Geochemical Characterisation of Strategic Elements (Li, Co, Ni, Cu, Ga, Ge, and REEs) in Bottom Ash from the Thermal Power Plant (Afşin–Elbistan, Türkiye)
Abstract
1. Introduction
2. Geological and Tectonic Setting
3. Materials and Methods
4. Results
4.1. Petrography
4.2. Geochemistry
5. Discussion
5.1. Mineral Composition of the Coal Ash
5.2. Geochemical Distribution of REEs
5.3. Enrichment Coefficients of REEs and Y
5.4. Geochemical Distribution of Li, Ni, Cu, Co, Ga and Ge
5.5. Characteristics of the Geochemical Element Distribution in the Bottom Ashes
5.6. Mineralogical Controls on the Distribution of Critical Elements
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2007, 74, 185–202. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Zou, J.; Han, F.; Li, T.; Tian, H.; Li, Y. Mineralogical and geochemical compositions of the Lopingian coals in the Zhongliangshan Coalfield, Southwestern China. Minerals. 2018, 8, 104. [Google Scholar] [CrossRef]
- Zou, J.; Cheng, L.; Guo, Y.; Wang, Z.; Tian, H.; Li, T. Mineralogical and geochemical characteristics of lithium and rare earth elements in high-sulfur coal from the Donggou mine, Chongqing, Southwestern China. Minerals 2020, 10, 627. [Google Scholar] [CrossRef]
- Liu, J.; Song, H.; Dai, S.; Nechaev, V.P.; Graham, I.T.; French, D.; Nechaeva, E.V. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, Southwestern China: Geochemical evidence for terrigenous input. Ore Geol. Rev. 2019, 115, 103190. [Google Scholar] [CrossRef]
- Dai, S.; Zhou, P.; Zhang, M.; Wang, X.; Wang, J.; Song, X.; Jiang, Y.; Luo, Y.; Song, Z.; Yang, Z.; et al. A new type of Nb(Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, Southwestern China: Possible economic significance and genetic implications. Int. J. Coal Geol. 2010, 83, 55–63. [Google Scholar] [CrossRef]
- Wei, Y.; He, W.; Qin, G.; Fan, M.; Cao, D. Lithium enrichment in the No. 21 coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China. Minerals 2020, 10, 521. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, L.; Wang, X.; Nechaev, V.P.; French, D.; Spiro, B.F.; Graham, I.T.; Hower, J.C.; Dai, S. Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium. Ore Geol. Rev. 2021, 139, 104582. [Google Scholar] [CrossRef]
- McLennan, S.M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In Geochemistry and Mineralogy of Rare Earth Elements; Lipin, B.R., McKay, G.A., Eds.; De Gruyter: Berlin, Germany, 1989; pp. 169–200. [Google Scholar]
- Yudovich, Y.E.; Ketris, M.P. Arsenic in coal: A review. Int. J. Coal Geol. 2005, 61, 141–196. [Google Scholar] [CrossRef]
- Haskin, L.; Gehl, M.A. The rare earth distribution in sediments. J. Geophys. Res. 1962, 67, 2537–2541. [Google Scholar] [CrossRef]
- Frey, F.A.; Haskin, L.A. Rare earths in oceanic basalts. J. Geophys. Res. 1964, 69, 775–780. [Google Scholar] [CrossRef]
- Haskin, L.; Gehl, M.A. The rare earth elements contents of standard rocks G-1 and W-1 and their comparison with other rare earth distribution patterns. J. Geophys. Res. 1963, 68, 2037–2043. [Google Scholar] [CrossRef]
- Ren, D.; Zhao, F.; Dai, S.; Zhang, J.; Luo, K. Geochemistry of Trace Elements in Coal; Science Press: Beijing, China, 2006; 556p, (In Chinese with English abstract). [Google Scholar]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Vinogradov, A.P. Average contents of chemical elements in the principal types of igneous rocks of the earth’s crust. Geokhimiya 1962, 7, 555–571. (in Russian); Translation in Geochemistry 1962, 7, 641–664. [Google Scholar]
- Şengör, A.M.C.; Yılmaz, Y. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Dixon, J.E. Introduction: Aspects of the geological evolution of the Eastern Mediterranean. Geol. Soc. Lond. Spec. Publ. 1984, 17, 1–74. [Google Scholar] [CrossRef]
- Yılmaz, Y. New evidence and model on the evolution of the southeast Anatolian orogen. Geol. Soc. Am. Bull. 1993, 105, 251–271. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Genç, Ş.C.; Yılmaz, A. Geological evolution of the eastern Pontides. Tectonophysics 1988, 148, 195–233. [Google Scholar]
- Yılmaz, Y.; Genç, Ş.C.; Gürer, O.F.; Bozcu, M.; Yılmaz, K.; Karacık, Z.; Altunkaynak, Ş.; Elmas, A. When did the western Anatolian grabens begin to develop? Geol. J. 1993, 28, 27–38. [Google Scholar] [CrossRef]
- Elmas, A.; Yılmaz, Y. The Late Miocene–Pliocene evolution of the central Anatolian basins: Evidence from the Tuzgölü Basin. Sediment. Geol. 2003, 160, 67–83. [Google Scholar]
- Robertson, A.H.F. Mesozoic–Tertiary Tectonic Evolution of the Easternmost Mediterranean area: Integration of Marine and Land Evidence. In Proceedings of the Ocean Drilling Program, Scientific Results; Robertson, A.H.F., Emeis, K.-C., Richter, C., Camerlenghi, A., Eds.; Ocean Drilling Program: College Station, TX, USA, 1998; Volume 160, pp. 723–782. [Google Scholar]
- Robertson, A.H.F. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 2002, 65, 1–67. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Ustaömer, T.; Parlak, O. Overview of the Palaeozoic and Mesozoic geology of the Eastern Mediterranean region. Geol. Soc. Lond. Spec. Publ. 2012, 372, 1–55. [Google Scholar] [CrossRef]
- Yılmaz, Y. Geology of the eastern Pontides. Geol. Bull. Turkey 1984, 27, 1–20. [Google Scholar]
- Yılmaz, Y.; Genç, Ş.C.; Yılmaz, A. Petrology and geochemistry of the eastern Pontide volcanic rocks. Tectonophysics 1987, 139, 195–233. [Google Scholar]
- Rigo de Righi, M.; Cortesini, A. Gravity tectonics in foothills structure belt of southeast Turkey. AAPG Bull. 1964, 48, 1911–1937. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Yiğitbaş, E.; Çemen, İ. Tectonics of the Southeast Anatolian Orogenic Belt. In Compressional Tectonics: Plate Convergence to Mountain Building; Catlos, E.J., Çemen, İ., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 203–222. [Google Scholar]
- Baydar, O. Berit-Kandil Dağları (Kahramanmaraş) ve civarının jeolojisi. Ph.D. Thesis, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Turkey, 1989. Unpublished Ph.D. Thesis. (In Turkish). [Google Scholar]
- Yusufoğlu, H.; Bedi, Y.; Beyazpirinç, M.; Özkan, M.K.; Usta, D.; Yıldız, H. Doğu Toroslar’ın jeodinamik evrimi (Afşin-Elbistan-Göksun-Sarız dolayları). Maden Tetkik ve Arama Genel Müdürlüğü Rapor No: 1150, Ankara, Turkey, 2005. Unpublished Report. (In Turkish).
- Cicioğlu, E. Çöllolar Kışlaköy (Afşin-Elbistan) linyitlerinin jeokimyasal özelliklerinin incelenmesi. Ph.D. Thesis, Hacettepe Üniversitesi, Ankara, Turkey, 2001. (In Turkish). [Google Scholar]
- Robertson, A.H.F.; Parlak, O.; Usta¨omer, T. Overview of the Palaeozoic-Neogene evolution of Neotethys in the eastern Mediterranean region (southern Turkey, Cyprus, Syria). Pet. Geosci. 2012, 18, 381–404. [Google Scholar] [CrossRef]
- Yılmaz, A.; Bedi, Y.; Uysal, Ş.; Aydın, N. 1:100,000 Scaled Geologic Maps of Turkey, Elbistan-I23 Quadrangle; No: 50; MTA, Department of Geological Research: Ankara, Turkey, 1997.
- GB/T 14506.30-2010; Methods for Chemical Analysis of Silicate Rocks—Part 30: Determination of 44 Elements. Standardization Administration of China: Beijing, China, 2010.
- GBW07103 (GSR-1); Grey Medium-Grained Biotite Granite. National Institute of Metrology: Beijing, China, 2016.
- GBW07105 (GSR-3); Alkali-Olivine Basalt. National Institute of Metrology: Beijing, China, 2016.
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; p. 312. [Google Scholar]
- Yuan, Y.; Liu, S.; Wu, M.; Zhong, M.; Shahid, M.Z.; Liu, Y. Effects of topography and soil properties on the distribution and fractionation of REEs in topsoil: A case study in Sichuan Basin, China. Sci. Total Environ. 2021, 791, 148404. [Google Scholar] [CrossRef]
- Dai, S.; Luo, Y.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhao, L.; Liu, S.; Tian, H.; Zou, J. Revisiting the Late Permian Coal from the Huayingshan, Sichuan, Southwestern China: Enrichment and Occurrence Modes of Minerals and Trace Elements. Int. J. Coal Geol. 2014, 122, 110–128. [Google Scholar] [CrossRef]
- Wen, L.; Huang, W.; Zhang, Y.; Jiu, B. Geochemical characteristics of rare earth elements in late Palaeozoic coals from North China. Front. Earth Sci. 2024, 12, 1374780. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Methods for Characterization of Composition of Fly Ashes from Coal-Fired Power Stations: A Review. Fuel. 2005, 84, 389–408. [Google Scholar]
- Adriano, D.C.; Page, A.L.; Elseewi, A.A.; Chang, A.C.; Straughan, I. Utilization and Disposal of Fly Ash and Other Coal Residues in Terrestrial Ecosystems: A Review. J. Environ. Qual. 1980, 9, 333–344. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Menendez, R.; Alvarez, D.; Diaz-Somoano, M. Phase-Mineral and Chemical Composition of Coal Fly Ashes as a Basis for Their Multicomponent Utilization. 1. Characterization of Feed Coals and Fly Ashes. Fuel 2003, 82, 1793–1811. [Google Scholar] [CrossRef]
- Vassilev, S.V. Phase Mineralogy Studies of Solid Waste Products from Coal Burning at Some Bulgarian Thermoelectric Power Plants. Fuel 1992, 71, 625–633. [Google Scholar] [CrossRef]
- Querol, X.; Juan, R.; López-Soler, A.; Plana, F.; Alastuey, A.; Zhuang, X. Coal Combustion and Gasification Residues: Characteristics and Use. In Minerals and Their Use in Geopolymer Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 93–119. [Google Scholar]
- Finkelman, R.B. Trace and minor elements in coal. In Organic Geochemistry; Engel, M.H., Macko, S.A., Eds.; Plenum Press: New York, NY, USA, 1993; pp. 593–607. [Google Scholar]
- Vassilev, S.V.; Kitanob, K.; Takedab, S.; Tsurueb, T. Influence of mineral and chemical composition of coal ashes on their fusibility. Fuel Process. Technol. 1995, 45, 27–51. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Zhao, Y.; Wei, Z.; Li, Y.; Hao, W.; Zhang, Y. The Characteristics of Mineralogy, Morphology and Sintering during Co-Combustion of Zhundong Coal and Oil Shale. RSC Adv. 2017, 7, 51036–51045. [Google Scholar] [CrossRef]
- Cicioğlu Sütçü, E.; Karayiğit, A.İ. Mineral matter, major and trace element content of the Afşin–Elbistan coals, Kahramanmaraş, Turkey. Int. J. Coal Geol. 2015, 144–145, 111–129. [Google Scholar] [CrossRef]
- Budakoğlu, M.; Abdelnasser, A.; Karaman, M.; Kumral, M. The rare earth element geochemistry on surface sediments, shallow cores and lithological units of Lake Acıgöl basin, Denizli, Turkey. J. Asian Earth Sci. 2015, 111, 632–662. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Wang, L.; Liang, T. Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China. Environ. Sci. Pollut. Res. 2016, 23, 11330–11338. [Google Scholar] [CrossRef]
- de Sá Paye, H.; de Mello, J.W.; de Magalhães Mascarenhas, G.R.L.; Gasparon, M. Distribution and fractionation of the rare earth elements in Brazilian soils. J. Geochem. Explor. 2016, 161, 27–41. [Google Scholar] [CrossRef]
- Yudovich, Y.; Ketris, M.P. Estimations of Clarkes for Carbonaceous Biolithes: World Averages for Trace Element Contents in Black Shales and Coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Demir, I.; Ruch, R.; Damberger, H.; Harvey, R.; Steele, J.; Ho, K. Environmentally Critical Elements in Channel and Cleaned Samples of Illinois Coals. Fuel 1998, 77, 95–107. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Jiang, J.; Hower, J.C.; Song, X.; Jiang, Y.; Wang, X.; Gornostaeva, T.; Li, X.; et al. Composition and Modes of Occurrence of Minerals and Elements in Coal Combustion Products Derived from High-Ge Coals. Int. J. Coal Geol. 2014, 121, 79–97. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal Deposits as Potential Alternative Sources for Lanthanides and Yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Jiang, Y.; Ward, C.R.; Hower, J.C.; Sun, J.; Liu, J.; Song, H.; Wei, J.; Li, Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of Peat Depositional Environments in Coal: A Review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Fu, X.; Liu, X.; Wu, Q.; Xiao, B.; Fan, C. Influence of magma intrusion on coal geochemical characteristics: A case study of Tiefa Daxing coal mine. Sci. Rep. 2024, 14, 7396. [Google Scholar] [CrossRef]
- Wang, W.; Qin, Y.; Song, D.; Sang, S.; Jiang, B.; Zhu, Y.; Fu, X. Element Geochemistry and Cleaning Potential of the No.11 Coal Seam from Antabao Mining District. Sci. China Ser. D Earth Sci. 2005, 48, 2142–2154. [Google Scholar] [CrossRef]
- Laveuf, C.; Cornu, S. A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma 2009, 154, 1–12. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. A New Approach for the Classification of Coal Fly Ashes Based on Their Origin, Composition, Properties, and Behavior. Fuel 2007, 86, 1490–1512. [Google Scholar] [CrossRef]
Mineral | D1 | D2 | D3 | D4 | D5 | D11 | D12 | D13 | D14 | D15 | D21 | D22 | D23 | D24 | D25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Portlandite | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Ettringite | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Calcite | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Quartz | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Anhydrite | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Gypsum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Akermenite | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Gehlenite | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Larnite | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Plagioclase | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Alkali Feldspar | + | + | + | + | + | + | + | + | + | + | − | + | − | − | + |
Lime | + | + | + | + | + | + | + | + | + | + | + | − | + | + | + |
Dolomite | − | − | − | + | − | − | − | − | − | − | − | − | − | − | − |
Samples | Li | Co | Ni | Cu | Ga | Ge | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | 29.1 | 14.9 | 117 | 28.6 | 11.8 | 1.07 | 21.9 | 38.7 | 4.4 | 16.7 | 3.3 | 0.78 | 2.92 | 0.45 | 2.53 | 0.52 | 1.44 | 0.22 | 1.39 | 0.21 | 14.4 |
D2 | 29.9 | 14.7 | 111 | 28.4 | 11.5 | 1.06 | 21.8 | 37.8 | 4.3 | 16.3 | 3.2 | 0.75 | 2.85 | 0.45 | 2.68 | 0.54 | 1.55 | 0.23 | 1.51 | 0.23 | 15.1 |
D3 | 30.2 | 14.8 | 115 | 29.0 | 12.0 | 1.08 | 22.4 | 38.5 | 4.4 | 17.0 | 3.4 | 0.77 | 2.80 | 0.44 | 2.68 | 0.52 | 1.48 | 0.21 | 1.41 | 0.21 | 14.5 |
D4 | 30.2 | 14.5 | 113 | 28.5 | 11.7 | 1.08 | 22.2 | 39.0 | 4.4 | 16.9 | 3.4 | 0.78 | 2.88 | 0.45 | 2.63 | 0.51 | 1.49 | 0.22 | 1.40 | 0.22 | 14.3 |
D5 | 30.5 | 14.9 | 115 | 28.2 | 11.6 | 1.09 | 22.2 | 39.3 | 4.5 | 16.9 | 3.4 | 0.78 | 2.87 | 0.44 | 2.74 | 0.52 | 1.45 | 0.21 | 1.39 | 0.21 | 15.0 |
D6 | 31.0 | 14.6 | 109 | 28.3 | 11.5 | 1.11 | 21.4 | 39.1 | 4.4 | 16.8 | 3.4 | 0.76 | 2.79 | 0.44 | 2.56 | 0.52 | 1.43 | 0.22 | 1.42 | 0.22 | 14.4 |
D7 | 30.5 | 14.5 | 113 | 28.3 | 11.5 | 1.09 | 21.4 | 38.0 | 4.3 | 16.7 | 3.2 | 0.76 | 2.82 | 0.43 | 2.60 | 0.51 | 1.42 | 0.21 | 1.36 | 0.21 | 14.1 |
D8 | 31.1 | 15.0 | 116 | 29.2 | 11.9 | 1.14 | 22.6 | 39.6 | 4.6 | 17.3 | 3.3 | 0.78 | 2.92 | 0.45 | 2.73 | 0.52 | 1.50 | 0.22 | 1.44 | 0.22 | 15.1 |
D9 | 30.2 | 14.7 | 113 | 29.0 | 11.8 | 1.10 | 21.9 | 38.6 | 4.5 | 16.8 | 3.3 | 0.76 | 2.78 | 0.44 | 2.59 | 0.52 | 1.42 | 0.21 | 1.34 | 0.21 | 14.4 |
D10 | 29.7 | 14.6 | 114 | 28.6 | 11.8 | 1.14 | 22.2 | 38.2 | 4.5 | 17.1 | 3.3 | 0.80 | 2.85 | 0.45 | 2.67 | 0.53 | 1.47 | 0.22 | 1.42 | 0.21 | 14.7 |
D11 | 30.6 | 15.0 | 116 | 29.1 | 11.7 | 1.14 | 21.5 | 38.5 | 4.5 | 17.1 | 3.5 | 0.80 | 2.87 | 0.45 | 2.56 | 0.51 | 1.48 | 0.21 | 1.37 | 0.21 | 14.7 |
D12 | 30.6 | 14.7 | 111 | 29.2 | 11.5 | 1.07 | 21.6 | 38.3 | 4.5 | 16.6 | 3.3 | 0.78 | 2.81 | 0.45 | 2.60 | 0.52 | 1.44 | 0.21 | 1.36 | 0.21 | 14.6 |
D13 | 29.9 | 14.4 | 113 | 28.2 | 11.6 | 1.07 | 21.0 | 37.8 | 4.2 | 16.3 | 3.2 | 0.74 | 2.76 | 0.44 | 2.59 | 0.50 | 1.39 | 0.21 | 1.31 | 0.21 | 14.2 |
D14 | 29.7 | 14.4 | 116 | 29.0 | 11.5 | 1.05 | 21.7 | 38.1 | 4.4 | 16.7 | 3.3 | 0.77 | 2.81 | 0.45 | 2.64 | 0.50 | 1.41 | 0.21 | 1.37 | 0.21 | 14.6 |
D15 | 30.5 | 14.7 | 113 | 28.6 | 11.7 | 1.08 | 22.2 | 38.7 | 4.5 | 17.2 | 3.5 | 0.78 | 2.82 | 0.45 | 2.57 | 0.52 | 1.46 | 0.21 | 1.39 | 0.21 | 14.5 |
D16 | 30.8 | 14.3 | 116 | 28.2 | 11.4 | 1.08 | 22.0 | 38.5 | 4.5 | 17.1 | 3.4 | 0.77 | 2.80 | 0.45 | 2.55 | 0.52 | 1.48 | 0.22 | 1.39 | 0.21 | 14.5 |
D17 | 30.4 | 14.7 | 113 | 28.3 | 11.4 | 1.07 | 22.0 | 39.0 | 4.5 | 17.1 | 3.4 | 0.80 | 2.90 | 0.47 | 2.65 | 0.53 | 1.45 | 0.22 | 1.40 | 0.21 | 15.0 |
D18 | 29.6 | 14.2 | 110 | 28.2 | 11.1 | 1.02 | 21.3 | 38.1 | 4.4 | 16.5 | 3.2 | 0.76 | 2.68 | 0.45 | 2.53 | 0.52 | 1.40 | 0.22 | 1.36 | 0.21 | 14.2 |
D19 | 30.2 | 14.3 | 114 | 27.9 | 11.6 | 1.04 | 21.3 | 38.3 | 4.4 | 16.7 | 3.3 | 0.76 | 2.79 | 0.45 | 2.61 | 0.51 | 1.41 | 0.21 | 1.36 | 0.21 | 14.7 |
D20 | 30.6 | 14.7 | 114 | 28.1 | 11.1 | 1.01 | 21.6 | 38.6 | 4.5 | 16.6 | 3.3 | 0.78 | 2.92 | 0.45 | 2.68 | 0.56 | 1.50 | 0.22 | 1.39 | 0.22 | 15.5 |
D21 | 31.5 | 15.3 | 119 | 29.3 | 12.1 | 1.07 | 22.5 | 40.0 | 4.6 | 17.5 | 3.4 | 0.83 | 2.98 | 0.47 | 2.76 | 0.55 | 1.52 | 0.23 | 1.45 | 0.23 | 15.9 |
D22 | 29.7 | 14.3 | 111 | 28.8 | 11.4 | 1.02 | 22.0 | 38.9 | 4.4 | 16.7 | 3.3 | 0.78 | 2.95 | 0.44 | 2.57 | 0.52 | 1.44 | 0.22 | 1.41 | 0.22 | 14.6 |
D23 | 30.6 | 14.7 | 115 | 28.8 | 11.7 | 1.04 | 22.5 | 39.9 | 4.5 | 17.1 | 3.3 | 0.80 | 2.94 | 0.45 | 2.64 | 0.53 | 1.46 | 0.22 | 1.39 | 0.21 | 14.9 |
D24 | 30.8 | 14.8 | 117 | 29.8 | 12.0 | 1.07 | 22.0 | 39.0 | 4.5 | 16.8 | 3.2 | 0.78 | 2.89 | 0.43 | 2.61 | 0.53 | 1.47 | 0.22 | 1.39 | 0.22 | 14.8 |
D25 | 30.5 | 14.6 | 115 | 28.3 | 11.5 | 1.08 | 22.4 | 38.9 | 4.4 | 17.0 | 3.2 | 0.78 | 2.93 | 0.45 | 2.55 | 0.51 | 1.45 | 0.21 | 1.39 | 0.22 | 14.6 |
D26 | 30.8 | 15.0 | 115 | 28.6 | 11.8 | 1.08 | 22.0 | 38.9 | 4.4 | 16.8 | 3.3 | 0.80 | 2.88 | 0.44 | 2.61 | 0.52 | 1.44 | 0.21 | 1.36 | 0.21 | 14.3 |
D27 | 32.2 | 15.1 | 118 | 29.2 | 12.0 | 1.09 | 22.6 | 39.8 | 4.6 | 17.4 | 3.4 | 0.84 | 2.96 | 0.44 | 2.62 | 0.52 | 1.46 | 0.21 | 1.40 | 0.22 | 15.0 |
D28 | 31.7 | 15.2 | 117 | 29.1 | 11.8 | 1.08 | 22.6 | 40.4 | 4.6 | 17.3 | 3.4 | 0.81 | 3.07 | 0.46 | 2.71 | 0.53 | 1.50 | 0.22 | 1.44 | 0.22 | 15.4 |
D29 | 31.6 | 15.1 | 121 | 29.3 | 12.1 | 1.05 | 22.8 | 39.3 | 4.5 | 16.9 | 3.3 | 0.82 | 2.89 | 0.44 | 2.67 | 0.50 | 1.45 | 0.22 | 1.43 | 0.21 | 14.8 |
D30 | 30.8 | 14.7 | 115 | 28.5 | 11.7 | 1.07 | 22.1 | 39.4 | 4.5 | 17.0 | 3.3 | 0.78 | 2.88 | 0.44 | 2.66 | 0.52 | 1.46 | 0.22 | 1.39 | 0.21 | 14.9 |
Mean | 30.5 | 14.7 | 114.4 | 28.7 | 11.7 | 1.1 | 22.0 | 38.8 | 4.5 | 16.9 | 3.3 | 0.8 | 2.9 | 0.4 | 2.6 | 0.5 | 1.5 | 0.2 | 1.4 | 0.2 | 14.72 |
Standard Dev. | 0.68 | 0.27 | 2.68 | 0.47 | 0.25 | 0.03 | 0.46 | 0.67 | 0.08 | 0.30 | 0.08 | 0.02 | 0.08 | 0.01 | 0.06 | 0.01 | 0.04 | 0.01 | 0.04 | 0.01 | 0.40 |
Median | 30.5 | 14.7 | 114.6 | 28.6 | 11.7 | 1.1 | 22.0 | 38.8 | 4.5 | 16.9 | 3.3 | 0.8 | 2.9 | 0.4 | 2.6 | 0.5 | 1.5 | 0.2 | 1.4 | 0.2 | 14.5 |
Clarke Value Coal | 12 | 5.1 | 13 | 16 | 5.8 | 1.6 | 11 | 23 | 3.4 | 12 | 2 | 0.43 | 2.7 | 0.32 | 2.1 | 0.57 | 1 | 0.3 | 1 | 0.2 | |
China Coal | 32 | 7.1 a | 13.7 a | 18.4 a | 94.80 b | 15.66 b | 22.5 | 46.7 | 3.42 | 22.3 | 4.07 | 0.84 | 4.65 | 0.62 | 3.74 | 0.96 | 1.79 | 0.64 | 2.08 | 0.38 | |
UCC | 20.0 | 17.0 | 44.0 | 25.0 | 17.0 | 1.6 | 30.0 | 64.0 | 7.1 | 26.0 | 4.5 | 0.9 | 3.8 | 0.6 | 3.5 | 0.8 | 2.3 | 0.3 | 2.2 | 0.3 | |
Sedimentary Rocks | 3 | 20 | 95 | 57 | 30 | 1 | 1 | 2 | 0.27 | 0.9 | 0.2 | 0.04 | 0.18 | 0.03 | 0.12 | 0.4 | 0.09 | 0.016 | 0.1 | 0.017 | |
Mafic Rocks | 1 | 48 | 130 | 87 | 17 | 1.3 | 1 | 4.25 | 0.53 | 2.6 | 0.8 | 0.32 | 1.21 | 0.21 | 3.8 | 0.28 | 0.88 | 0.12 | 0.63 | 0.14 | |
Felsic Rocks | 5.5 | 5 | 8 | 20 | 20 | 1.4 | 1 | 1.58 | 0.2 | 0.62 | 0.1 | 0.0094 | 0.057 | 0.003 | 0.018 | 0.0034 | 0.009 | 0.0016 | 0.0035 | 0.0008 | |
Threshold Value | 31.87 | 15.27 | 119.81 | 29.63 | 12.16 | 1.14 | 22.89 | 40.15 | 4.62 | 17.49 | 3.48 | 0.82 | 3.02 | 0.47 | 2.75 | 0.55 | 1.53 | 0.23 | 1.47 | 0.22 |
Normalisation | Calculated Values | Normalisation | Calculated Values |
---|---|---|---|
δEuN(UCC) | 1.18 | δCeN(UCC) | 0.89 |
δEuN(Sedimentary Rocks) | 0.12 | δCeN(Sedimentary Rocks) | 1.06 |
δEuN(Mafic Rocks) | 0.75 | δCeN(Mafic Rocks) | 0.60 |
δEuN(Felsic Rocks) | 2.03 | δCeN(Felsic Rocks) | 1.11 |
Element | Avg. Concentration (µg/g) | UCC Value (µg/g) | EC (Enrichment Coefficient) |
---|---|---|---|
La | 21.50 | 30.00 | 0.72 |
Ce | 38.80 | 64.00 | 0.61 |
Pr | 4.60 | 7.10 | 0.65 |
Nd | 17.20 | 26.00 | 0.66 |
Sm | 3.80 | 4.70 | 0.81 |
Eu | 0.90 | 1.00 | 0.90 |
Gd | 3.40 | 3.80 | 0.89 |
Tb | 0.50 | 0.64 | 0.78 |
Dy | 2.90 | 4.20 | 0.69 |
Ho | 0.55 | 0.87 | 0.63 |
Er | 1.20 | 2.30 | 0.52 |
Tm | 0.18 | 0.33 | 0.55 |
Yb | 1.10 | 2.20 | 0.50 |
Lu | 0.17 | 0.33 | 0.52 |
Y | 14.70 | 30.00 | 0.49 |
Li | 30.50 | 20.00 | 1.52 |
Co | 14.70 | 17.00 | 0.86 |
Ni | 114.5 | 44.00 | 2.60 |
Cu | 28.7 | 25.00 | 1.14 |
Ga | 11.70 | 17.00 | 0.68 |
Ge | 1.10 | 1.60 | 0.67 |
Li | ||||||||||||||||||||
Li | 1.00 | Co | ||||||||||||||||||
Co | 0.67 | 1.00 | Ni | |||||||||||||||||
Ni | 0.5 | 0.68 | 1.00 | Cu | ||||||||||||||||
Cu | 0.41 | 0.62 | 0.55 | 1.00 | Ga | |||||||||||||||
Ga | 0.43 | 0.69 | 0.69 | 0.68 | 1.00 | Ge | ||||||||||||||
Ge | 0.20 | 0.33 | 0.15 | 0.22 | 0.45 | 1.00 | La | |||||||||||||
La | 0.50 | 0.64 | 0.60 | 0.49 | 0.61 | 0.18 | 1.00 | Ce | ||||||||||||
Ce | 0.71 | 0.69 | 0.49 | 0.42 | 0.46 | 0.09 | 0.74 | 1.00 | Pr | |||||||||||
Pr | 0.64 | 0.56 | 0.45 | 0.41 | 0.32 | 0.16 | 0.69 | 0.76 | 1.00 | Nd | ||||||||||
Nd | 0.61 | 0.61 | 0.55 | 0.42 | 0.56 | 0.43 | 0.75 | 0.73 | 0.81 | 1.00 | Sm | |||||||||
Sm | 0.38 | 0.43 | 0.19 | 0.28 | 0.26 | 0.36 | 0.39 | 0.43 | 0.58 | 0.72 | 1.00 | Eu | ||||||||
Eu | 0.67 | 0.74 | 0.66 | 0.53 | 0.50 | 0.10 | 0.71 | 0.71 | 0.69 | 0.75 | 0.49 | 1.00 | Gd | |||||||
Gd | 0.49 | 0.67 | 0.51 | 0.40 | 0.34 | 0.02 | 0.66 | 0.77 | 0.51 | 0.56 | 0.28 | 0.72 | 1.00 | Tb | ||||||
Tb | 0.06 | 0.19 | 0.12 | −0.02 | −0.12 | −0.03 | 0.31 | 0.26 | 0.36 | 0.41 | 0.33 | 0.36 | 0.35 | 1.00 | Dy | |||||
Dy | 0.37 | 0.53 | 0.37 | 0.24 | 0.33 | 0.09 | 0.50 | 0.44 | 0.43 | 0.36 | 0.21 | 0.35 | 0.44 | 0.36 | 1.00 | Ho | ||||
Ho | 0.14 | 0.30 | −0.01 | 0.02 | −0.14 | −0.24 | 0.25 | 0.29 | 0.35 | 0.18 | 0.13 | 0.28 | 0.42 | 0.47 | 0.42 | 1.00 | Er | |||
Er | 0.33 | 0.50 | 0.25 | 0.27 | 0.24 | 0.19 | 0.51 | 0.35 | 0.38 | 0.42 | 0.32 | 0.38 | 0.54 | 0.45 | 0.55 | 0.65 | 1.00 | Tm | ||
Tm | 0.14 | 0.29 | 0.04 | 0.19 | 0.06 | −0.19 | 0.39 | 0.41 | 0.30 | 0.25 | 0.15 | 0.33 | 0.45 | 0.52 | 0.40 | 0.73 | 0.68 | 1.00 | Yb | |
Yb | 0.27 | 0.41 | 0.17 | 0.25 | 0.26 | 0.10 | 0.56 | 0.36 | 0.30 | 0.35 | 0.24 | 0.33 | 0.48 | 0.43 | 0.55 | 0.55 | 0.82 | 0.80 | 1.00 | Lu |
Lu | 0.25 | 0.36 | 0.04 | 0.24 | 0.13 | −0.02 | 0.32 | 0.30 | 0.23 | 0.17 | 0.14 | 0.23 | 0.41 | 0.38 | 0.47 | 0.62 | 0.76 | 0.77 | 0.82 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalender, L.; Kara, H.; Ertürk, M.A.; Yalçın, C.; Turan, M.D.; Sütçü, E.C. Geochemical Characterisation of Strategic Elements (Li, Co, Ni, Cu, Ga, Ge, and REEs) in Bottom Ash from the Thermal Power Plant (Afşin–Elbistan, Türkiye). Minerals 2025, 15, 1026. https://doi.org/10.3390/min15101026
Kalender L, Kara H, Ertürk MA, Yalçın C, Turan MD, Sütçü EC. Geochemical Characterisation of Strategic Elements (Li, Co, Ni, Cu, Ga, Ge, and REEs) in Bottom Ash from the Thermal Power Plant (Afşin–Elbistan, Türkiye). Minerals. 2025; 15(10):1026. https://doi.org/10.3390/min15101026
Chicago/Turabian StyleKalender, Leyla, Hatice Kara, Mehmet Ali Ertürk, Cihan Yalçın, Mehmet Deniz Turan, and Emine Cicioğlu Sütçü. 2025. "Geochemical Characterisation of Strategic Elements (Li, Co, Ni, Cu, Ga, Ge, and REEs) in Bottom Ash from the Thermal Power Plant (Afşin–Elbistan, Türkiye)" Minerals 15, no. 10: 1026. https://doi.org/10.3390/min15101026
APA StyleKalender, L., Kara, H., Ertürk, M. A., Yalçın, C., Turan, M. D., & Sütçü, E. C. (2025). Geochemical Characterisation of Strategic Elements (Li, Co, Ni, Cu, Ga, Ge, and REEs) in Bottom Ash from the Thermal Power Plant (Afşin–Elbistan, Türkiye). Minerals, 15(10), 1026. https://doi.org/10.3390/min15101026