Chenowethite, Mg(H2O)6[(UO2)2(SO4)2(OH)2]·5H2O, a New Mineral with Uranyl-Sulfate Sheets from Red Canyon, Utah, USA
Abstract
:1. Introduction
2. Occurrence, Geological Setting and Mineral Association
3. General Appearance, Physical, Chemical and Optical Properties
4. Raman Spectroscopy
5. Chemical Composition
6. X-ray Diffraction
7. Description of Crystal Structure
8. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mindat.org. Available online: https://www.mindat.org/loc-37459.html (accessed on 11 November 2022).
- Kampf, A.R.; Olds, T.A.; Plášil, J.; Nash, B.P.; Marty, J. Nitscheite, (NH4)2[(UO2)2(SO4)3(H2O)2]·3H2O, a new mineral with an unusual uranyl-sulfate sheet. Am. Mineral. 2022, 107, 1174–1180. [Google Scholar] [CrossRef]
- Chenoweth, W.L. The Geology and Production History of the Uranium Deposits in the White Canyon Mining District, San Juan County, Utah; Utah Geological Survey Miscellaneous: SaltLake City, UT, USA, 1993; Volume 93-3. [Google Scholar]
- Kampf, A.R.; Kasatkin, A.V.; Čejka, J.; Marty, J. Plášilite, Na(UO2)(SO4)(OH)·2H2O, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. J. Geosci. 2015, 60, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Finch, R.J.; Murakami, T. Systematics and paragenesis of uranium minerals. In Uranium: Mineralogy, Geochemistry and the Environment; Burns, P.C., Ewing, R.C., Eds.; Mineralogical Society of America and Geochemical Society: Chantilly, VA, USA, 1999; Volume 38, pp. 91–179. [Google Scholar]
- Krivovichev, S.V.; Plášil, J. Mineralogy and Crystallography of Uranium. In Uranium: From Cradle to Grave; Burns, P.C., Sigmon, G.E., Eds.; Mineralogical Association of Canada Short Courses: Québec City, QC, Canada, 2013; Volume 43, pp. 15–119. [Google Scholar]
- Plášil, J. Oxidation–hydration weathering of uraninite: The current state-of-knowledge. J. Geosci. 2014, 59, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Mandarino, J.A. The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. Can. Miner. 2007, 45, 1307–1324. [Google Scholar] [CrossRef]
- Mandarino, J.A. The Gladstone-Dale relationship—Part 1: Derivation of new constants. Can. Miner. 1976, 14, 498–502. [Google Scholar]
- Libowitzky, E. Correlation of O–H stretching frequencies and O-H⋅⋅⋅O hydrogen bond lengths in minerals. Monat. Chem. 1999, 130, 1047–1059. [Google Scholar] [CrossRef]
- Bartlett, J.R.; Cooney, R.P. On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. J. Mol. Struct. 1989, 193, 295–300. [Google Scholar] [CrossRef]
- Higashi, T. ABSCOR; Rigaku Corporation: Tokyo, Japan, 2001. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal Structure refinement with SHELX. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Gagné, O.C.; Hawthorne, F. C Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. 2015, B71, 562–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraris, G.; Ivaldi, G. Bond valence vs. bond length in O…O hydrogen bonds. Acta Cryst. 1988, B44, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Burns, P.C. U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. Can. Mineral. 2005, 43, 1839–1894. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Burns, P.C. Actinide compounds containing hexavalent cations of the VI group elements (S, Se, Mo, Cr, W). In Structural Chemistry of Inorganic Actinide Compounds; Krivovichev, S.V., Burns, P.C., Tananaev, I.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 95–182. [Google Scholar]
- Plášil, J.; Hauser, J.; Petříček, V.; Meisser, N.; Mills, S.J.; Škoda, R.; Fejfarová, K.; Čejka, J.; Sejkora, J.; Hloušek, J.; et al. Crystal structure and formula revision of deliensite, Fe[(UO2)2(SO4)2(OH)2](H2O)7. Mineral. Mag. 2012, 76, 2837–2860. [Google Scholar] [CrossRef]
- Kampf, A.R.; Olds, T.A.; Plášil, J.; Marty, J.; Perry, S.N. Feynmanite, a new sodium-uranyl-sulfate mineral from Red Canyon, San Juan County, Utah, USA. Mineral. Mag. 2019, 83, 153–160. [Google Scholar] [CrossRef]
- Kampf, A.R.; Plášil, J.; Nash, B.P.; Marty, J. Greenlizardite, (NH4)Na(UO2)2(SO4)2(OH)2·4H2O, a new mineral with phosphuranylite-type uranyl sulfate sheets from Red Canyon, San Juan County, Utah, USA. Mineral. Mag. 2018, 82, 401–411. [Google Scholar] [CrossRef]
- Mereiter, K. Die kristallstruktur des johannits, Cu(UO2)2(OH)2(SO4)2·8H2O. Tschermaks Mineral. Petrogr. Mitt. 1982, 30, 47–57. [Google Scholar] [CrossRef]
- Kampf, A.R.; Plášil, J.; Nash, B.P.; Marty, J. Meitnerite, (NH4)(UO2)(SO4)(OH)·2H2O, a new uranyl-sulfate mineral with a sheet structure. Eur. J. Mineral. 2018, 30, 999–1006. [Google Scholar] [CrossRef]
Constituent | Mean | Range | S.D. | Standard |
---|---|---|---|---|
(NH4)2O | 0.60 | 0.43–0.70 | 0.09 | BN |
MgO | 2.96 | 2.50–3.46 | 0.35 | forsterite |
FeO | 0.67 | 0.52–0.94 | 0.15 | fayalite |
CoO | 0.35 | 0.30–0.46 | 0.05 | Co metal |
NiO | 0.29 | 0.24–0.34 | 0.04 | NiO |
SO3 | 16.61 | 15.73–17.33 | 0.59 | anhydrite |
UO3 | 59.33 | 58.42–60.07 | 0.58 | UO2 |
H2O * | 22.03 | |||
Total | 102.84 |
Iobs | dobs | dcalc | Icalc | hkl | Iobs | dobs | dcalc | Icalc | hkl | |
---|---|---|---|---|---|---|---|---|---|---|
100 | 9.54 | 9.5175 | 100 | 0 2 0 | 13 | 2.278 | 2.2775 | 2 | 0 6 5 | |
15 | 8.21 | 8.2264 | 11 | 0 2 1 | 2.2752 | 4 | 3 1 1 | |||
8.1789 | 2 | 0 0 2 | 2.1999 | 2 | 1 1 7 | |||||
80 | 6.07 | 6.0591 | 41 | 1 1 1 | 17 | 2.175 | 2.1808 | 2 | 0 8 3 | |
54 | 4.712 | 4.7588 | 16 | 0 4 0 | 2.1744 | 3 | 3 3 0 | |||
4.7312 | 3 | 0 2 3 | 21 | 2.141 | 2.1554 | 2 | 3 3 1 | |||
4.6839 | 21 | 1 3 0 | 2.1528 | 8 | 1 7 4 | |||||
34 | 4.535 | 4.5693 | 13 | 0 4 1 | 2.1293 | 5 | 2 4 5 | |||
4.5029 | 13 | 1 3 1 | 14 | 2.110 | 2.1173 | 4 | 3 1 3 | |||
15 | 4.183 | 4.1835 | 7 | 1 1 3 | 2.0910 | 2 | 1 3 7 | |||
16 | 4.094 | 4.0894 | 13 | 0 0 4 | 13 | 2.033 | 2.0447 | 4 | 0 0 8 | |
29 | 3.762 | 3.7573 | 22 | 0 2 4 | 2.0232 | 3 | 1 9 0 | |||
3.5853 | 4 | 0 4 3 | 10 | 1.9894 | 1.9777 | 3 | 3 5 0 | |||
3.5530 | 2 | 1 3 3 | 6 | 1.9378 | 1.9487 | 3 | 2 8 1 | |||
41 | 3.476 | 3.4718 | 15 | 2 0 0 | 1.9243 | 2 | 0 8 5 | |||
3.4648 | 4 | 1 1 4 | 15 | 1.9081 | 1.9198 | 3 | 3 3 4 | |||
14 | 3.336 | 3.3382 | 11 | 1 5 0 | 1.9043 | 5 | 2 6 5 | |||
28 | 3.259 | 3.2615 | 15 | 2 2 0 | 1.8907 | 2 | 0 10 1 | |||
3.1986 | 3 | 2 2 1 | 20 | 1.8798 | 1.8802 | 5 | 3 1 5 | |||
25 | 3.102 | 3.1145 | 5 | 0 6 1 | 1.8739 | 3 | 1 3 8 | |||
3.1015 | 7 | 0 4 4 | 10 | 1.8135 | 1.8134 | 4 | 1 9 4 | |||
3.0939 | 2 | 0 2 5 | 1.8109 | 2 | 3 3 5 | |||||
3.0805 | 6 | 1 3 4 | 10 | 1.7792 | 1.7804 | 4 | 3 5 4 | |||
27 | 2.928 | 2.9244 | 19 | 1 1 5 | 18 | 1.7565 | 1.7625 | 7 | 3 7 0 | |
10 | 2.799 | 2.8047 | 7 | 2 4 0 | 1.7508 | 6 | 1 1 9 | |||
2.7643 | 2 | 2 4 1 | 17 | 1.7364 | 1.7436 | 3 | 1 5 8 | |||
2.7421 | 2 | 0 6 3 | 1.7359 | 2 | 4 0 0 | |||||
9 | 2.684 | 2.6821 | 7 | 1 3 5 | 1.7324 | 3 | 2 2 8 | |||
32 | 2.650 | 2.6466 | 15 | 2 0 4 | 14 | 1.6999 | 1.7077 | 2 | 4 2 0 | |
21 | 2.560 | 2.5860 | 6 | 1 5 4 | 1.6944 | 3 | 1 3 9 | |||
2.5499 | 12 | 2 2 4 | 9 | 1.6750 | 1.6830 | 2 | 2 8 5 | |||
15 | 2.534 | 2.5320 | 8 | 1 7 0 | 9 | 1.6196 | 1.6186 | 3 | 3 7 4 | |
2.4941 | 2 | 2 4 3 | 17 | 1.5913 | 1.5979 | 2 | 4 0 4 | |||
7 | 2.352 | 2.3562 | 2 | 1 3 6 | 1.5908 | 3 | 1 7 8 | |||
2.3546 | 3 | 0 8 1 | 8 | 1.5671 | 1.5758 | 3 | 4 2 4 | |||
11 | 2.315 | 2.3183 | 2 | 2 6 1 | ||||||
2.3130 | 4 | 2 4 4 |
Diffractometer | Rigaku R-Axis Rapid II |
X-ray radiation/power | MoKα (λ = 0.71075 Å)/50 kV, 40 mA |
Temperature | 293(2) K |
Structural formula | (Mg0.71Fe2+0.09Co0.05Ni0.04)∑0.89U2S2O25 |
Space group | Cmcm (#63) |
Unit cell dimensions | a = 6.9435(6) Å |
b = 19.035(2) Å | |
c = 16.3577(13) Å | |
V | 2162.0(3) Å3 |
Z | 4 |
Density (for above formula) | 2.974 g cm−3 |
Absorption coefficient | 15.414 mm−1 |
F(000) | 1718 |
Crystal size | 100 × 50 × 7 μm |
θ range | 3.12 to 25.01° |
Index ranges | –8 ≤ h ≤ 8, –22 ≤ k ≤ 22, –18 ≤ l ≤ 19 |
Reflections collected/unique | 5708/1071; Rint = 0.083 |
Reflections with I > 2σI | 912 |
Completeness to θ = 25.01° | 99.5% |
Refinement method | Full-matrix least-squares on F2 |
Parameter/restraints | 103/0 |
GoF | 1.080 |
Final R indices [F > 4σ(F)] | R1 = 0.0396, wR2 = 0.0929 |
R indices (all data) | R1 = 0.0482, wR2 = 0.0982 |
Largest diff. peak/hole | +2.69/−1.05 e A−3 |
x/a | y/b | z/c | Ueq | Occupancy | ||
---|---|---|---|---|---|---|
Mg | 0.9545(10) | 0 | 0 | 0.025(3) | Mg0.71Fe2+0.09Co0.05Ni0.04 | |
U | 0.5 | 0.21326(3) | 0.13177(3) | 0.0173(2) | 1 | |
S | 0 | 0.2545(2) | 0.08766(19) | 0.0187(7) | 1 | |
O1 | 0 | 0.2972(5) | 0.1605(6) | 0.028(2) | 1 | |
O2 | 0 | 0.3002(5) | 0.0144(5) | 0.025(2) | 1 | |
O3 | 0.1704(8) | 0.2075(3) | 0.0840(4) | 0.0231(15) | 1 | |
O4 | 0.5 | 0.3052(6) | 0.1237(5) | 0.028(2) | 1 | |
O5 | 0.5 | 0.1207(6) | 0.1378(4) | 0.024(3) | 1 | |
OH | 0.3078(14) | 0.2190(5) | 0.25 | 0.024(2) | 1 | |
OW1A | 0.174(4) | 0.0727(16) | 0.9986(17) | 0.049(7) | 0.5 | |
OW1B | 0.247(4) | 0.0778(18) | 0.9757(18) | 0.056(7) | 0.5 | |
OW2 | 0.947(4) | 0.0127(9) | 0.1274(7) | 0.059(11) | 0.5 | |
OW3 | 0 | 0.1136(8) | 0.25 | 0.036(4) | 1 | |
OW4 | 0.274(3) | 0.4095(9) | 0.25 | 0.097(6) | 1 | |
OW5 | 0.566(3) | 0.9652(13) | 0.1240(10) | 0.075(7) | 0.5 | |
U11 | U22 | U33 | U23 | U13 | U12 | |
Mg | 0.023(8) | 0.024(4) | 0.027(3) | −0.009(3) | 0 | 0 |
U | 0.0127(3) | 0.0295(4) | 0.0099(3) | 0.0015(2) | 0 | 0 |
S | 0.0119(15) | 0.033(2) | 0.0108(16) | 0.0016(14) | 0 | 0 |
O1 | 0.029(6) | 0.040(7) | 0.015(5) | −0.007(4) | 0 | 0 |
O2 | 0.015(5) | 0.044(7) | 0.017(5) | 0.006(4) | 0 | 0 |
O3 | 0.013(3) | 0.037(4) | 0.019(3) | −0.005(3) | −0.002(3) | 0.001(3) |
O4 | 0.014(5) | 0.052(8) | 0.018(5) | −0.003(4) | 0 | 0 |
O5 | 0.003(4) | 0.063(8) | 0.006(4) | −0.004(4) | 0 | 0 |
OH | 0.022(5) | 0.046(7) | 0.005(4) | 0 | 0 | 0.002(4) |
OW1A | 0.07(2) | 0.037(13) | 0.035(14) | 0.000(11) | 0.014(12) | −0.028(13) |
OW1B | 0.07(2) | 0.043(13) | 0.050(18) | 0.003(12) | 0.012(12) | −0.030(15) |
OW2 | 0.10(3) | 0.047(10) | 0.027(7) | −0.004(6) | −0.013(8) | −0.011(11) |
OW3 | 0.048(9) | 0.031(9) | 0.029(8) | 0 | 0 | 0 |
OW4 | 0.111(14) | 0.069(13) | 0.111(14) | 0 | 0 | −0.003(10) |
OW5 | 0.08(2) | 0.073(15) | 0.070(12) | 0.005(9) | 0.011(9) | −0.001(11) |
U–O4 | 1.756(12) | S–O1 | 1.442(11) | Hydrogen bonds * | |
U–O5 | 1.765(12) | S–O2 | 1.482(10) | OH···O1 | 2.987(11) |
U–OH (×2) | 2.352(5) | S–O3 (×2) | 1.484(6) | OW1A···O3 | 2.92(3) |
U–O2 | 2.405(9) | <S–O> | 1.473 | OW1B···O2 | 2.92(3) |
U–O3 (×2) | 2.421(6) | OW3···OH | 2.931(15) | ||
<U–OUr> | 1.761 | Mg–OW1A (×2) | 2.06(3) | OW4···O4 | 3.265(17) |
<U–Oeq> | 2.390 | Mg–OW1B (×2) | 2.08(3) | OW5···O5 | 3.00(3) |
Mg–OW2 (×2) | 2.099(12) | ||||
<Mg–O> | 2.08 |
Mg | U | S | Hydrogen Bonds | Σ | ||
---|---|---|---|---|---|---|
Accepted | Donated | |||||
O1 | 1.62 | 0.13×2→ | 1.88 | |||
O2 | 0.47 | 1.46 | 0.07 | 2.00 | ||
O3 | 0.45×2↓ | 1.46×2↓ | 0.07 | 1.98 | ||
O4 | 1.85 | 0.10 | 1.95 | |||
O5 | 1.81 | 0.13 | 1.94 | |||
OH | 0.52×2↓→ | 0.15 | −0.13 | 1.06 | ||
OW1A | 0.36×2↓ | |||||
OW1B | 0.34×2↓ | |||||
OW2 | 0.33×2↓ | |||||
Σ | 2.06 | 6.07 | 6.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampf, A.R.; Plášil, J.; Olds, T.A.; Ma, C.; Marty, J. Chenowethite, Mg(H2O)6[(UO2)2(SO4)2(OH)2]·5H2O, a New Mineral with Uranyl-Sulfate Sheets from Red Canyon, Utah, USA. Minerals 2022, 12, 1594. https://doi.org/10.3390/min12121594
Kampf AR, Plášil J, Olds TA, Ma C, Marty J. Chenowethite, Mg(H2O)6[(UO2)2(SO4)2(OH)2]·5H2O, a New Mineral with Uranyl-Sulfate Sheets from Red Canyon, Utah, USA. Minerals. 2022; 12(12):1594. https://doi.org/10.3390/min12121594
Chicago/Turabian StyleKampf, Anthony R., Jakub Plášil, Travis A. Olds, Chi Ma, and Joe Marty. 2022. "Chenowethite, Mg(H2O)6[(UO2)2(SO4)2(OH)2]·5H2O, a New Mineral with Uranyl-Sulfate Sheets from Red Canyon, Utah, USA" Minerals 12, no. 12: 1594. https://doi.org/10.3390/min12121594
APA StyleKampf, A. R., Plášil, J., Olds, T. A., Ma, C., & Marty, J. (2022). Chenowethite, Mg(H2O)6[(UO2)2(SO4)2(OH)2]·5H2O, a New Mineral with Uranyl-Sulfate Sheets from Red Canyon, Utah, USA. Minerals, 12(12), 1594. https://doi.org/10.3390/min12121594