A Morphological and Size-Based Study of the Changes of Iron Sulfides in the Caples and Torlesse Terranes (Otago Schist, New Zealand) during Prograde Metamorphic Evolution
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wilkin, R.T.; Barnes, H.L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim. Cosmochim. Acta 1996, 60, 4167–4179. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 1997, 61, 323–339. [Google Scholar] [CrossRef]
- Wignall, P.B.; Newton, R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am. J. Sci. 1998, 298, 537–552. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Shi, G.R.; Liao, W.; Yu, L. Fluctuations of redox conditions across the Permian-Triassic boundary—New evidence from the GSSP section in Meishan of South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 448, 48–58. [Google Scholar] [CrossRef]
- Liao, W.; Bond, D.P.G.; Wang, Y.B.; He, L.; Yang, H.; Weng, Z.T.; Li, G.S. An extensive anoxic event in the Triassic of the South China Block: A pyrite framboid study from Dajiang and its implications for the cause(s) of oxygen depletion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 486, 86–95. [Google Scholar] [CrossRef]
- Wang, L.; Shi, X.; Jiang, G. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 333, 218–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, D.; Yin, H.; Liu, M.; Xie, W.; Wei, G.; Li, Y. Remagnetization of lower Silurian black shale and insights into shale gas in the Sichuan Basin, south China. J. Geophys. Res. Solid Earth 2016, 121, 491–505. [Google Scholar] [CrossRef]
- Huang, F.; Gao, W.; Gao, S.; Meng, L.; Zhang, Z.; Yan, Y.; Ren, Y.; Li, Y.; Liu, K.; Xing, M.; et al. Morphology Evolution of Nano-Micron Pyrite: A Review. J. Nanosci. Nanotechnol. 2017, 17, 5980–5995. [Google Scholar] [CrossRef]
- Merinero, R.; Cárdenes, V. Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth. Mineral. Petrol. 2018, 112, 577–589. [Google Scholar] [CrossRef]
- Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef]
- Cardenes, V.; Cnudde, V.; Merinero, R.; Dewanckele, J.; de Boever, W.; Cnudde, J.P. Determination of the REDOX paleoconditions: A High Resolution X-ray Tomography study of micro pyrite occurrence. In Proceedings of the 2nd International Conference on Tomography of Materials and Structures, Quebec, QC, Canada, 29 June–3 July 2015; Long, B., Francus, P., Eds.; INRS: Quebec, QC, Canada, 2015. [Google Scholar]
- Cardenes, V.; Merinero, R.; De Boever, W.; Rubio-Ordóñez, Á.; Dewanckele, J.; Cnudde, J.P.; Boone, M.; Van Hoorebeke, L.; Cnudde, V. Characterization of micropyrite populations in low-grade metamorphic slate: A study using high-resolution X-ray tomography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 924–935. [Google Scholar] [CrossRef]
- Cardenes, V.; Merinero, R.; López-Munguira, A.; Rubio-Ordóñez, A.; Pitcairn, I.K.; Cnudde, V. Size evolution of micropyrite from diagenesis to low-grade metamorphism. In Metamorphic Geology: Microscale to Mountain Belts; Ferrero, S., Lanari, P., Goncalves, P., Grosch, E.G., Eds.; Geological Society of London Special Publications: London, UK, 2019; Volume 478, pp. 137–144. [Google Scholar]
- Merinero, R.; Cardenes, V.; Lunar, R.; Boone, M.N.; Cnudde, V. Representative size distributions of framboidal, euhedral, and sunflower pyrite from high-resolution X-ray tomography and scanning electron microscopy analyses. Am. Mineral. 2017, 102, 620–631. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L.; Brantley, S.L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. Cosmochim. Acta 1996, 60, 3897–3912. [Google Scholar] [CrossRef]
- Craig, J.R.; Vokes, F.M.; Solberg, T.N. Pyrite: Physical and chemical textures. Miner. Depos. 1998, 34, 82–101. [Google Scholar] [CrossRef]
- England, B.M.; Ostwald, J. Framboid-derived structures in some Tasman fold belt base-metal sulphide deposits, New South Wales, Australia. Ore Geol. Rev. 1993, 7, 381–412. [Google Scholar] [CrossRef]
- Sawlowicz, Z. Pyrite framboids and their development: A new conceptual mechanism. Int. J. Earth Sci. 1993, 82, 148–156. [Google Scholar] [CrossRef]
- Sawlowicz, Z. Framboids: From their origin to application. Prace Mineral. 2000, 88, 1–58. [Google Scholar]
- Wacey, D.; Kilburn, M.R.; Saunders, M.; Cliff, J.B.; Kong, C.; Liu, A.G.; Matthews, J.J.; Brasier, M.D. Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping. Geology 2015, 43, 27–30. [Google Scholar] [CrossRef]
- Scott, R.J.; Meffre, S.; Woodhead, J.; Gilbert, S.E.; Berry, R.F.; Emsbo, P. Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Econ. Geol. 2009, 104, 1143–1168. [Google Scholar] [CrossRef]
- Pitcairn, I.K.; Olivo, G.R.; Teagle, D.A.H.; Craw, D. Sulfide Evolution during Prograde Metamorphism of the Otago and Alpine Schists, New Zealand. Can. Mineral. 2010, 48, 1267–1295. [Google Scholar] [CrossRef]
- Bishop, D.G. Progressive Metamorphism from Prehnite-Pumpellyite to Greenschist Facies in the Dansey Pass Area, Otago, New Zealand. Geol. Soc. Am. Bull. 1972, 83, 3177–3197. [Google Scholar] [CrossRef]
- Mortimer, N.; Roser, B.P. Gechemical evidence for the postion of the Caples Torlesse boundary in the Otago Schist, New Zealand. J. Geol. Soc. 1992, 149, 967–977. [Google Scholar] [CrossRef]
- Large, R.; Thomas, H.; Craw, D.; Henne, A.; Henderson, S. Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand. N. Z. J. Geol. Geophys. 2012, 55, 137–149. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Rozenbaum, O.; du Roscoat, S.R. Representative elementary volume assessment of three-dimensional x-ray microtomography images of heterogeneous materials: Application to limestones. Phys. Rev. E 2014, 89, 053304. [Google Scholar] [CrossRef] [PubMed]
- Eberl, D.D.; Drits, V.A.; Srodon, J. Deducing growth mechanisms for minerals from the shapes of crystal size distributions. Am. J. Sci. 1998, 298, 499–533. [Google Scholar] [CrossRef]
- Merinero, R.; Lunar, R.; Somoza, L.; Díaz-Del-Río, V.; Martínez-Frías, J. Nucleation, growth and oxidation of framboidal pyrite associated with hydrocarbon-derived submarine chimneys: Lessons learned from the Gulf of Cadiz. Eur. J. Mineral. 2009, 21, 947–961. [Google Scholar] [CrossRef]
Sample | A6 | A4 | A5 | C46 | A1 | A3 | C56 | C72 |
---|---|---|---|---|---|---|---|---|
Terrane | Caples | Caples | Caples | Torlesse | Torlesse | Torlesse | Torlesse | Torlesse |
Lithology | GW un-mt | Pel sb-GS | Pel sb-GS | GW un-mt | Psa sb-GS | Pel sb-GS | QFS GS | QFS GS |
Population Analysis | ||||||||
P1(mean,SD) | 9.6(1.7) | 9.7(1.8) | 9.8(1.8) | 11.5(3.2) | 10.2(2.1) | 12.5(3.6) | 9.9(1.9) | 7.7(0.5) |
(%n,V) | 31.6,2.5 | 22.3,0.5 | 20.2,0.5 | 43.9,96.7 | 24.1,0.6 | 36.3,5.1 | 33.4,1.8 | 12.5,0.7 |
P2(mean,SD) | 15.3(4.6) | 13.7(2.8) | 13.9(2.2) | 25.4(14.3) | 18.7(6.3) | 23.3(6.6) | 15.2(4.6) | 9.8(0.6) |
(%n,V) | 45.1,15.4 | 22.7,1.4 | 20.0,1.2 | 56.1,97.7 | 34.4,5.7 | 52.1,40.1 | 34.4,7.0 | 20.7,1.8 |
P3(mean,SD) | 27.7(14.7) | 23.8(6.2) | 19.5(2.9) | -- | 40.3(21.5) | 44.7(12.7) | 30.2(16.6) | 11.7(1.1) |
(%n,V) | 23.4,82.1 | 25.4,6.4 | 17.2,2.7 | -- | 41.5,93.7 | 11.7,54.7 | 32.2,91.3 | 14.5,1.9 |
P4(mean,SD) | -- | 33.5(24.8) | 27.7(6.4) | -- | -- | -- | -- | 13.3(1.7) |
(%n,V) | -- | 29.6,91.6 | 18.2,8.3 | -- | -- | -- | -- | 14.1,2.8 |
P5(mean,SD) | -- | -- | 25.7(14.4) | -- | -- | -- | -- | 20.0(6.8) |
(%n,V) | -- | -- | 24.4,87.3 | -- | -- | -- | -- | 25.9,22.3 |
P6(mean,SD) | -- | -- | -- | -- | -- | -- | -- | 32.0(18.1) |
(%n,V) | -- | -- | -- | -- | -- | -- | -- | 12.2,70.5 |
Tot.(mean,SD) | 27.7(14.7) | 21.9(0.6) | 24.3(18.9) | 19.5(14.5) | 21.9(12.0) | 18.3(13.5) | 15.7(10.1) | |
(%n,V) | (100,100) | (100,100) | (100,100) | (100,100) | (100,100) | (100,100) | (100,100) | (100,100) |
Vol. (mm3) | 43.1 | 152.8 | 204.0 | 114.2 | 190.2 | 41.1 | 45.8 | 194.1 |
Objects | 4358 | 4219 | 5036 | 5623 | 4871 | 2568 | 2744 | 12611 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardenes, V.; Merinero, R.; Rubio-Ordoñez, Á.; Cnudde, V.; García-Guinea, J.; Pitcairn, I.K. A Morphological and Size-Based Study of the Changes of Iron Sulfides in the Caples and Torlesse Terranes (Otago Schist, New Zealand) during Prograde Metamorphic Evolution. Minerals 2020, 10, 459. https://doi.org/10.3390/min10050459
Cardenes V, Merinero R, Rubio-Ordoñez Á, Cnudde V, García-Guinea J, Pitcairn IK. A Morphological and Size-Based Study of the Changes of Iron Sulfides in the Caples and Torlesse Terranes (Otago Schist, New Zealand) during Prograde Metamorphic Evolution. Minerals. 2020; 10(5):459. https://doi.org/10.3390/min10050459
Chicago/Turabian StyleCardenes, Victor, Raúl Merinero, Álvaro Rubio-Ordoñez, Veerle Cnudde, Javier García-Guinea, and Iain K. Pitcairn. 2020. "A Morphological and Size-Based Study of the Changes of Iron Sulfides in the Caples and Torlesse Terranes (Otago Schist, New Zealand) during Prograde Metamorphic Evolution" Minerals 10, no. 5: 459. https://doi.org/10.3390/min10050459
APA StyleCardenes, V., Merinero, R., Rubio-Ordoñez, Á., Cnudde, V., García-Guinea, J., & Pitcairn, I. K. (2020). A Morphological and Size-Based Study of the Changes of Iron Sulfides in the Caples and Torlesse Terranes (Otago Schist, New Zealand) during Prograde Metamorphic Evolution. Minerals, 10(5), 459. https://doi.org/10.3390/min10050459