Results
4.1. Zircon U–Pb Ages and Trace Element Compositions
4.2. Zircon Hf Isotopes
4.3. Major and Trace Elements
4.4. Whole-Rock Sr–Nd Isotopes
5. Discussion
5.1. Alteration and Metamorphism Effects
5.2. Crustal Contamination and Crystal Fractionation
5.3. Petrogenesis
5.4. Geodynamic Implications
5.4.1. Tectonic Setting
5.4.2. A Possible Neoproterozoic Evolutionary Model for the Indian–Himalayan Terrane
6. Conclusions
- In situ zircon U–Pb geochronology indicates the presence of ca. 760 Ma Neoproterozoic magmatism within the Himalayan orogen.
- These mafic rocks can be classified into two geochemically distinct groups. Group 1 is enriched in incompatible elements and exhibits relatively higher initial (87Sr/86Sr)ᵢ ratios, lower positive whole-rock εNd(t) values, and lower positive zircon εHf(t) values, consistent with an E-MORB-like affinity and suggesting a lithospheric mantle source. In contrast, Group 2 shows lower initial (87Sr/86Sr)ᵢ ratios and higher positive whole-rock εNd(t) and zircon εHf(t) values, consistent with an N-MORB-like affinity and indicating an origin involving interaction between the lithospheric mantle and depleted asthenospheric mantle.
- The ca. 760 Ma mafic rocks in the eastern Himalayan orogen are interpreted as products of an intracontinental rift setting. These findings support a tectonic transition of the Indian–Himalayan terrane from an arc to a back-arc and finally to a continental rift between the Early and Middle Neoproterozoic.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G.M.; Zhang, L.K.; Cao, H.W.; Yang, C.; Huang, Y.; Liang, W.; Fu, J.G.; Dong, S.L.; Xia, X.B.; et al. Neoproterozoic bimodal magmatism in the eastern Himalayan orogen: Tectonic implications for the Rodinia supercontinent evolution. Gondwana Res. 2021, 94, 87–105. [Google Scholar] [CrossRef]
- Yin, A.; Dubey, C.S.; Kelty, T.K.; Webb, A.A.G.; Harrison, T.M.; Chou, C.Y.; Célérier, J. Geologic correlation of the Himalayan orogen and Indian craton: Part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya. GSA Bull. 2010, 122, 360–395. [Google Scholar]
- Ahmad, I.; Shuhab, K.; Thomas, L.; Burke, K.; Jehan, N. Isotopic ages for alkaline igneous rocks, including a 26 Ma ignimbrite, from the Peshawar plain of northern Pakistan and their tectonic implications. J. Asian Earth Sci. 2013, 62, 414–424. [Google Scholar] [CrossRef]
- Ding, H.X.; Zhang, Z.M. Neoproterozoic granitoids in the eastern Himalayan orogen and their tectonic implications. Precambrian Res. 2016, 285, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, L.; Gao, L.E.; Guo, C.; Hou, K.; Zhang, L.; Wang, W.; Sun, H. Neoproterozoic magmatism in eastern Himalayan terrane. Sci. Bull. 2017, 62, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Santosh, M.; Xiao, W.J.; Tsunogae, T.; Chetty, T.R.K.; Yellappa, T. The Neoproterozoic subduction complex in southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly. Precambrian Res. 2012, 192–195, 190–208. [Google Scholar] [CrossRef]
- de Wall, H.; Pandit, M.K.; Dotzler, R.; Just, J. Cryogenian transpression and granite intrusion along the western margin of Rodinia (Mt. Abu region): Magnetic fabric and geochemical inferences on Neoproterozoic geodynamics of the NW Indian block. Tectonophysics 2012, 554–557, 143–158. [Google Scholar] [CrossRef]
- Cawood, P.A.; Wang, Y.J.; Xu, Y.J.; Zhao, G.C. Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere? Geology 2013, 41, 903–906. [Google Scholar] [CrossRef]
- Wang, W.; Pandit, M.K.; Zhao, J.H.; Chen, W.T.; Zheng, J.P. Slab break-off triggered lithosphere-asthenosphere interaction at a convergent margin. The Neoproterozoic bimodal magmatism in NW India. Lithos 2018, 296–299, 281–296. [Google Scholar] [CrossRef]
- Zhao, J.H.; Pandit, M.K.; Wang, W.; Xia, X.P. Neoproterozoic tectonothermal evolution of NW India: Evidence from geochemistry and geochronology of granitoids. Lithos 2018, 316–317, 330–346. [Google Scholar] [CrossRef]
- DiPietro, J.A.; Isachsen, C.E. U-Pb zircon ages from the Indian plate in northwest Pakistan and their significance to Himalayan and pre-Himalayan geologic history. Tectonics 2001, 20, 510–525. [Google Scholar]
- Zhang, Z.M.; Dong, X.; Liu, F.; Lin, Y.H.; Yan, R.; Santosh, M. Tectonic evolution of the Amdo terrane, central Tibet: Petrochemistry and zircon U-Pb geochronology. J. Geol. 2012, 120, 431–451. [Google Scholar] [CrossRef]
- Singh, S.; Barley, M.E.; Brown, S.J.; Jain, A.K.; Manickavasagam, R.M. SHRIMP U-Pb in zircon geochronology of the Chor granitoid: Evidence for Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India. Precambrian Res. 2002, 18, 285–292. [Google Scholar] [CrossRef]
- Richards, A.; Argles, T.; Harris, N.; Parrish, R.; Ahmad, T.; Darbyshire, F.; Draganits, E. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet. Sci. Lett. 2005, 236, 773–796. [Google Scholar] [CrossRef]
- Van Lente, B.; Ashwal, L.; Pandit, M.; Bowring, S.; Torsvik, T. Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: Implications for late Precambrian tectonic evolution of the Aravalli Craton. Precambrian Res. 2009, 170, 202–222. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Z.M.; Santosh, M.; Wang, W.; Yu, F.; Liu, F. Late Neoproterozoic thermal events in the northern Lhasa terrane, south Tibet: Zircon chronology and tectonic implications. J. Geodyn. 2011, 52, 389–405. [Google Scholar] [CrossRef]
- Yang, C.X.; Santosh, M.; Shaji, E.; Tsunogae, T. Neoproterozoic felsic magmatism in southern Kerala, India: The building blocks of Gondwana. Geol. J. 2020, 55, 5355–5383. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G.M.; Zhang, L.K.; Qing, C.S.; Huang, Y.; Liang, W.; Cao, H.W.; Wang, Y.Y.; Dong, S.L.; Lu, L.; et al. Genesis of the Mingsai Au deposit, southern Tibet: Constraints from geology, fluid inclusions, 40Ar/39Ar geochronology, H–O isotopes, and in situ sulfur isotope compositions of pyrite. Ore Geol. Rev. 2020, 122, 103488. [Google Scholar] [CrossRef]
- Kohn, M.J. Himalayan metamorphism and its tectonic implications. Annu. Rev. Earth Planet. Sci. 2014, 42, 381–419. [Google Scholar] [CrossRef]
- Le Fort, P. Himalaya: The collided range. Am. J. Sci. 1975, 275A, 1–44. [Google Scholar]
- Searle, M.P.; Godin, L. The South Tibetan Detachment System and the Manaslu Leucogranite: A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J. Geol. 2003, 111, 505–523. [Google Scholar] [CrossRef]
- Cawood, P.A.; Johnson, M.R.W.; Nemchin, A.A. Early Paleozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett. 2007, 255, 70–84. [Google Scholar]
- Goscombe, B.; Gray, D.; Hand, M. Crustal architecture of the Himalayan metamorphic front in eastern Nepal. Gondwana Res. 2006, 10, 232–255. [Google Scholar] [CrossRef]
- Goscombe, B.; Gray, D.; Foster, D. Metamorphic response to collision in the Central Himalayan Orogen. Gondwana Res. 2018, 57, 191–265. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Earth Planet. Sci. Lett. 2000, 28, 211–280. [Google Scholar]
- Qi, X.X.; Li, T.F.; Meng, X.J.; Yu, C.L. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault–fold belt in southern Tibet, and its constraint on antimony-gold polymetallic minerogenesis. Acta Petrol. Sin. 2008, 24, 1638–1648, (In Chinese with English Abstract). [Google Scholar]
- Richards, A.; Parrish, R.; Harris, N.; Argles, T.; Zhang, L. Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology 2006, 34, 341–344. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhang, J.J.; Santosh, M.; Liu, J.; Yan, S.Y.; Guo, L. Andean-type orogeny in the Himalayas of south Tibet: Implications for early Paleozoic tectonics along the Indian margin of Gondwana. Lithos 2012, 154, 248–262. [Google Scholar] [CrossRef]
- Gao, L.E.; Zeng, L.; Hu, G.; Wang, Y.; Wang, Q.; Guo, C.; Hou, K. Early Paleozoic magmatism along the northern margin of East Gondwana. Lithos 2019, 334–335, 25–41. [Google Scholar] [CrossRef]
- Zhang, L.K.; Li, G.M.; Santosh, M.; Cao, H.W.; Dong, S.L.; Zhang, Z.; Fu, J.G.; Xia, X.B.; Huang, Y.; Liang, W.; et al. Cambrian magmatism in the Tethys Himalaya and implications for the evolution of the Proto-Tethys along the northern Gondwana margin: A case study and overview. Geol. J. 2019, 54, 2545–2565. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.K.; Li, G.M.; Liang, W.; Xia, X.B.; Fu, J.G.; Dong, S.L.; Ma, G.T. The Cuonadong Gneiss Dome of North Himalaya: A New Member of Gneiss Dome and a New Proposition form the Ore-controlling Role of North Himalaya Gneiss Domes. Acta Geosci. Sin. 2017, 38, 754–766, (In Chinese with English Abstract). [Google Scholar]
- Huang, Y.; Cao, H.W.; Li, G.M.; Brueckner, S.M.; Zhang, Z.; Dong, L.; Dai, Z.W.; Lu, L.; Li, Y.B. Middle–Late Triassic bimodal intrusive rocks from the Tethyan Himalaya in South Tibet: Geochronology, petrogenesis and tectonic implications. Lithos 2018, 318–319, 78–90. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, J.; Wang, X.; Putthapiban, P.; Zhang, B.; Liu, K.; Huang, T. Late Triassic back-arc spreading and initial opening of the Neo-Tethyan Ocean in the northern margin of Gondwana: Evidences from Late Triassic BABB-type basalts in the Tethyan Himalaya, Southern Tibet. Lithos 2020, 358–359, 105408. [Google Scholar] [CrossRef]
- Walsh, J.M.J.; Buckman, S.; Nutman, A.P.; Zhou, R. The significance of Upper Jurassic felsic volcanic rocks within the incipient, intraoceanic Dras Arc, Ladakh, NW Himalaya. Gondwana Res. 2021, 90, 199–219. [Google Scholar] [CrossRef]
- Ma, L.; Kerr, A.C.; Wang, Q.; Jiang, Z.Q.; Hu, W.L. Early Cretaceous (~140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: Products of crust-mantle interaction during lithospheric extension. Lithos 2018, 300–301, 212–226. [Google Scholar] [CrossRef]
- Hu, X.; Jansa, L.; Chen, L.; Griffin, W.L.; O’Reilly, S.Y.; Wang, J. Provenance of Lower Cretaceous Wölong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sediment. Geol. 2010, 223, 193–205. [Google Scholar] [CrossRef]
- Tian, Y.; Gong, J.; Chen, H.; Guo, L.; Xu, Q.; Chen, L.; Lin, X.; Cheng, X.; Yang, R.; Zhao, L.; et al. Early Cretaceous bimodal magmatism in the eastern Tethyan Himalayas, Tibet: Indicative of records on precursory continental rifting and initial breakup of eastern Gondwana. Lithos 2019, 324–325, 699–715. [Google Scholar] [CrossRef]
- Zhu, D.C.; Mo, X.X.; Pan, G.T.; Zhao, Z.D.; Dong, G.C.; Shi, Y.R.; Liao, Z.L.; Wang, L.Q.; Zhou, C.Y. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet: Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere? Lithos 2008, 100, 147–173. [Google Scholar] [CrossRef]
- Zhu, D.C.; Chung, S.L.; Mo, X.X.; Zhao, Z.D.; Niu, Y.; Song, B.; Yang, Y.H. The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology 2009, 37, 583–586. [Google Scholar] [CrossRef]
- Le Fort, P. Manaslu leucogranite: A collision signature of the Himalaya: A model for its genesis and emplacement. J. Geophys. Res. Solid Earth 1981, 86, 10545–10568. [Google Scholar] [CrossRef]
- Searle, M.P. Emplacement of Himalayan leucogranites by magma injection along giant sill complexes: Examples from the Cho Oyu, Gyachung Kang and Everest leucogranites (Nepal Himalaya). J. Asian Earth Sci. 1999, 17, 773–783. [Google Scholar] [CrossRef]
- Zeng, L.S.; Gao, L.E.; Xie, K.J.; Jing, L.Z. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet. Sci. Lett. 2011, 303, 251–266. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liu, Z.C.; Liu, X.C.; Ji, W.Q. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrol. Sin. 2015, 31, 688–723, (In Chinese with English Abstract). [Google Scholar]
- Wu, F.Y.; Liu, X.C.; Liu, Z.C.; Wang, R.C.; Xie, L.; Wang, J.M.; Ji, W.Q.; Yang, L.; Liu, C.; Khanal, G.P.; et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos 2020, 352–353, 105319. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Hou, Z.Q.; Fu, Q.; Zhu, D.C.; Liang, W.; Xu, P.Y. Mantle inputs to Himalayan anatexis: Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves. Lithos 2016, 264, 125–140. [Google Scholar] [CrossRef]
- Liu, Z.C.; Wu, F.Y.; Ji, W.Q.; Wang, J.G.; Liu, C.Z. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos 2014, 208–209, 118–136. [Google Scholar] [CrossRef]
- Liu, Z.C.; Wu, F.Y.; Liu, X.C.; Wang, J.G.; Yin, R.; Qiu, Z.L.; Ji, W.Q.; Yang, L. Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet. Lithos 2019, 340–341, 71–86. [Google Scholar] [CrossRef]
- Cao, H.W.; Li, G.M.; Zhang, Z.; Zhang, L.K.; Dong, S.L.; Xia, X.B.; Liang, W.; Fu, J.G.; Huang, Y.; Xiang, A.P.; et al. Miocene Sn polymetallic mineralization in the Tethyan Himalaya, southeastern Tibet: A case study of the Cuonadong deposit. Ore Geol. Rev. 2020, 119, 103403. [Google Scholar] [CrossRef]
- Xiang, A.; Li, W.; Li, G.; Dai, Z.; Yu, H.; Yang, F. Mineralogy, isotope geochemistry and ore genesis of the Miocene Cuonadong leucogranite-related Be-W-Sn skarn deposit in Southern Tibet. J. Asian Earth Sci. 2020, 196, 104358. [Google Scholar] [CrossRef]
- Xie, L.; Tao, X.; Wang, R.; Wu, F.; Liu, C.; Liu, X.; Li, X.; Zhang, R. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be–Nb–Ta and hydrothermal Be–W–Sn mineralization. Lithos 2020, 354–355, 105286. [Google Scholar] [CrossRef]
- Fu, J.; Li, G.; Wang, G.; Zhang, L.; Liang, W.; Zhang, Z.; Zhang, X.; Huang, Y. Synchronous granite intrusion and E–W extension in the Cuonadong dome, southern Tibet, China: Evidence from field observations and thermochronologic results. Int. J. Earth Sci. 2018, 107, 2023–2041. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Hu, Z.C.; Zhang, W.; Liu, Y.S.; Gao, S.; Li, M.; Zong, K.Q.; Chen, H.H.; Hu, S.H. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Liu, W.; Yang, L.; Zhang, W.; Tong, X.; Lin, L.; Zong, K.Q.; Li, M.; et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1391–1399. [Google Scholar] [CrossRef]
- Fisher, C.M.; Vervoort, J.D.; Hanchar, J.M. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chem. Geol. 2014, 363, 125–133. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Chauvel, C.; Albarède, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Goldstein, S.L.; O’Nions, R.K.; Hamilton, P.J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett. 1984, 70, 221–236. [Google Scholar] [CrossRef]
- Peucat, J.J.; Jegouzo, P.; Vidal, P.; Bernard-Griffiths, J. Continental crust formation seen through the Sr and Nd isotope systematics of S-type granites in the Hercynian belt of western France. Earth Planet. Sci. Lett. 1988, 88, 60–68. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.S.; Yang, Y.H.; Hu, Z.C. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci. 2016, 1, 5–27. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Minerageny of zircon and it’s restrict on the explanation for U-Pb age. Chin. Sci. Bull. 2004, 49, 1589–1602, (In Chinese with English Abstract). [Google Scholar]
- Schulz, B.; Klemd, R.; Brätz, H. Host rock compositional controls on zircon trace-element signatures in metabasites from the Austroalpine basement. Geochim. Cosmochim. Acta 2006, 70, 697–710. [Google Scholar] [CrossRef]
- El-Bialy, M.Z.; Ali, K.A. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600–614Ma) post-collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian-Nubian Shield. Chem. Geol. 2013, 360–361, 54–73. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth Planet. Sci. Lett. 1976, 28, 459–469. [Google Scholar] [CrossRef]
- Miyashiro, A. Volcanic rock series in island arcs and active continental margins. Am. J. Sci. 1974, 274, 321–355. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Shinjo, R.; Chung, S.L.; Kato, Y.; Kimura, M. Geochemical and Sr–Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. J. Geophys. Res. Solid Earth 1999, 104, 10591–10608. [Google Scholar] [CrossRef]
- Verma, S.P. Seawater alteration effects on 87Sr/86Sr, K, Rb, Cs, Ba and Sr in oceanic igneous rocks. Chem. Geol. 1981, 34, 81–89. [Google Scholar] [CrossRef]
- Arndt, N.T. Archean komatiites. In Archean Crustal Evolution; Condie, K.C., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 11–44. [Google Scholar]
- DePaolo, D.J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 1981, 53, 189–202. [Google Scholar] [CrossRef]
- Frey, F.A.; Green, D.H.; Roy, S.D. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol. 1978, 19, 463–513. [Google Scholar] [CrossRef]
- McKenzie, D.; O’Nions, R.K. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. J. Petrol. 1991, 32, 1021–1091. [Google Scholar] [CrossRef]
- Guivel, C.; Lagabrielle, Y.; Bourgois, J.; Martin, H.; Arnaud, N.; Fourcade, S.; Cotton, J.; Maury, R.C. Very shallow melting of oceanic crust during spreading ridge subduction: Origin of near-trench Quaternary volcanism at the Chile Triple Junction. J. Geophys. Res. Solid Earth 2003, 108, 2345. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Hémond, C. The origin of E-MORB. Geochim. Cosmochim. Acta 2006, 70, A257. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Ping, C. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Hu, P.Y.; Zhai, Q.G.; Wang, J.; Tang, Y.; Wang, H.T.; Zhu, Z.C.; Wu, H. Middle Neoproterozoic (ca. 760 Ma) arc and back-arc system in the North Lhasa terrane, Tibet, inferred from coeval N-MORB- and arc-type gabbros. Precambrian Res. 2018, 316, 275–290. [Google Scholar] [CrossRef]
- Hu, P.Y.; Zhai, Q.G.; Zhao, G.C.; Wang, J.; Tang, Y.; Wang, H.T.; Zhu, Z.C.; Wang, W.; Wu, H. Early Neoproterozoic (ca. 900 Ma) rift sedimentation and mafic magmatism in the North Lhasa Terrane, Tibet: Paleogeographic and tectonic implications. Lithos 2018, 320–321, 403–415. [Google Scholar] [CrossRef]
- Zhang, H.F.; Harris, N.; Parrish, R.; Kelley, S.; Zhang, L.; Rogers, N.; Argles, T.; King, J. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet. Sci. Lett. 2004, 228, 195–212. [Google Scholar] [CrossRef]
- Pearce, J.A. Trace Element characteristics of the lava from destructive plate boundaries. In Andesites; Thorpe, R.S., Ed.; John Wiley & Sons: New York, NY, USA, 1982; pp. 525–547. [Google Scholar]
- Pearce, J.A.; Peate, D.W. Tectonic implications of the composition of volcanic ARC magmas. Annu. Rev. Earth Planet. Sci. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Shervais, J.W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 1982, 59, 101–118. [Google Scholar] [CrossRef]
- Langmuir, C.H.; Klein, E.M.; Plank, T. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In Mantle Flow and Melt Generation at Mid-Ocean Ridges; Morgan, J.P., Blackman, D.K., Sinton, J.M., Eds.; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 1992; Volume 71, pp. 183–280. [Google Scholar]
- Hanson, G.N.; Langmuir, C.H. Modelling of major elements in mantle-melt systems using trace element approaches. Geochim. Cosmochim. Acta 1978, 42, 725–741. [Google Scholar] [CrossRef]
- Donnelly, K.E.; Goldstein, S.L.; Langmuir, C.H.; Spiegelman, M. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett. 2004, 226, 347–366. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Goldberg, A.S. Dyke swarms as indicators of major extensional events in the 1.9–1.2 Ga Columbia supercontinent. J. Geodyn. 2010, 50, 176–190. [Google Scholar] [CrossRef]
- Ernst, R.E.; Head, J.W.; Parfitt, E.; Grosfils, E.; Wilson, L. Giant radiating dyke swarms on Earth and Venus. Earth Sci. Rev. 1995, 39, 1–58. [Google Scholar] [CrossRef]
- Just, J.; Schulz, B.; de Wall, H.; Jourdan, F.; Pandit, M.K. Monazite CHIME/EPMA dating of Erinpura granitoid deformation: Implications for Neoproterozoic tectonothermal evolution of NW India. Gondwana Res. 2011, 19, 402–412. [Google Scholar]
- Sharma, K.K. Malani magmatism: An extensional lithospheric tectonic origin. Geol. Soc. Am. Spec. Pap. 2005, 388, 463–476. [Google Scholar]
- Schöbel, S.; Sharma, K.K.; Hörbrand, T.; Böhm, T.; Dönhauser, I.; deWall, H. Continental rift setting and evolution of Neoproterozoic Sindreth Basin in NW India. J. Earth Syst. Sci. 2017, 126, 90. [Google Scholar] [CrossRef]
- Bhushan, S.K. Malani rhyolites—A review. Gondwana Res. 2000, 3, 65–77. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.K.B.; Vallinayagam, G. Anorogenic acid volcanic rocks in the Kundal area of the Malani igneous suite, northwestern India: Geochemical and petrogenetic studies. J. Asian Earth Sci. 2006, 27, 544–557. [Google Scholar] [CrossRef]
- Gyani, K.C.; Biswal, T.K.; Yoshida, M. Neoproterozoic Magmatism and Metamorphism in Northwestern Indian Shield: Implications of Rodinia-Gondwana Tectonics. Gondwana Res. 2001, 4, 625–626. [Google Scholar] [CrossRef]
- Ashwal, L.; Solanki, A.; Pandit, M.; Corfu, F.; Hendriks, B.; Burke, K.; Torsvik, T. Geochronology and geochemistry of Neoproterozoic Mt. Abu granitoids, NW India: Regional correlation and implications for Rodinia paleogeography. Precambrian Res. 2013, 236, 265–281. [Google Scholar] [CrossRef]
- de Wall, H.; Pandit, M.K.; Donhauser, I.; Schöbel, W.; Wang, W. Evolution and tectonic setting of the Malani-Nagarparkar Igneous Suite: A Neoproterozoic Silicicdominated large Igneous Province in NW India-SE Pakistan. J. Asian Earth Sci. 2018, 160, 136–158. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhang, Z.; Ma, G.; Dong, S. Report of CA. 760 Ma Mafic Rocks in the Eastern Himalayan Orogen: Petrogenesis and Geodynamic Implications. Minerals 2025, 15, 1090. https://doi.org/10.3390/min15101090
Yang Y, Zhang Z, Ma G, Dong S. Report of CA. 760 Ma Mafic Rocks in the Eastern Himalayan Orogen: Petrogenesis and Geodynamic Implications. Minerals. 2025; 15(10):1090. https://doi.org/10.3390/min15101090
Chicago/Turabian StyleYang, Yi, Zhi Zhang, Guotao Ma, and Suiliang Dong. 2025. "Report of CA. 760 Ma Mafic Rocks in the Eastern Himalayan Orogen: Petrogenesis and Geodynamic Implications" Minerals 15, no. 10: 1090. https://doi.org/10.3390/min15101090
APA StyleYang, Y., Zhang, Z., Ma, G., & Dong, S. (2025). Report of CA. 760 Ma Mafic Rocks in the Eastern Himalayan Orogen: Petrogenesis and Geodynamic Implications. Minerals, 15(10), 1090. https://doi.org/10.3390/min15101090