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Abstract: Titania is one of the most comprehensively studied nanostructures due to their
widespread applications in the production of catalytic, gas sensing, and corrosion-resistant materials.
M-polynomial of nanotubes has been vastly investigated, as it produces many degree-based
topological indices, which are numerical parameters capturing structural and chemical properties.
These indices are used in the development of quantitative structure-activity relationships (QSARs) in
which the biological activity and other properties of molecules, such as boiling point, stability, strain
energy, etc., are correlated with their structure.

In this report, we provide M-polynomials of single-walled titania (SW TiO;) nanotubes and
recover important topological degree-based indices to theoretically judge these nanotubes. We also
plot surfaces associated to single-walled titania (SW TiO;) nanotubes.

Keywords: degree-based topological index; Zagreb index; general randic index; symmetric division
index; M-polynomial; titania nanotubes

1. Introduction

In chemical graph theory, molecular topology, and mathematical chemistry, a topological index,
sometimes known as a connectivity index, is a type of a molecular descriptor which is calculated
based on the molecular graph of a chemical compound. A large amount of chemical experiments
require a determination of the chemical properties of new compounds and new drugs. Fortunately,
the chemical-based experiments indicate that there is strong inherent relationship between the chemical
characteristics of chemical compounds and drugs and their molecular structures. Topological indices
calculated for these chemical molecular structures can help us to understand the physical features,
chemical reactivity, and biological activity.

Titania, TiO,, attracts considerable technological interest due to its unique properties in
biology, optics, electronics, and photo-chemistry [1]. Recent experimental studies show that titania
nanotubes (NTs) improve TiO, bulk properties for photocatalysis, hydrogen-sensing, and photo-voltaic
applications [2]. Titanium nanotubes have been observed in two types of morphologies: single-walled
titanium (SW TiO,) nanotubes and multi-walled (MW TiO,) nanotubes [3]. Here, we are interested
only in single-walled TiO, nanotubes because we consider their chemical graphs to work on molecular
descriptors. Titania nanotubes are formed by rolling up the stoichiometric two-periodic (2D) sheets
cut from the energetically stable anatase surface, which contains either six (O —Ti—O -0 —Ti — O)
or three (O — Ti — O) layers [4].
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The TNT; [m, n] is the two-parametric chemical graph of three-layered titania nanotubes, where
m and n represent the number of titanium atoms in each row and column, respectively (Figure 1).
Big dots correspond to titanium atoms, whereas small dots correspond to oxygen atoms, and edges
represent bonds.

Figure 1. The graph of three-layered single-walled titania nanotubes.

TNTg [m, n] is the two-parametric chemical graph of a six-layered single-walled titania nanotube,
where m and 7 represent the number of titanium atoms in each column and row, respectively (Figure 2).
Here again, big dots correspond to titania atoms, small dots to oxygen, and edges to atomic bonds.

Figure 2. The graph of six-layered single walled titania nanotubes.

In order to engineer a nanotube endowed with a proposed property, one can have control over
structural sensitive properties such as fracture toughness and yield stress. The topological index
of a molecule structure can be considered as a non-empirical numerical quantity that quantifies the
molecular structure and its branching pattern in many ways. In this point of view, the topological
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index can be regarded as a score function that maps each molecular structure to a real number and is
used as a descriptor of the molecule under testing.

The Wiener index is the first and most studied topological index and is defined as the sum
of the distances between all pairs of vertices in G. For more details, see [5,6]. Zagreb indices were
introduced by Gutman and Trinajstic [7]. The first Zagreb index M;(G) is defined as the sum of the
squares of degrees of a graph G, and the second Zagreb index M;(G) is the sum of the product of
all degrees corresponding to each edge in G [7]. The second modified Zagreb index is defined by

"My (G) = Y. dudy, whered, and d, are the degrees of vertices u and v, respectively [8]. General
uveE(G)
Randic index of G is defined as the sum of (d,d,)" over all edges uv of G, where d,, denotes the degree
of vertex u of G,and R, (G) = Y (d,dy)", where a is an arbitrary real number [9]. Symmetric
uveE(G)

min(dy,dy) max(dy,dy)
max(dy,dy) min(dy,dy)

division index is defined as )} { } These indices can help to characterize
)

uveE(G
the chemical and physical properties of molecules [7,9-20]. Most recently, Munir et al. computed

M-polynomials and related topological indices for Bucktubes [11] and Nanostar dendrimers [19].

In the present article, we compute the closed forms of M-polynomials of single-walled titania
nanotubes and represent them graphically using Mapple. As a consequence, we derived some
topological degree-based indices. We start by defining the M-polynomial of a general graph [7]. It is
important to mention that black titania nanotubes are used to control photo-catalysis and crystalline
structures. These tubes have applications in nanotechnology, optics, and electronics. In these areas,
computations of topological indices can predict properties of these tubes and avoid a large amount of
chemical experiments.

Definition 1. If G = (V,E) is a graph where V denotes vertices and E represents edges of G. Let dy, (G)
represent the degree of v in graph G. Let m;j (G);i,j > 1 be the number of edges e = uv of G such that
{du (G), dv (G)} = {i, j }, which means the M-Polynomial of graph G is defined as

M(G,x,y) = Y mj(G)x'y/. 1)

i<j

Topological indices are numerical parameters of a graph that characterize its topology and
are usually graph-invariant. It describes the structure of molecules numerically. Topological
indices are used in the development of qualitative structure activity relationships (QSARs).
Some degree-based topological indices are derived from M-polynomials [21]. The following Table 1
relates these derivations.

Table 1. Derivations of degree-based indices

Topological Index flx,y) Derivation from M(G;x,y)
First Zagreb x+y (Dx + Dy) (M (G;x,y)) x=y=1
Second Zagreb xy (DxDy) (M (G;x,y)) |x:y:1
Second Modified Zagreb ,%y (sty) (M (G;x,y)) |x:y:1
General Randi¢ « € N (xy)* (DEDy) (M (G;x,y)) ey
General Randi¢ o« € N L (S?S;) (M(G; x,y))’
(xy) x=y=1
2 2
Symmetric Division Index X :yy (DxSy + SxDy) (M (G; x,y)) |x:y:1

a(f(xy) . _ o(f(xy) . _ f(t, . _ f(x,
o= T, By = M5, = [ a5, = T
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2. Results

In this section, we use the symmetric structures of single-walled titania nanotubes to determine
the M-polynomials and then derive topological indices for these tubes.

Proposition 1. Let TNTz[m,n| be the three-layered single-walled titania nanotube.  Therefore,
M (TNT; [m,n],x,y) = 4mx?*y* + 4mx3y* + 4mx?y® + 2m (6n — 5) x3°.

Proof. Let TNT3 [m, n] be the three-layered single-walled titania nanotube, where m and n are the
number of titanium atoms in each row and column, respectively. The graph has 6mn + 3m number
of vertices and 12mn + 2m edges. The following are the tables for the vertex and edge partitions of
TNT; [m, n] nanotubes.

From Table 2, we see that there are four partitions, V5, = {veTNT; [m, n]|dy = 2}, Vg, =
{veTNT; [m, n]|d, = 3}, Viyy = {v [ TNT3[m,n]|dy = 4}, and Vig, = {veTNT; [m, n]|d, = 6} for
the vertex set V (TNT3 [m, n]) with size 4m, 4mn — 2m,2m and 2mn — m, respectively.

As we can see in Table 3, the edge set of TNTj [m, n] can be written as

E{2/4} = {e =uv ek (TNT3 [ﬂ’l, n])|du = 2/ d’() = 4} — E{2,4} = 47’1’1, (2)
Egae) = {e = w0 € E(TNT; [m,n])|du =2, dy = 6} = |Eqp| = 4m, )
Ezay = {e = uv € E(TNTs [m,n])|dy =3, dy =4} — |E(3.4)| = 4m, 4)
and
Ee = {e=uv € E(TNT3 [m,n])|dy =3, dy = 6} — ‘E{M}‘ =2m (6n —5). (5)

Table 2. The partition of V(G) of TNT3 [m, n].

d, 2 3 4 6

Number of vertices 4m 4mn — 2m 2m 2mn —m

Table 3. Edge partition of edge set of TN T3 [m, n].

(dur d‘l}) (2/ 4) (31 4) (2/ 6) (3’ 6)
Number of edges 4m 4m 4m 2m (6n —5)

Thus, the M-polynomial of TNT3 [m, n] is

M (TNT; [m,n],x,y) =Y m;; (TNT3 [m, n]) xiyf

i<j

= Y moy (TNT; [m,n]) x*y* + ¥ may (TNT3 [m, n]) x3y*
2<4 3<4

+ ¥ mog (TNT3 [m, n]) x*y® + ¥ mag (TNT3 [m, n]) x3y°
2<6 3<6

= ¥ mu(TNTs[mn])x**+ ¥ ma (TNT3[m,n])x*y* . (6)
uv€E 4y uv€E(3 4y

+ ¥ my(TNT3[m,n])x*y®+ ¥ mae (TNT3 [m,n]) x°y°

uv€E( 6y uv€E (34

E(z4) x2y4'F‘E{a4}’x3y4‘F’E{zé}’xzyé‘F.E{&é}‘xByé
= dmx?y* + dmx3y* + Amx?y® + 2m (6n — 5) x3y°
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Proposition 2. Let TNTy[m,n] be the six-layered single walled titania nanotube.  Therefore,
M (TNTg [m,n],x,y) = 2mx*y? + 2mx*y> + 6mx>y* + 8mnx?y> + 2mx3y* + 2m (6n — 5) x3y°.

Proof. Let TNT, [m, n] be the six-layered single walled titania nanotube, where 1 and 1 are the number
of titanium atoms in each row and column, respectively. The graph has 12mn + 4m number of vertices
and 20mn + 2m edges. Table 4 provides the edge partitions of TNTg [m, n|, and Table 5 provides
Vertex partitions.

Table 4. Edge partition of edge set of TNTj [m, n].

(du, dv) (2,2) (2,3) (2,4) (2,5) (3,4) (3,5)
Number of edges 2m 2m 6m 8mn 2m 2m (6n —5)

Table 5. The partition of V (G) of TNTg [m, n].

dy 2 3 4 5

Number of vertices 4mn + 6m dmn — 2m 2m dmn — 2m

From Table 4, we see that the partitions of V(G) of TNTs[m,n| are Vi =
{0eTNTg [m, n]|dy =2}, Vizy = {veTNTg[m,n]|ldy =3}, Viyy = {0eTNTs[m,n]|d, =4}, and
Visy = {veTNTg [m,n]|dy = 5} for the vertex set V (TNTg [m, n]) with size 4mn + 6m, 4mn — 2m, 2m
and 4mn — 2m, respectively. From Table 5, the edge set of TNTg[m, n] can be written as

E{Z,Z} = {6 =uv € E (TNT6 [m, I’lD|du =2,d, = 2} — E{Z,Z} = 2m, (7)
Epsy ={e=uv € E(TNTg [m,n])|dy = 2,do =3} — |Egp3y| = 2m, ®)
Ep4y = {e=uv € E(TNTe [m,n])|dy =2,dy =4} — |Ejp4y| = 6m, )
Eqsy = {e = uv € E(TNTs [m, n])|dy = 2,dy = 5} — ‘E{Z,S}’ = 8mn, (10)
Eg34) = {¢ = uv € E(TNTs [m,n])|dy =3, dy = 4} — ‘E{M}‘ = om, (11)
and
Egss) = {e = uv € E (TNTs [m, n])|dy = 3, dy = 5} — ‘E{&S}’ = 2m (61 —5). (12)
M (TNTg [m,n],x,y) = ¥ mij (TNTs [m,n]) x'y/
i<j
= Y my (TNTg [m,n]) x2y? + ¥ ma3 (TNTg [m, n]) x*y>
2<2 2<3
+ ¥ oy (TNTg [m, n]) x2y* + Y mos (TNTs [m, n]) x*y°
2<4 255
+ ¥ mas (TNTs [m,n]) x®y* + ¥ mas (TNTg [m, n]) x*y°
3<4 3<5
= ¥ myp(TNTs[m,n))x*y>+ ¥ mo3 (TNTs[m,n]) x*y3
UvEE () 9y uveEp 3 - (13
+ ¥ mag (TNTs [m,n]) x®y* + ¥ mos (TNTg [m, n]) x°y°.
quE{ZA} uUEE{Z,S}
+ ¥ mg(TNTs[m,n))*y*+ ¥ mas (TNTg [m, n]) )
uv€E(s 4y uv€E3 5,
= |Eqooy | ¥%y* + ‘E{z,g}‘ 2P+ ‘5{2,4}‘ Xyt + ’E{z,s}’ X%y

+‘E{3,4} Byt + Egss) 236465

= 2mx%y? + 2mx2y> + 6mx?y* + 8mnx?y> + 2mx3y* + 2m (6n — 5) x3y°
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The following results provide the computation of the topological indices of the three-layered and
six-layered single-walled titania nanotubes.

Proposition 3. For the three-layered single-walled titania nanotube TNT3 [m, n] we have

M, (TNT; [m,n]) = 108mn — 6m,
My(TNT3[m, n] = 2592m>n? — 288m>n + 8m?,
"My (TNT3[m,n]) = 8m?n? + 8m?n + 2m?,
R.(G) = (2592m%n?® — 288m?n + 8m?)",
R.(G) = (8m2n? + 8m?n 4 2m?)",

SDD(G) = 360m?n? + 160m?n — 10m>.

AN Gl = W N -

Proof. Let f (x,y) be the M-polynomial of TNTj3 [m, n]. Therefore,

F(TNT; [m,n];x,y) = 4mx*y* + dmx>y* + 4mx®y® + 2m (6n — 5) x>y°, (14)
Dy(f(x,y)) = 8mxy* + 12mx*y* + 8mxy® + 6m(6n — 5)x%y°, (15)
Dy (f(x,y)) = 16mx*y® + 16mx>y> + 24mx*y® + 12m(6n — 5)x°y°, (16)
Se(f(x,v)) = 2mx*y* 4+ 4/3mx>y* 4 2mx?y® +2/3m(6n — 5)x>y°, (17)
Sy(f(x,y)) = mx?y* 4+ mx3y* +2/3mx?y® +1/3m(6n — 5)x%y°, (18)
Dy (f (TNT3 [m, n];x,Y))|x=y—1 = 72mn — 4m, (19)
Sy (f (TNTs [m, n];x,Y))|x=y=1 = 4mn +2m, (20)
Sy (f (TNT3 [m,n];x,y))|x=y—1 = 2mn+m, (21)
1 M;(TNTs[m,n]) = (Dx + Dy)(M(G; x,y))|(x:y:1) = 108mn — 6m,
2 Mp(TNTs[m,n]) = (DxDy)(M(G;x,y))| () = 2592m*n® — 288m>n + 8m?,
3 ™M, (TNT;[m,n]) = (5:Sy) (M (G; x,]/))|x:y:1 = 8m?n® + 8m’n + 2m?,
4 Re(G) = (DD%)(M(G;x,y)) ’x:yzl = (2592m%n? — 288m2n + 8m2)",
5  Re(G) = (S§55)(M(G;x,y)) ey T (8m%n? 4 8m?n + 2m?)",
6 SDD(G) = (DxSy + SxDy)(M(G; x,y))\x:y:1 = 360m*n? + 160m*n — 10m?.

Proposition 4. For the six-layered single-walled titania nanotube TNTy[m, 1] we have

M1 (TNTg[m,n] = 152mn — 12m,

My (TNTg[m,n] = 5200m?n* — 816m?n + 32m?,
"My (TNTe [m, n]) = 32m*n* + Bm?n + 3Bm?,
R4(G) = (5200m%n? — 816m%n + 32m?)",
R.(G) = (32m2n? 4 68/3m2n + 35/9m?)",
SDD (G) = 1008m?n? + 240m*n — 12m?>.

NGl = W N -

Proof. Let f (x,y) be M-polynomial of TN T [m, n]. Therefore,
f(TNT; [m,n];x,y) = 2mx*y* + 2mxy> + 6mx?y* + 8mnx?y® + 2mx>y* + 2m (6n — 5) x°y°, (22)

Dy (f (x,y)) = 4mxy? + dmxy® + 12mxy* + 16mnxy® + 6mx*y* + 6m (6n — 5) x*y°, (23)
Dy (f (x,y)) = 4mxy 4 6mx>y* + 24mx>y® + 40mnxy* + 8mxdy> + 10m (6n — 5) x3y?, (24)
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2 10
S (f (x,y)) = mx?y? + mx?y® + 3mx?y* + dmnx*y® + gmx3y4 + dmnx’y® — ?mx3y5,

Sy (f(x,y) = mx?y? + %mxzf + %mxzy4 + gmnxzy“r’ + %mx3y4 + 15—2mnx3y5 —2mx%y’,

Dy (f (TNT3 [m, n];X,Y)) |x=y—1 = 52mn — 4m,
Dy (f (TNT3 [m,n];x,y)) lx=y=1 = 100mn — 8m,

7
Sx (f (TNT3 [mr n] /x/y)) ‘x:y:l = 8mn + gm,

5
Sy (f (TNT3 [m, n]; x,y)) |x=y=1 = 4mn + 3

M; (TNTs [m,n]) = (Dx 4 Dy) (M (G; X, )| x=y=1 = 152mn — 12m,
M, (TNT3[m,n]) = (DxDy)(M(G; x,y))
"M, (TNT3 [m,n]) = (SxSy) (M (G; x,y)) |x—y=1 = 32m>n* + Lm?n + Lm?,
Ri(G) = (DEDY)(M(G; X, y)) | (x—y—1) = (5200m?n? — 816m?n + 32m?)",
Ri(G) = (5453)(M(G; %, Y))| (xey—1) = (32m>n* 4 68/3m*n + 35/9m?)",
SDD(G) = (DxSy + SxDy)(M(G; x,y))

. Conclusions

(x=y—1) = 5200m*n* — 816m*n + 32m?,

(v—y—1) = 1008m>n® + 240m*n — 12m>.

7 of 9

(25)

(26)
(27)
(28)

(29)

(30)

In this article, we computed the connectivity of titania nanotubes through degree-based
topological indices. In Figures 3 and 4, we gave graphically representation of M-polynomial of
3-layered single walled titania nanotbes and 6-layered single walled titania nanotubes. The topological
indices thus calculated for these titania nanotubes can help us to understand their physical features,
chemical reactivity, and biological activities. From this point of view, topological indices can be
regarded as a score function that maps each molecular structure to a real number and are used as
descriptors of the molecule under testing. These results can also play a vital role in the determination
of the significance of single-walled titania nanotubes in pharmaceutical industry [22,23]. In addition, a
comparison between three- and six-layered titania nanotubes can be launched with the help of careful
analysis of the above results. The methodology described above can be extended to emerging types of
neontubes: aluminosilicate/aluminugerminate [20,24-26].

R N S A S

3
6 g

2. % 10°
B 2
F 9 10 1.» 10

Figure 3. M-polynomial of 3-layered single walled titania nanotbes.
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Figure 4. M-Polynomials of 6-layered single walled titania nanotubes.
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