On the Origin of New and Rare Minerals Discovered in the Othrys and Vermion Ophiolites, Greece: An Overview
Abstract
:1. Introduction
2. Review of our Mineralogical Discoveries
3. Characterization of the New Minerals
4. Geological Outline and Brief Description of the Mineralization
4.1. Geology of Othrys and Vermion Ophiolites
4.2. Products of Mineralization in the Othrys and Vermion Ophiolites
5. Mineralogical Aspects of the New Phases Discovered in Othrys and Vermion Ophiolites
5.1. Othrys
5.2. Vermion
6. Discussion
6.1. Potential Sources of the Components for the New Minerals from Othrys Chromitites
6.2. Origin of the New Minerals at Agios Stefanos
6.3. Origin of Theophrastite
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, Y.Q.; Hou, S.J.; Yang, G.; Wang, X.J.; Lu, T.; Pan, L.K. Synthesis of bimetallic NixCo1-xP hollow nanocages from metal-organic frameworks for high performance hybrid supercapacitors. Electrochim. Acta 2018, 285, 192–201. [Google Scholar] [CrossRef]
- Ma, T.G.; Qiu, Y.F.; Zhang, Y.Y.; Ji, X.Y.; Hu, P.A. Iron-Doped Ni5P4 ultrathin nanoporous nanosheets for water splitting and on-demand hydrogen release via NaBH4 hydrolysis. ACS Appl. Nano Mater. 2019, 2, 3091–3099. [Google Scholar] [CrossRef]
- Britvin, S.; Murashko, M.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V. Earths phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Sci. Rep. 2015, 5, 8355. [Google Scholar] [CrossRef]
- Ifandi, E.; Zaccarini, F.; Tsikouras, B.; Grammatikopoulos, T.; Garuti, G.; Karipi, S.; Hatzipanagiotou, K. First occurrences of Ni-V-Co phosphides in chromitite of Agios Stefanos mine, Othrys ophiolite, Greece. Ofioliti 2018, 43, 131–145. [Google Scholar]
- Zaccarini, F.; Ifandi, E.; Tsikouras, B.; Grammatikopoulos, T.; Garuti, G.; Mauro, D.; Bindi, L.; Stanley, C. Occurrences of of new phosphides and sulfide of Ni, Co, V, and Mo from chromitite of the Othrys ophiolite complex (Central Greece). Per. Ital. Mineral. 2019, 88, 105–119. [Google Scholar]
- Sideridis, A.; Zaccarini, F.; Grammatikopoulos, T.; Tsitsanis, P.; Tsikouras, B.; Pushkarev, E.; Garuti, G.; Hatzipanagiotou, K. First occurrences of Ni-phosphides in chromitites from the ophiolite complexes of Alapaevsk, Russia and Gerakini Ormylia, Greece. Ofioliti 2018, 43, 75–84. [Google Scholar]
- Zaccarini, F.; Bindi, L.; Ifandi, E.; Grammatikopoulos, T.; Stanley, C.; Garuti, G.; Mauro, D. Tsikourasite, Mo3Ni2P1+x (x < 0.25), a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals 2019, 9, 248. [Google Scholar] [CrossRef]
- Bindi, L.; Zaccarini, F.; Bonazzi, P.; Grammatikopoulos, T.; Tsikouras, B.; Stanley, C.; Garuti, G. Eliopoulosite, V7S8, a new sulfide from the podiform chromitite of the Othrys ophiolite, Greece. Minerals 2020, 10, 245. [Google Scholar] [CrossRef]
- Bindi, L.; Zaccarini, F.; Ifandi, E.; Tsikouras, B.; Stanley, G.; Garuti, G.; Mauro, D. Grammatikopoulosite, NiVP, a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals 2020, 10, 131. [Google Scholar] [CrossRef]
- Zaccarini, F.; Bindi, L.; Tsikouras, B.; Grammatikopoulos, T.; Stanley, C.J.; Garuti, G. Arsenotučekite, Ni18Sb3AsS16, a new mineral from the Tsangli chromitites, Othrys ophiolite, Greece. Mineral. Petrol. 2020, 114, 435–442. [Google Scholar] [CrossRef]
- Marcopoulos, T.; Economou, M. Theophrastite, Ni(OH)2, a new mineral from northern Greece. Am. Mineral. 1981, 66, 1020–1021. [Google Scholar]
- Economou-Eliopoulos, M.; Eliopoulos, D. A new solid solution [(Co, Mn, Ni)(OH)2], in the Vermion Mt (Greece) and its genetic significance for the mineral group of hydroxides. In Chemical Mineralogy, Smelting and Metallization; McLaughlin, E.D., Braux, L.A., Eds.; Nova Science Publishers: New York, NY, USA, 2009. [Google Scholar]
- Arai, S.; Ishimaru, S.; Miura, M.; Akizawa, N.; Mizukami, T. Post-serpentinization formation of theophrastite-zaratite by heazlewoodite desulfurization: An implication for shallow behavior of sulfur in a subduction complex. Minerals 2020, 10, 806. [Google Scholar] [CrossRef]
- Ivanova, M.A.; Ma, C.; Lorenz, C.A.; Franchi, I.A.; Kononkova, N.N. A new unusual bencubbinite (cba), Sierra Gorda 013 with unique V-rich sulfides. Met. Plan. Sci. 2019, 54, 6149. [Google Scholar]
- Rassios, A.; Konstantopoulou, G. Emplacement tectonism and the position of chrome ores in the Mega Isoma peridotites, SW Othris, Greece. Bull. Geol. Soc. Greece 1993, 28, 463–474. [Google Scholar]
- Rassios, A.; Smith, A.G. Constraints on the formation and emplacement age of western Greek ophiolites (Vourinos, Pindos, and Othris) inferred from deformation structures in peridotites. In Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program; Dilek, Y., Moores, E., Elthon, D., Nicolas, A., Eds.; Geological Society of America Special Papers: Boulder, CO, USA, 2001; pp. 473–484. [Google Scholar]
- Dijkstra, A.H.; Barth, M.G.; Drury, M.R.; Mason, P.R.D.; Vissers, R.L.M. Diffuse porous melt flow and melt-rock reaction in the mantle lithosphere at a slow-spreading ridge: A structural petrology and LAICP-MS study of the Othris Peridotite Massif (Greece). Geochem. Geophys. Geosyst. 2003, 4, 8613. [Google Scholar] [CrossRef]
- Economou, M.; Dimou, E.; Economou, G.; Migiros, G.; Vacondios, I.; Grivas, E.; Rassios, A.; Dabitzias, S. Chromite Deposits of Greece: Athens; Theophrastus Publications: Athens, Greece, 1986; pp. 129–159. [Google Scholar]
- Economou, M.I.; Naldrett, A.J. Sulfides associated with podiform bodies of chromite at Tsangli, Greece. Miner. Depos. 1984, 19, 289–297. [Google Scholar] [CrossRef]
- Mitsis, I.; Economou-Eliopoulos, M. Occurrence of apatite associated with magnetite in an ophiolite complex (Othrys), Greece. Am. Mineral. 2001, 86, 1143–1150. [Google Scholar] [CrossRef]
- Mitsis, I.; Economou-Eliopoulos, M. On the origin of hydroxylapatite associated with pure massive magnetite in the Othrys ophiolite complex, Greece. Ofioliti 2003, 28, 25–32. [Google Scholar]
- Economou-Eliopoulos, M.; Parry, S.J.; Christidis, G. Platinum-group element (PGE) content of chromite ores from the Othrys ophiolite complex, Greece. In Mineral Deposits: Research and Exploration. Where Do They Meet? Papunen, H., Ed.; Balkema: Rotterdam, The Netherlands, 1997; pp. 414–441. [Google Scholar]
- Garuti, G.; Zaccarini, F.; Economou-Eliopoulos, M. Paragenesis and composition of laurite from chromitites of Othrys (Greece): Implications for Os-Ru fractionation in ophiolite upper mantle of the Balkan Peninsula. Mineral. Deposita 1999, 34, 312–319. [Google Scholar] [CrossRef]
- Tsikouras, B.; Ifandi, E.; Karipi, S.; Grammatikopoulos, T.A.; Hatzipanagiotou, K. Investigation of Platinum-Group Minerals (PGM) from Othrys chromitites (Greece) using superpanning concentrates. Minerals 2016, 6, 94. [Google Scholar] [CrossRef]
- Saccani, E.; Photiades, A.; Santato, A.; Zeda, O. New evidence for supra-subduction zone ophiolites in the Vardar Zone from the Vermion Massif (northern Greece): Implication for the tectono-magmatic evolution of the Vardar oceanic basin. Ofioliti 2008, 33, 17–37. [Google Scholar]
- Economou-Eliopoulos, M.; Frei, R.; Mitsis, I. Factors Controlling the Chromium Isotope Compositions in Podiform Chromitites. Minerals 2020, 10, 10. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M. Apatite and Mn, Zn, Co-enriched chromite in Ni-laterites of northern Greece and their genetic significance. J. Geochem. Explor. 2003, 80, 41–54. [Google Scholar] [CrossRef]
- Paraskevopoulos, G.; Economou, M. Genesis of magnetite ore occurrences by metasomatism of chromite ores in Greece. Neues Jahrb. Mineral. Abh. 1980, 140, 29–53. [Google Scholar]
- Eliopoulos, D.G.; Economou-Eliopoulos, M. Trace Element Distribution in Magnetite Separates of Varying Origin: Genetic and Exploration Significance. Minerals 2020, 9, 759. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Eliopoulos, D.; Chryssoulis, S. A comparison of high-Au massive sulfide ores hosted in ophiolite complexes of the Balkan Peninsula with modern analogues: Genetic significance. Ore Geol. Rev. 2008, 33, 81–100. [Google Scholar] [CrossRef]
- Kapsiotis, A.; Economou-Eliopoulos, M.; Zheng, H.; Su, B.; Lenaz, D.; Jing, J.; Antonelou, A.; Velicogna, M.; Xia, B. Refractory chromitites recovered from the Eretria mine, East Othris massif (Greece): Implications for metallogeny and deformation of chromitites within the lithospheric mantle portion of a forearc-type ophiolite. Chem. der Erde—Geochem. 2021, 79, 130–152. [Google Scholar] [CrossRef]
- Zaccarini, F.; Pushkarev, E.; Garuti, G.; Kazakov, I. Platinum-group minerals and other accessory phases in chromite deposits of the Alapaevsk ophiolite, Central Urals, Russia. Minerals 2016, 6, 108. [Google Scholar] [CrossRef]
- Etiope, G.; Ifandi, E.; Nazzari, M.; Procesi, M.; Tsikouras, B.; Ventura, G.; Steele, A.; Tardini, R.; Szatmari, P. Widespread abiotic methane in chromitites. Sci. Rep. 2018, 8, 8728. [Google Scholar] [CrossRef] [Green Version]
- Devai, I.; Delaune, R.D. Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Org. Geochem. 1995, 23, 277–279. [Google Scholar] [CrossRef]
- Guidry, M.W.; Mackenzie, F.T.; Arvidson, R.S. The role of tectonics in Phanerozoic phosphorus distribution and cycling. Spec. Publ. 2000, 66, 35–51. [Google Scholar] [CrossRef]
- Rassios, A.; Dilek, Y. Rotational deformation in the Jurassic Mesohellenic Ophiolites, Greece, and its tectonic significance. Lithos 2009, 108, 207–223. [Google Scholar] [CrossRef]
- Pearce, J.A.; Lippard, S.J.; Roberts, S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol. Soc. Lond. Spec. Publ. 1984, 16, 77–94. [Google Scholar] [CrossRef]
- Buchl, A.; Brugmann, G.; Batanova, V.G. Formation of podiform chromitite deposits: Implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chem. Geol. 2004, 208, 217–232. [Google Scholar] [CrossRef]
- Sideridis, A.; Koutsovitis, P.; Tsikouras, B.; Karkalis, C.; Hauzenberger, C.; Zaccarini, F.; Tsitsanis, P.; Vasiliki Lazaratou, C.; Skliros, V.; Panagiotaras, D.; et al. Pervasive Listwaenitization: The role of subducted sediments within mantle wedge, W. Chalkidiki ophiolites, N. Greece. Minerals 2022, 12, 1000. [Google Scholar] [CrossRef]
- García-Muelas, R.; Li, Q.; Lopez, N. Initial Stages in the Formation of Nickel Phosphides. J. Phys. Chem. B 2018, 122, 672–678. [Google Scholar] [CrossRef]
- Novikov, I.; Vapnik, Y.; Safonova, I. Mud volcano origin of the Mottled Zone, South Levant. Geosci. Front. 2013, 4, 597–619. [Google Scholar] [CrossRef]
- McEwen, R.S. Crystallographic studies on nickel hydroxide and the higher nickel oxides. J. Phys. Chem. 1975, 75, 1782–1789. [Google Scholar] [CrossRef]
- Livingstone, A.; Bish, D.L. On the new mineral thoephrastite, a nickel hydroxide, from Unst, Shetland, Scotland. Mineral. Mag. 1982, 46, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Henry, D.A.; Birch, W.D. Otwayite and theophrastite from the Lord Brassey Mine, Tasmania. Mineral. Mag. 1992, 56, 252–255. [Google Scholar] [CrossRef]
- Bode, H.; Dehmelt, K.; Witte, J. Zur Kenntnis der Nickelhydroxidelektrode-I. άber das Nickel (II)-Hydroxidhydrat. Electrochim. Acta 1966, 11, 1079–1087. [Google Scholar] [CrossRef]
- Watanabe, K.; Koseki, M.; Kumagai, N. Effect of cobalt addition to nickel hydroxide as a positive material for rechargeable alkaline batteries. J. Power Sources 1996, 58, 23–28. [Google Scholar] [CrossRef]
- Hall, D.S.; Lockwood, D.J.; Bock, C.; MacDougall, B.R. Nickel hydroxides and related materials: A review of their structures, synthesis and properties. Proc. R. Soc. A 2015, 471, 20140792. [Google Scholar] [CrossRef]
- Murray, J.W. The interaction of metal ions at the manganese dioxide-solution interface. Geochim. Cosmochim. Acta 1975, l39, 505–520. [Google Scholar] [CrossRef]
- Gourrier, L.; Deabate, S.; Michel, T. Paillet, M.; Hermet, P.; Bantignies, J.-L., Henn, F. Characterization of unusually large ‘pseudo-single crystal’ of β-nickel hydroxide. J. Phys. Chem. C. 2011, 115, 15067–15074. [Google Scholar] [CrossRef]
- Murray, J.W. The interaction of cobalt with hydrous manganese dioxide. Geochim. Cosmochim. Acta 1975, 139, 635–648. [Google Scholar] [CrossRef]
- Scheckel, K.G.; Sparks, D.L. Temperature Effects on Nickel Sorption Kinetics at the Mineral–Water Interface. Soil Sci. Soc. Am. J. 2001, 65, 719–728. [Google Scholar] [CrossRef]
- Oswald, H.R.; Asper, R. Bivalent metal phosphides. In Preparation and Crystal Growth of Materials with Layered Structures; Leith, R.M.A., Ed.; D. Riedel Publishing Company: Dordrecht, The Netherlands, 1977; pp. 71–140. [Google Scholar]
- Ramesh, T.N.; Kamath, P. VSynthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. J. Power Sources 2006, 156, 655–661. [Google Scholar] [CrossRef]
- Golightly, J.P. Progress in understanding the evolution of nickel lateritics. In The Challenge of Finding New Mineral Resources—Global Metallogeny, Innovative Exploration, and New Discoveries; Goldfarb, R.J., Marsh, E.E., Monecke, T., Eds.; Economic Geology Special Publication 15; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2010; Volume 15, pp. 451–486. [Google Scholar]
- Dublet, G.; Juillot, F.; Morin, G.; Fritsch, E.; Fandeur, D.; Ona-Nguema, G.; Brown, G.E., Jr. Ni speciation in a New Caledonian lateritic regolith: A quantitative X-ray absorption spectroscopy investigation. Geochim. Cosmochim. Acta 2012, 95, 119–133. [Google Scholar] [CrossRef]
- Scott, D.M.; Grunthaner, P.J.; Tsaur, B.Y.; Nicolet, M.-A.; Mayer, J.W. The Effect of oxygen on the Growth Kinetics of Nickel Sili-cides. In Proceedings of the Symposium on Thin Film Interfaces and Interactions; Baglin, J.E.E., Poate, J.M., Eds.; The Electro-Chemical Society: Princeton, NJ, USA, 1980; Volumes 80–82, p. 148. [Google Scholar]
- Alberti, A.; La Magna, A. Role of the early stages of Ni-Si interaction on the structural properties of the reaction products. J. Appl. Phys. 2013, 114, 121301. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Economou-Eliopoulos, M.; Zaccarini, F. On the Origin of New and Rare Minerals Discovered in the Othrys and Vermion Ophiolites, Greece: An Overview. Minerals 2022, 12, 1214. https://doi.org/10.3390/min12101214
Economou-Eliopoulos M, Zaccarini F. On the Origin of New and Rare Minerals Discovered in the Othrys and Vermion Ophiolites, Greece: An Overview. Minerals. 2022; 12(10):1214. https://doi.org/10.3390/min12101214
Chicago/Turabian StyleEconomou-Eliopoulos, Maria, and Federica Zaccarini. 2022. "On the Origin of New and Rare Minerals Discovered in the Othrys and Vermion Ophiolites, Greece: An Overview" Minerals 12, no. 10: 1214. https://doi.org/10.3390/min12101214
APA StyleEconomou-Eliopoulos, M., & Zaccarini, F. (2022). On the Origin of New and Rare Minerals Discovered in the Othrys and Vermion Ophiolites, Greece: An Overview. Minerals, 12(10), 1214. https://doi.org/10.3390/min12101214