Next Article in Journal
Bi-xLSTM-Informer for Short-Term Photovoltaic Forecasting: Leveraging Temporal Symmetry and Feature Optimization
Previous Article in Journal
Zero Mass as a Borel Structure
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Role of Symmetry Aspects in Considering the Spin-1 Particle with Two Additional Electromagnetic Characteristics in the Presence of Both Magnetic and Electric Fields

1
Department of Fundamental Interactions and Astrophysics, B.I. Stepanov Institute of Physics of NAS of Belarus, Nezaleznosti Avenue, 68/2, 220072 Minsk, Belarus
2
Department of Theoretical Physics and Applied Informatics, Mozyr State Pedagogical University, Studencheskaya Str., 28/1, 247760 Mozyr, Belarus
3
Department of Mathematical Modeling, The John Paul II Catholic University of Lublin, ul. Konstantynów 1H, 20-708 Lublin, Poland
*
Author to whom correspondence should be addressed.
Symmetry 2025, 17(9), 1465; https://doi.org/10.3390/sym17091465
Submission received: 30 July 2025 / Revised: 23 August 2025 / Accepted: 26 August 2025 / Published: 5 September 2025

Abstract

In this paper, we study a generalized Duffin–Kemmer equation for a spin-1 particle with two characteristics, anomalous magnetic moment and polarizability in the presence of external uniform magnetic and electric fields. After separating the variables, we obtained a system of 10 first-order partial differential equations for 10 functions f A ( r , z ) . To resolve this complicated problem, we first took into account existing symmetry in the structure of the derived system. The main step consisted of applying a special method for fixing the r-dependence of ten functions f A ( r , z ) , A = 1 , , 10 . We used the approach of Fedorov–Gronskiy, according to which the complete 10-component wave function is decomposed into the sum of three projective constituents. The dependence of each component on the polar coordinate r is determined by only one corresponding function, F i ( r ) , i = 1 , 2 , 3 . These three basic functions are constructed in terms of confluent hypergeometric functions, and in this process a quantization rule arises due to the presence of a magnetic field.In fact, this approach is a step-by-step algebraization of the systems of equations in partial derivatives. After that, we derived a system of 10 ordinary differential equations for 10 functions f A ( z ) . This system was solved using the elimination method and with the help of special linear combinined with the involved functions. As a result, we found three separated second-order differential equations, and their solutions were constructed in the terms of the confluent hypergeometric functions. Thus, in this paper, the three types of solutions for a vector particle with two additional electromagnetic characteristics in the presence of both external uniform magnetic and electric fields.

1. Introduction

The theory of spin-1 particles has an extensive history [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30], and is closely related to Lorentz group symmetry. In addition to the classical and simplest model for a vector particle, there exist more complicated models for spin-1 particles with characteristics beyond electric charge, such as an anomalous magnetic moment, electrical quadruple moment, and so on.
In [29], within the general method of Gel’fand–Yaglom [3], a relativistic generalized system of first-order equations was constructed for a spin-1 particle with two additional characteristics: anomalous magnetic moment and polarizability. The primary derivation of the generalized equation for a spin-1 particle with two characteristics in additional to electric charge is a separate and rather involved task; therefore, in the present paper we started from the known result of previous work. In fact, this approach is based on the use of an extended set of irreducible representations of the proper Lorentz group to produce more general and complicated equations for a particle with a fixed value of spin. First, the model was developed for a free particle, and a system of spinor equations was obtained; then it was transformed into tensor form. In tensor form, the presence of external electromagnetic fields was taken into account. After eliminating the accessory variables of the complete wave function, the generalized Proca system of 10 equations was derived; it contains two additional interaction terms, which are interpreted as corresponding to the anomalous magnetic moment and polarizability.
In [30], this equation was solved in the presence of a uniform magnetic field.
In the present paper, we considered a situation in which both fields, magnetic and electric, were presented. After separating the variables, we obtained a system of 10 first-order partial differential equations for 10 functions f A ( r , z ) . To resolve this complicated problem, we took into account the specific symmetry in the structure of the derived system. Accordingly, the complete wave function, consisting of 10 variables f A ( r , z ) , A = 1 , , 10 is decomposed into the sum of three projective constituents. The dependence of each component on the polar coordinate is determined by only one function, F i ( r ) , i = 1 , 2 , 3 which are constructed in terms of confluent hypergeometric functions. In this process, a quantization rule arises due to the presence of a magnetic field.
After that, we derive a system of 10 ordinary differential equations for 10 functions f A ( z ) . This system is solved, and as the result, we obtain three independent solutions.
We can readily verify that, when polarizability parameter vanishes and the electric field is absent, the known results for the energy spectra of a vector particle with an anomalous magnetic moment in the presence of an external uniform magnetic field are recovered.

2. Matrix Equation in Minkowski Space

We start with the following tensor equations (let D a = a + i e A a )
D b Φ a b + e μ F a b Φ b + e σ D a ( F c d Φ c d ) M Φ a = 0 , D a Φ b D b Φ a M Φ a b = 0 ;
which can be compared with the ordinary Proca system:
D b Φ a b M Φ a = 0 , D a Φ b D b Φ a M Φ a b = 0 .
In Equation (1), we can see two additional interaction terms, proportional to parameters μ (anomalous magnetic moment) and σ (polarizability); in [29,30], it was proved that both parameters μ , σ are imaginary: μ i μ , σ i σ , we will take this into account later on. Below, we apply the 10-dimensional column:
Φ = ( Φ 0 , Φ 1 , Φ 2 , Φ 3 ; Φ 01 , Φ 02 , Φ 03 , Φ 23 , Φ 31 , Φ 12 ) = ( H 1 ; H 2 ) .
Let us recall the matrix form of the Proca system when μ = 0 , σ = 0 . The first equation gives K a D a H 2 M H 1 = 0 , where
K 0 = . . . . . . 1 . . . . . . 1 . . . . . . 1 . . . , K 1 = 1 . . . . . . . . . . . . . . . . 1 . . . . 1 . ,
K 2 = . 1 . . . . . . . . . 1 . . . . . . . . . + 1 . . , K 3 = . . 1 . . . . . . . + 1 . . . . 1 . . . . . . . . .
The second equation in (2) leads to D a L a H 1 M H 2 = 0 , where
L 0 = 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 , L 1 = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 , L 2 = . . . . 1 . . . . . . . . . . 1 . . . . . 1 . . , L 3 = . . . . . . . . 1 0 0 . . . 1 . . 1 . . . . . . .
Thus, the system of equations for the ordinary spin-1 particle is presented in block form as
K a D a H 2 M H 1 = 0 , L a D a H 1 M H 2 = 0 .
Let us detail the first additional term in (1) (considering identities: F 01 Φ 1 = E 1 Φ 1 , F 12 Φ 2 = B 3 Φ 2 , and so on)
e μ F a b Φ b = e μ 0 E 1 E 2 E 3 E 1 0 B 3 B 2 E 2 B 3 0 B 1 E 3 B 2 B 1 0 Φ 0 Φ 1 Φ 2 Φ 3 ,
when allowing for the structure of six Lorentzian generators for a vector field
j 23 = S 1 = 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 , j 31 = S 2 = 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 , j 12 = S 3 = 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 ,
j 01 = T 1 = 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 , j 02 = T 2 = 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 , j 03 = T 3 = 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 ,
we obtain a shorter presentation
e μ F α β Φ β e μ S B + T E H 1 .
The second additional term in (1) is
e σ D a ( F c d Φ c d ) = 2 e σ D a E 1 0 0 0 0 0 0 E 2 0 0 0 0 0 0 E 3 0 0 0 0 0 0 B 1 0 0 0 0 0 0 B 2 0 0 0 0 0 0 B 3 Φ 01 Φ 02 Φ 03 Φ 23 Φ 31 Φ 12 .
So, we have a generalized Duffin–Kemmer–Petiau equation in block form
K a D a H 2 c e μ ( S B + T E ) H 1 c + e σ D c ( F k l Φ k l ) M ( H 1 ) c = 0 , L a D a H 1 [ k l ] M ( H 2 ) [ k l ] = 0 ,
where the symbol c denotes the vector index c = (0,1,2,3); the indices [ k l ] numerate the independent components of the antisymmetric tensor, [ 01 ] , [ 02 ] , [ 03 ] , [ 23 ] , [ 31 ] , [ 12 ] .

3. Extension to Curved Space–Time Models

In Riemannian space, we start with more complicated equations
D β Φ α β + e μ F α β Φ β + e σ ^ α ( F ρ δ Φ ρ δ ) M Φ α = 0 , D α Φ β D β Φ α M Φ α β = 0 ;
below, two different derivative symbols will be used: D α = α + i e A α , ^ α = α + i e A α .
Let us transform these equations to tetrad form (apply the notation e ( b ) β ( β + i e A β ) = ^ ( b ) ). Using Ricci rotation coefficients, we present the above equations as follows
^ ( b ) Φ c b γ a c b Φ a b + e ( b ) ; β β Φ c b + e μ F c b Φ b + e σ ( ( c ) F a b ) Φ a b + e σ F a b ^ ( c ) Φ a b M Φ c = 0 ,
^ ( c ) Φ d ^ ( d ) Φ c + γ b d c Φ b γ b c d Φ b M Φ c d = 0 .
We recall the known matrix tetrad form of the equation for an ordinary vector particle
β c e ( c ) α ( x ) x α + 1 2 J a b γ a b c M Φ = 0 , Φ = Φ a Φ a b = H 1 H 2 ;
The two additional interactions terms are
e μ F α β Φ β = e μ S B T E H 1 , e σ ^ α ( F c d Φ c d ) = e σ ^ ( 0 ) ( F c d Φ c d ) ^ ( 1 ) ( F c d Φ c d ) ^ ( 2 ) ( F c d Φ c d ) ^ ( 3 ) ( F c d Φ c d ) .
So, we have the following generalized system of equations
K c D c ( 2 ) H 2 n e μ ( S B + T E ) H 1 n + e σ e ( n ) α ^ α ( F k l Φ k l ) M ( H 1 ) n = 0 , L c D c ( 1 ) H 1 [ k l ] ( M H 2 ) [ k l ] = 0 .

4. Particle in the Uniform Magnetic and Electric Fields

It is convenient to use the cylindrical coordinates x α = ( t , r , ϕ , z ) . The relevant tetrad, Ricci rotation coefficients, and the uniform magnetic and electric fields are determined as
d S 2 = d t 2 d r 2 r 2 d ϕ 2 d z 2 , e ( a ) α = 1 0 0 0 0 1 0 0 0 0 1 r 0 0 0 0 1 , γ 122 = 1 r , A 0 = E z , F 03 = e ( 0 ) t e ( 3 ) z F t z = E , ^ 0 i ϵ i e E z , A ϕ = B r 2 / 2 , F r ϕ = B r , F 12 = e ( 1 ) r e ( 2 ) ϕ F r ϕ = B .
Correspondingly, the system of equations takes on the form
K 0 ( 0 i e E z ) + K 1 r + K 2 1 r ϕ + i e B r 2 2 + j 2 12 + K 3 z H 2 M H 1
e μ B j 1 12 H 1 e μ E j 1 03 H 1 2 B e σ ( 0 i e E z ) r 1 r ( ϕ + i e B r 2 2 ) z Φ 12 + 2 E e σ ( 0 i e E z ) r 1 r ( ϕ + i e B r 2 2 ) z Φ 03 = 0 ,
L 0 ( 0 i e E z ) + L 1 r + L 2 1 r ( ϕ + i e B r 2 / 2 + j 1 12 ) + L 3 z H 1 M H 2 = 0 .
It is more convenient to apply the so-called cyclic basis. It is defined by requirement to have a diagonal generator j 1 12 for the vector field H 1 = ( Φ l ) . The necessary transformation Φ ¯ = U Φ is
U = 1 0 0 0 0 1 2 i 2 0 0 0 0 1 0 1 2 i 2 0 , j ¯ 12 = 0 0 0 0 0 i 0 0 0 0 0 0 0 0 0 + i .
Vector and tensor generators are transformed ccording to the rules
J ¯ 1 a b = U j a b U 1 , J ¯ 2 a b = j ¯ a b I + I j ¯ a b ;
so that
J ( 2 ) 12 = 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 J ¯ 2 12 = i 1 . . . . . . 0 . . . . . . 1 . . . . . . 1 . . . . . . 0 . . . . . . 1 .
We should also transform the Duffin–Kemmer matrices β a to the cyclic basis. It is convenient to apply the block presentation: H ¯ 1 = C 1 H 1 , ( C 1 = U ) , H ¯ 2 = ( U U ) H 2 = C 2 H 2 ; further, we obtain
0 K ¯ a L ¯ a 0 = 0 C 1 K a C 2 1 C 2 L a C 1 1 0 .
We derive
C 1 = U = 1 0 0 0 0 1 2 i 2 0 0 0 0 1 0 1 2 i 2 0 , C 2 = 1 2 i 2 0 0 0 0 0 0 1 0 0 0 1 2 i 2 0 0 0 0 0 0 0 i 2 1 2 0 0 0 0 0 0 i 0 0 0 i 2 1 2 0 .
Further, we readily find the necessary blocks:
K ¯ 0 = 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 , K ¯ 1 = 1 2 0 1 2 0 0 0 0 0 0 0 1 2 0 0 0 0 1 2 0 1 2 0 0 0 0 1 2 0 ,
K ¯ 2 = i 2 0 i 2 0 0 0 0 0 0 0 i 2 0 0 0 0 i 2 0 i 2 0 0 0 0 i 2 0 , K ¯ 3 = 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 ,
L ¯ 0 = 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 , L ¯ 1 = 1 2 0 0 0 0 0 0 0 1 2 0 0 0 0 0 1 2 0 0 1 2 0 1 2 0 0 1 2 0 ,
L ¯ 2 = i 2 0 0 0 0 0 0 0 i 2 0 0 0 0 0 i 2 0 0 i 2 0 i 2 0 0 i 2 0 , L ¯ 3 = 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 ,
and expressions for the necessary generators
J ¯ 1 12 = i 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 + 1 , j ¯ 1 03 = 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 .
Considering this, we can transform the above two equations to the cyclic basis; so we obtain
K ¯ 0 ( 0 i e E z ) + K ¯ 1 r + K ¯ 2 1 r ϕ + i e B r 2 2 + j ¯ 2 12 + K ¯ 3 z H ¯ 2 M H ¯ 1
e μ B j ¯ 1 12 H ¯ 1 e μ E j ¯ 1 03 H ¯ 1 2 B e σ 1 0 0 0 0 1 2 i 2 0 0 0 0 1 0 1 2 i 2 0 ( 0 i e E z ) r 1 r ( ϕ + i e B r 2 2 ) z ( i Φ ¯ 31 )
+ 2 E e σ 1 0 0 0 0 1 2 i 2 0 0 0 0 1 0 1 2 i 2 0 ( 0 i e E z ) r 1 r ( ϕ + i e B r 2 2 ) z Φ ¯ 02 = 0 ,
so that
L ¯ 0 ( 0 i e E z ) + L ¯ 1 r + L ¯ 2 1 r ( ϕ + i e B r 2 2 + j ¯ 1 12 ) + L ¯ 3 z H ¯ 1 M H ¯ 2 = 0 ,
L ¯ 0 ( 0 i e E z ) + L ¯ 1 r + L ¯ 2 1 r ( ϕ + j ¯ 1 12 ) + L ¯ 3 z H ¯ 1 M H ¯ 2 = 0 .
Now, let us perform separation of the variables, applying the substitution
H ¯ 1 = e i ϵ t e i m ϕ Φ ¯ 0 ( r , z ) Φ ¯ 1 ( r , z ) Φ ¯ 2 ( r , z ) Φ ¯ 3 ( r , z ) , H ¯ 2 = e i ϵ t e i m ϕ Φ ¯ 01 ( r , z ) Φ ¯ 02 ( r , z ) Φ ¯ 03 ( r , z ) Φ ¯ 23 ( r , z ) Φ ¯ 31 ( r , z ) Φ ¯ 12 ( r , z ) = e i ϵ t e i m ϕ E ¯ 1 ( r , z ) E ¯ 2 ( r , z ) E ¯ 3 ( r , z ) B ¯ 1 ( r , z ) B ¯ 2 ( r , z ) B ¯ 3 ( r , z ) ,
in this way, we obtain (for brevity let as make the change in notations: e B B , e E E )
K ¯ 0 ( i ϵ i E z ) + K ¯ 1 r + K ¯ 2 1 r i m + i B r 2 2 + j ¯ 2 12 + K ¯ 3 z H ¯ 2 M H ¯ 1
μ B j ¯ 1 12 H ¯ 1 2 B σ 1 0 0 0 0 1 2 i 2 0 0 0 0 1 0 1 2 i 2 0 ( i ϵ i E z ) r 1 r ( i m + i B r 2 2 ) z ( i B ¯ 2 )
μ E j ¯ 1 03 H ¯ 1 + 2 E σ 1 0 0 0 0 1 2 i 2 0 0 0 0 1 0 1 2 i 2 0 ( i ϵ i E z ) r 1 r ( i m + i B r 2 2 ) z E ¯ 2 = 0 ,
L ¯ 0 ( i ϵ i E z ) + L ¯ 1 r + L ¯ 2 1 r ( i m + i B r 2 2 + j ¯ 1 12 ) + L ¯ 3 z H ¯ 1 M H ¯ 2 = 0 .
Further, we obtain the explicit form of 10 equations (for brevity, we will omit the overline symbol). With the use of shortening notations
a m = r + B r 2 + m r , a m + 1 = r + B r 2 + m + 1 r , b m = r B r 2 m r , b m 1 = r B r 2 m 1 r ,
these equations read
1 1 2 b m 1 E 1 1 2 a m + 1 E 3 z E 2 + μ E Φ 2 2 i E σ ( ϵ + E z ) E 2 + 2 B σ ( E z + ϵ ) B 2 = M Φ 0 ,
2 i ( ϵ + E z ) E 1 + 1 2 ( 1 2 i B σ ) a m B 2 z B 3 2 E σ a m E 2 + i B μ Φ 1 = M Φ 1 ,
3 i ( ϵ + E z ) E 2 1 2 a m + 1 B 1 1 2 b m 1 B 3 μ E Φ 0 + 2 E σ z E 2 + 2 i B σ z B 2 = M Φ 2 ,
4 i ( ϵ + E z ) E 3 + 1 2 i ( 2 B σ i ) b m B 2 + z B 1 + 2 E σ b m E 2 i B μ Φ 3 = M Φ 3 ,
5 1 2 a m Φ 0 i ( ϵ + E z ) Φ 1 = M E 1 , 6 z Φ 0 i ( ϵ + E z ) Φ 2 = M E 2 ,
7 1 2 b m Φ 0 i ( ϵ + E z ) Φ 3 = M E 3 , 8 1 2 b m Φ 2 + z Φ 3 = M B 1 ,
9 1 2 b m 1 Φ 1 + 1 2 a m + 1 Φ 3 = M B 2 , 10 1 2 a m Φ 2 z Φ 1 = M B 3 .

5. Projective Operators Method

To analyze the system of equations, we will use the method of projective operators (following the method of Fedorov and Gronskiy [31]). To this end, we consider the third spin projection Y = i J ¯ 12 , and make sure that it satisfies the minimal equation Y ( Y 1 ) ( Y + 1 ) = 0 . This minimal equation allows us to introduce three projective operators
P 0 = 1 Y 2 , P + 1 = 1 2 Y ( Y + 1 ) , P 1 = 1 2 Y ( Y 1 ) ,
with the necessary properties
P 0 2 = P 0 , P + 1 2 = P + 1 , P 1 2 = P 1 , P 0 + P + 1 + P 1 = 1 .
Accordingly, the complete wave function can be expanded in the sum of three parts
Φ ¯ = Φ ¯ 0 + Φ ¯ + 1 + Φ ¯ 1 , Φ ¯ σ = P σ Φ ¯ , σ = 0 , + 1 , 1 .
These components have the following dependence on the variable r (in accordance with the Fedorov–Gronsky method, each projective component should be determined by only one function of the polar coordinate r):
Φ ¯ 0 = Φ ¯ 0 ( z ) 0 Φ ¯ 2 ( z ) 0 0 E ¯ 2 ( z ) 0 0 B ¯ 2 ( z ) 0 F 1 ( r ) , Φ ¯ + 1 = 0 0 0 Φ ¯ 3 0 0 E ¯ 3 ( z ) B ¯ 1 ( z ) 0 0 F 2 ( r ) , Φ 1 = 0 Φ ¯ 1 ( z ) 0 0 E ¯ 1 ( z ) 0 0 0 0 B ¯ 3 ( z ) F 3 ( r ) ;
1 1 2 E 1 ( z ) b m 1 F 3 ( r ) 1 2 E 3 ( z ) a m + 1 F 2 ( r ) z E 2 ( z ) F 1 ( r )
μ E Φ 2 ( z ) F 1 ( r ) 2 i E σ ( ϵ + E z ) E 2 ( z ) F 1 ( r )
+ 2 B σ ( E z + ϵ ) B 2 ( z ) F 1 ( r ) = M Φ 0 ( z ) F 1 ( r ) ,
2 i ( ϵ + E z ) E 1 ( z ) F 3 ( r ) + 1 2 ( 1 2 i B σ ) B 2 ( z ) a m F 1 ( r ) z B 3 ( z ) F 3 ( r )
2 E σ E 2 ( z ) a m F 1 ( r ) + i B μ Φ 1 ( z ) F 3 ( r ) = M Φ 1 ( z ) F 3 ( r ) ,
3 i ( ϵ + E z ) E 2 ( z ) F 1 ( r ) 1 2 B 1 ( z ) a m + 1 F 2 ( r ) 1 2 B 3 ( z ) b m 1 F 3 ( r )
μ E Φ 0 ( z ) F 1 ( r ) + 2 E σ z E 2 ( z ) F 1 ( r ) + 2 i B σ z B 2 ( z ) F 1 ( r ) = M Φ 2 ( z ) F 1 ( r ) ,
4 i ( ϵ + E z ) E 3 ( z ) F 2 ( r ) + 1 2 i ( 2 B σ i ) B 2 ( z ) b m F 1 ( r ) + z B 1 ( z ) F 2 ( r )
+ 2 E σ E 2 ( z ) b m F 1 ( r ) i B μ Φ 3 ( z ) F 2 ( r ) = M Φ 3 ( z ) F 2 ( r ) ,
5 1 2 Φ 0 ( z ) a m F 1 ( r ) i ( ϵ + E z ) Φ 1 ( z ) F 3 ( r ) = M E 1 ( z ) F 3 ( r ) ,
6 z Φ 0 ( z ) F 1 ( r ) i ( ϵ + E z ) Φ 2 ( z ) F 1 ( r ) = M E 2 ( z ) F 1 ( r ) ,
7 1 2 Φ 0 ( z ) b m F 1 ( r ) i ( ϵ + E z ) Φ 3 ( z ) F 2 ( r ) = M E 3 ( z ) F 2 ( r ) ,
8 1 2 Φ 2 ( z ) b m F 1 ( r ) + z Φ 3 ( z ) F 2 ( r ) = M B 1 ( z ) F 2 ( r ) ,
9 1 2 Φ 1 ( z ) b m 1 F 3 ( r ) + 1 2 Φ 3 ( z ) F 2 ( r ) = M B 2 ( z ) F 1 ( r ) ,
10 1 2 Φ 2 ( z ) a m F 1 ( r ) z Φ 1 ( z ) F 3 ( r ) = M B 3 ( z ) F 3 ( r ) .
In order to obtain equations in the variable z, we impose the following constraints
b m 1 F 3 = C 1 F 1 , a m F 1 = C 4 F 3 , a m + 1 F 2 = C 2 F 1 , b m F 1 = C 3 F 2 ,
so, we obtain
1 1 2 E 1 ( z ) C 1 1 2 E 3 ( z ) C 2 z E 2 ( z )
μ E Φ 2 ( z ) 2 i E σ ( ϵ + E z ) E 2 ( z ) + 2 B σ ( E z + ϵ ) B 2 ( z ) = M Φ 0 ( z ) ,
2 i ( ϵ + E z ) E 1 ( z ) + 1 2 ( 1 2 i B σ ) B 2 ( z ) C 4 z B 3 ( z )
2 E σ E 2 ( z ) C 4 + i B μ Φ 1 ( z ) = M Φ 1 ( z ) ,
3 + i ( ϵ + E z ) E 2 ( z ) 1 2 B 1 ( z ) C 2 1 2 B 3 ( z ) C 1
μ E Φ 0 ( z ) + 2 E σ z E 2 ( z ) + 2 i B σ z B 2 ( z ) = M Φ 2 ( z ) ,
4 i ( ϵ + E z ) E 3 ( z ) + 1 2 i ( 2 B σ i ) B 2 ( z ) C 3 + z B 1 ( z )
+ 2 E σ E 2 ( z ) C 3 i B μ Φ 3 ( z ) = M Φ 3 ( z ) ,
5 1 2 Φ 0 ( z ) C 4 i ( ϵ + E z ) Φ 1 ( z ) = M E 1 ( z ) , 6 z Φ 0 ( z ) i ( ϵ + E z ) Φ 2 ( z ) = M E 2 ( z ) ,
7 1 2 Φ 0 ( z ) C 3 i ( ϵ + E z ) Φ 3 ( z ) = M E 3 ( z ) , 8 1 2 Φ 2 ( z ) C 3 + z Φ 3 ( z ) = M B 1 ( z ) ,
9 1 2 Φ 1 ( z ) C 1 + 1 2 Φ 3 ( z ) C 2 = M B 2 ( z ) ,
10 1 2 Φ 2 ( z ) C 4 z Φ 1 ( z ) = M B 3 ( z ) .

6. Explicit Form of Three Basic Functions

In the differential constraints
b m 1 F 3 ( r ) = C 1 F 1 ( r ) , a m F 1 ( r ) = C 4 F 3 ( r ) ,
a m + 1 F 2 ( r ) = C 2 F 1 ( r ) , b m F 1 ( r ) = C 3 F 2 ( r ) ,
the parameters in each pair can be chosen to be the same: C 4 = C 1 , C 3 = C 2 . So, we obtain the following constraints
b m 1 F 3 ( r ) = C 1 F 1 ( r ) , a m F 1 ( r ) = C 1 F 3 ( r ) ,
a m + 1 F 2 ( r ) = C 2 F 1 ( r ) , b m F 1 ( r ) = C 2 F 2 ( r ) ;
and the resulting second-order equations read
( b m 1 a m C 1 2 ) F 1 = 0 , ( a m b m 1 C 1 2 ) F 3 = 0 ,
( a m + 1 b m C 2 2 ) F 1 = 0 , ( b m a m + 1 C 2 2 ) F 2 = 0 .
These equations explicitly read
d 2 d r 2 + 1 r d d r B 2 r 2 4 m 2 r 2 B m + B C 1 2 F 1 = 0 ,
d 2 d r 2 + 1 r d d r B 2 r 2 4 m 2 r 2 B m B C 2 2 F 1 = 0 ,
therefore, C 2 2 = C 1 2 2 B and
d 2 d r 2 + 1 r d d r B 2 r 2 4 ( m 1 ) 2 r 2 B m C 1 2 F 3 = 0 ,
d 2 d r 2 + 1 r d d r B 2 r 2 4 ( m + 1 ) 2 r 2 B m C 2 2 F 2 = 0 .
Thus, we have only three equations and the constraint C 2 2 = C 1 2 2 B :
1 , d 2 d r 2 + 1 r d d r B 2 r 2 4 m 2 r 2 B m + B C 1 2 F 1 = 0 ,
2 , d 2 d r 2 + 1 r d d r B 2 r 2 4 ( m + 1 ) 2 r 2 B m C 1 2 + 2 B F 2 = 0 ,
3 , d 2 d r 2 + 1 r d d r B 2 r 2 4 ( m 1 ) 2 r 2 B m C 1 2 F 3 = 0 .
With the notation B C 1 2 = X , the equations take on the form
1 , d 2 d r 2 + 1 r d d r B 2 r 2 4 m 2 r 2 B m + X F 1 = 0 ,
2 , d 2 d r 2 + 1 r d d r B 2 r 2 4 ( m + 1 ) 2 r 2 B ( m 1 ) + X F 2 = 0 ,
3 , d 2 d r 2 + 1 r d d r B 2 r 2 4 ( m 1 ) 2 r 2 B ( m + 1 ) + X F 3 = 0 .
In the variable x = B r 2 2 , we readily find their solutions
1 , F 1 ( x ) = x + | m | 2 e x / 2 F 1 ( x ) , F 1 ( x ) = Φ ( n 1 , | m | + 1 , x ) ,
X = 2 B | m | + m 2 + 1 2 + n 1 > B , n 1 = 0 , 1 , 2 , ;
2 , F 2 ( x ) = x + | m + 1 | 2 e x / 2 F 3 ( x ) , F 3 ( x ) = Φ ( n 3 , | m + 1 | + 1 , x ) ,
X = 2 B | m + 1 | + m 1 2 + 1 2 + n 2 > B , n 2 = 0 , 1 , 2 , ;
3 , F 3 ( x ) = x + | m 1 | 2 e x / 2 F 2 ( x ) , F 2 ( x ) = Φ ( n 2 , | m 1 | + 1 , x ) ,
X = 2 B | m 1 | + m + 1 2 + 1 2 + n 3 > B , n 3 = 0 , 1 , 2 , .
In all three cases, the quantity X is the same; below, we apply the variant
X = 2 B N > 0 , N = | m | + m 2 + 1 2 + n , n = 0 , 1 , 2 , ,
where the parameter N takes half-integer values; note the formulas
C 4 = C 1 = i X B , C 3 = C 2 = i X + B .

7. Solving Equations in z -Variable

Let us turn to the system in the z-variable, allowing for (17). It is convenient to divide the resulting equations into two groups:
Subsystem I (it is algebraic with respect to the variables Φ ¯ 0 , Φ ¯ 2 , E ¯ 1 , E ¯ 3 , B ¯ 1 , B ¯ 3 )
1 1 2 E 1 ( z ) i X B 1 2 E 3 ( z ) i X + B z E 2 ( z )
μ E Φ 2 ( z ) 2 i E σ ( ϵ + E z ) E 2 ( z ) + 2 B σ ( E z + ϵ ) B 2 ( z ) = M Φ 0 ( z ) ,
3 i ( ϵ + E z ) E 2 ( z ) 1 2 B 1 ( z ) i X + B 1 2 B 3 ( z ) i X B
μ E Φ 0 ( z ) + 2 E σ z E 2 ( z ) + 2 i B σ z B 2 ( z ) = M Φ 2 ( z ) ,
5 1 2 Φ 0 ( z ) i X B i ( ϵ + E z ) Φ 1 ( z ) = M E 1 ( z ) ,
7 1 2 Φ 0 ( z ) i X + B i ( ϵ + E z ) Φ 3 ( z ) = M E 3 ( z ) ,
8 1 2 Φ 2 ( z ) i X + B + z Φ 3 ( z ) = M B 1 ( z ) ,
10 1 2 Φ 2 ( z ) i X B z Φ 1 ( z ) = M B 3 ( z ) ;
Subsystem I I
2 i ( ϵ + E z ) E 1 ( z ) + 1 2 ( 1 2 i B σ ) B 2 ( z ) i X B z B 3 ( z )
2 E σ E 2 ( z ) i X B + i B μ Φ 1 ( z ) = M Φ 1 ( z ) ,
4 i ( ϵ + E z ) E 3 ( z ) + 1 2 i ( 2 B σ i ) B 2 ( z ) i X + B + z B 1 ( z )
+ 2 E σ E 2 ( z ) i X + B i B μ Φ 3 ( z ) = M Φ 3 ( z ) ,
6 z Φ 0 ( z ) i ( ϵ + E z ) Φ 2 ( z ) = M E 2 ( z ) ,
9 1 2 Φ 1 ( z ) i X B + 1 2 Φ 3 ( z ) i X + B = M B 2 ( z ) ;
Equation (9) permits eliminating the variable B 2 from the previous three.
Let us resolve the system I with respect to the variables Φ ¯ 0 , Φ ¯ 2 , E ¯ 1 , E ¯ 3 , B ¯ 1 , B ¯ 3 :
Φ 0 = 1 2 M 2 + X 2 M 2 E 2 μ 2
× [ 4 B M M 2 + X ( E z + ϵ ) i z M E μ σ B 2 2 M ( i E ( E z + ϵ ) M μ + 2 M 2 + X σ
+ z M 2 + 2 E 2 μ σ M + X ) E 2 + 2 M 2 + X ( E z + ϵ ) i z M E μ X B Φ 1 B + X Φ 3 ] ,
Φ 2 = 1 2 M 2 + X 2 M 2 E 2 μ 2 [ i ( 4 B M z M 2 + X + i M E ( E z + ϵ ) μ σ B 2
+ 2 M ( E z M 2 + ϵ M 2 i z E μ M + E X z + X ϵ + 2 E ( M E ( E z + ϵ ) μ
i z M 2 + X ) σ ) E 2 + 2 z M 2 + X + i M E ( E z + ϵ ) μ X B Φ 1 B + X Φ 3 ) ] ,
E 1 = 1 2 M M 2 E μ M + X M 2 + E μ M + X
× [ i E X 2 B 2 z Φ 3 M 2 + i X 2 B 2 ϵ Φ 3 M 2
2 i 2 B X B M 2 + X ( E z + ϵ ) i z M E μ σ B 2 M
+ 2 X B i z M 2 + 2 E 2 μ σ M + X E ( E z + ϵ ) M μ + 2 M 2 + X σ E 2 M
+ z E X B B + X μ Φ 3 M + i ( 2 M 2 E 2 ( E z + ϵ ) μ 2
+ i z M E ( X B ) μ + M 2 + X 2 M 2 + B + X ( E z + ϵ ) ) Φ 1
+ i E X X 2 B 2 z Φ 3 + i X X 2 B 2 ϵ Φ 3 ] ,
E 3 = 1 2 M M 2 E μ M + X M 2 + E μ M + X
× [ i E X 2 B 2 z Φ 1 M 2 + i X 2 B 2 ϵ Φ 1 M 2 + 2 i 2 B B + X
× M 2 + X ( E z + ϵ ) i z M E μ σ B 2 M + 2 B + X ( E ( E z + ϵ ) M μ + 2 M 2 + X σ
i z M 2 + 2 E 2 μ σ M + X ) E 2 M + z E X 2 B 2 μ Φ 1 M
+ i E X X 2 B 2 z Φ 1 + i X X 2 B 2 ϵ Φ 1 i B M 2 + X ( E z + ϵ ) i z M E μ Φ 3
+ i 2 M 2 E 2 ( E z + ϵ ) μ 2 + i z M E X μ + M 2 + X 2 M 2 + X ( E z + ϵ ) Φ 3 ] ,
B 1 = 1 2 M M 2 E μ M + X M 2 + E μ M + X
× [ z X 2 B 2 Φ 1 M 2 + 2 2 B B + X z M 2 + X + i M E ( E z + ϵ ) μ σ B 2 M
+ 2 B + X ( E z M 2 + ϵ M 2 i z E μ M + E X z + X ϵ
+ 2 E M E ( E z + ϵ ) μ i z M 2 + X σ ) E 2 M + i E 2 X 2 B 2 z μ Φ 1 M
+ i E X 2 B 2 ϵ μ Φ 1 M + z X X 2 B 2 Φ 1 B z M 2 + X + i M E ( E z + ϵ ) μ Φ 3
+ 2 z M 2 E 2 μ 2 i M E X ( E z + ϵ ) μ + z M 2 + X 2 M 2 + X Φ 3 ] ,
B 3 = 1 2 M M 2 E μ M + X M 2 + E μ M + X
× [ z X 2 B 2 Φ 3 M 2 2 2 B X B z M 2 + X + i M E ( E z + ϵ ) μ σ B 2 M
2 X B E z M 2 + ϵ M 2 i z E μ M + E X z + X ϵ + 2 E M E ( E z + ϵ ) μ i z M 2 + X σ E 2 M
+ i E 2 X B B + X z μ Φ 3 M + i E X B B + X ϵ μ Φ 3 M
+ 2 z M 2 E 2 μ 2 + i M E ( B X ) ( E z + ϵ ) μ + z M 2 + X 2 M 2 + B + X Φ 1 + z X X 2 B 2 Φ 3 ] .
Now, substitute these expressions in equations of the group I I . This results in
1
( 2 B z 2 σ X B ( M 2 + X ) ( M 2 + X ) 2 μ 2 M 2 E 2 + X B 2 ( ( M 2 + X ) 2 μ 2 M 2 E 2 )
× ( 2 B σ + i ) ( M 2 μ M E + X ) ( M 2 + μ M E + X ) 2 B σ ( M 2 + X ) ( E z + ϵ ) 2 2 i B μ M σ E 2 B 2
+ ( i z 2 E X B ( 2 σ ( M 2 + X ) + μ M ) 2 ( ( M 2 + X ) 2 μ 2 M 2 E 2 ) i E X B 2 ( ( M 2 + X ) 2 μ 2 M 2 E 2 )
× ( i ( M 2 + 2 μ M σ E 2 + X ) + 2 σ ( M 2 μ M E + X ) ( M 2 + μ M E + X )
( ( E z + ϵ ) 2 ( 2 σ ( M 2 + X ) + μ M ) ) ) ) E 2
+ z 2 X 2 B 2 ( M 2 + X ) 2 M ( M 2 μ M E + X ) ( M 2 + μ M E + X ) + X 2 B 2 ( ( M 2 + X ) ( E z + ϵ ) 2 + i μ M E 2 ) 2 M ( M 2 μ M E + X ) ( M 2 + μ M E + X ) Φ 3
+ ( z 2 ( ( M 2 + X ) ( B + 2 M 2 + X ) 2 μ 2 M 2 E 2 ) 2 M ( M 2 μ M E + X ) ( M 2 + μ M E + X ) + 1 2 M ( M 2 μ M E + X ) ( M 2 + μ M E + X )
× [ 2 i B μ M ( M 2 μ M E + X ) ( M 2 + μ M E + X ) + ( M 2 + X ) ( B + 2 M 2 + X ) ( E z + ϵ ) 2
+ i μ M E 2 ( B X ) + 2 μ 2 M 4 E 2 2 μ 2 M 2 E 2 ( E z + ϵ ) 2 2 M 2 ( M 2 + X ) 2 ] ) Φ 1 = 0 ,
2
( 2 B z 2 σ B + X ( M 2 + X ) ( M 2 + X ) 2 μ 2 M 2 E 2
+ B + X 2 ( 2 B σ ( μ 2 M 2 E 2 ( M 2 + X ) ( M 2 ( E z + ϵ ) 2 + X ) + i μ M E 2 ) ( M 2 + X ) 2 μ 2 M 2 E 2 + i ) ) B 2
+ ( E B + X 2 ( ( M 2 + X ) 2 μ 2 M 2 E 2 ) ( 2 i σ ( M 2 μ M E + X ) ( M 2 + μ M E + X )
i ( E z + ϵ ) 2 ( 2 σ ( M 2 + X ) + μ M ) + M 2 + 2 μ M σ E 2 + X )
i z 2 E B + X ( 2 σ ( M 2 + X ) + μ M ) 2 ( ( M 2 + X ) 2 μ 2 M 2 E 2 ) ) E 2
+ z 2 X 2 B 2 ( M 2 + X ) 2 M ( M 2 μ M E + X ) ( M 2 + μ M E + X ) + X 2 B 2 ( ( M 2 + X ) ( E z + ϵ ) 2 + i μ M E 2 ) 2 M ( M 2 μ M E + X ) ( M 2 + μ M E + X ) Φ 1
+ ( 1 4 M z 2 ( 4 2 ( B + X ) ( M 2 + X ) ( M 2 + X ) 2 μ 2 M 2 E 2 ) + 1 2 M ( M 2 μ M E + X ) ( M 2 + μ M E + X )
× [ 2 i B μ 3 M 3 E 2 i μ M ( B ( 2 ( M 2 + X ) 2 + E 2 ) + E 2 X ) + ( M 2 + X ) ( ( B X ) ( E z + ϵ ) 2
2 M 4 + 2 M 2 ( ( E z + ϵ ) 2 X ) ) + 2 μ 2 M 2 E 2 ( M E z ϵ ) ( M + E z + ϵ ) ] ) Φ 3 = 0 ,
3
2 i B z 2 μ M 2 σ E ( M 2 + X ) 2 μ 2 M 2 E 2 2 B M σ E ( M 2 i μ M ( E z + ϵ ) 2 + X ) ( M 2 + X ) 2 μ 2 M 2 E 2 B 2
+ i z 2 μ M E X B 2 ( ( M 2 + X ) 2 μ 2 M 2 E 2 ) E X B ( M 2 i μ M ( E z + ϵ ) 2 + X ) 2 ( ( M 2 + X ) 2 μ 2 M 2 E 2 ) Φ 1
+ E B + X ( M 2 i μ M ( E z + ϵ ) 2 + X ) 2 ( ( M 2 + X ) 2 μ 2 M 2 E 2 ) i z 2 μ M E B + X 2 ( ( M 2 + X ) 2 μ 2 M 2 E 2 ) Φ 3
+ ( 1 ( M 2 + X ) 2 μ 2 M 2 E 2 z 2 M ( M 2 + 2 μ M σ E 2 + X )
+ M ( M 2 + X ) 2 μ 2 M 2 E 2 ( M 4 + M 2 ( E 2 ( μ 2 + 2 i σ + z 2 ) + 2 E z ϵ 2 X + ϵ 2 )
+ μ M E 2 ( 2 σ ( E z + ϵ ) 2 + i ) + X ( 2 i σ E 2 + ( E z + ϵ ) 2 X ) ) ) E 2 = 0 ,
4
i Φ 1 X B 2 + i Φ 3 B + X 2 + B 2 ( M ) = 0 .
With the help of the fourth equation, we can eliminate the variable B 2 from the three remaining equations (let us change the notations Φ 1 = G , Φ 3 = H , E 2 = F ); in order to remove the fractions, we multiply each equation by
2 M ( M 2 + X M E μ ) ( M 2 + X + M E μ ) ( ( M 2 + X ) 2 M 2 E 2 μ 2 ) ,
so, we obtain the following three equations
1
[ i 2 z 2 M E X B ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ( 2 σ ( M 2 + X ) + μ M )
i 2 M E X B ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ( i ( M 2 + 2 μ M σ E 2 + X )
+ 2 σ ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ( ( E z + ϵ ) 2 ( 2 σ ( M 2 + X ) + μ M ) ) ) ] F
+ [ z 2 ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ( 2 i B σ ( B X ) ( M 2 + X )
+ B M 2 + B X + 2 M 4 2 μ 2 M 2 E 2 + 3 M 2 X + X 2 ) + ( M 2 μ M E + X )
× ( M 2 + μ M E + X ) ( i ( X B ) ( ( 2 B σ + i ) ( M 2 μ M E + X ) ( M 2 + μ M E + X )
2 B σ ( M 2 + X ) ( E z + ϵ ) 2 2 i B μ M σ E 2 ) + 2 i B μ M ( M 2 μ M E + X )
× ( M 2 + μ M E + X ) + ( M 2 + X ) ( B + 2 M 2 + X ) ( E z + ϵ ) 2 + i μ M E 2 ( B X )
+ 2 μ 2 M 4 E 2 2 μ 2 M 2 E 2 ( E z + ϵ ) 2 2 M 2 ( M 2 + X ) 2 ) ] G
+ [ z 2 ( 1 2 i B σ ) X 2 B 2 ( M 2 + X ) ( M 2 μ M E + X ) ( M 2 + μ M E + X )
+ i ( 2 B σ + i ) X 2 B 2 ( ( M 2 + X ) 2 μ 2 M 2 E 2 ) ( μ 2 ( M 2 ) E 2 + ( M 2 + X )
× ( M 2 ( E z + ϵ ) 2 + X ) i μ M E 2 ) ] H = 0 ,
2
[ 2 M E B + X ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ( 2 i σ ( M 2 μ M E + X ) ( M 2 + μ M E + X )
i ( E z + ϵ ) 2 ( 2 σ ( M 2 + X ) + μ M ) + M 2 + 2 μ M σ E 2 + X )
i 2 z 2 M E B + X ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ( 2 σ ( M 2 + X ) + μ M ) ] F
+ [ z 2 ( 1 + 2 i B σ ) X 2 B 2 ( M 2 + X ) ( M 2 μ M E + X ) ( M 2 + μ M E + X )
i ( 2 B σ i ) X 2 B 2 ( ( M 2 + X ) 2
μ 2 M 2 E 2 ) ( μ 2 ( M 2 ) E 2 + ( M 2 + X ) ( M 2 ( E z + ϵ ) 2 + X ) i μ M E 2 ) ] G
+ [ z 2 ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ( 2 i B σ ( B + X ) ( M 2 + X )
B M 2 B X + 2 M 4 2 μ 2 M 2 E 2 + 3 M 2 X + X 2 ) + ( M 2 μ M E + X )
× ( M 2 + μ M E + X ) ( 2 i B μ 3 M 3 E 2 i μ M ( B ( 2 ( M 2 + X ) 2 + E 2 ) + E 2 X ) +
+ i ( B + X ) ( i ( ( M 2 + X ) 2 μ 2 M 2 E 2 ) 2 B σ ( μ 2 ( M 2 ) E 2
+ ( M 2 + X ) ( M 2 ( E z + ϵ ) 2 + X ) i μ M E 2 ) )
+ ( M 2 + X ) ( ( B X ) ( E z + ϵ ) 2 2 M 4 + 2 M 2 ( ( E z + ϵ ) 2 X ) )
+ 2 μ 2 M 2 E 2 ( M E z ϵ ) ( M + E z + ϵ ) ) ] H = 0 ,
3
[ 2 z 2 M 2 ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ( M 2 + 2 μ M σ E 2 + X )
+ 2 M 2 ( M 2 μ M E + X ) ( M 2 + μ M E + X )
× ( M 4 + M 2 ( E 2 ( μ 2 + 2 i σ + z 2 ) + 2 E z ϵ 2 X + ϵ 2 )
+ μ M E 2 ( 2 σ ( E z + ϵ ) 2 + i ) + X ( 2 i σ E 2 + ( E z + ϵ ) 2 X ) ) ] F
+ [ 2 z 2 μ M 2 E ( 2 B σ i ) X B ( M 2 μ M E + X ) ( M 2 + μ M E + X )
i 2 M E ( 2 B σ i ) X B ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ( M 2 i μ M ( E z ϵ ) 2 + X ) ] G
+ [ 2 M E ( 1 2 i B σ ) B + X ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ( M 2 i μ M ( E z + ϵ ) 2 + X )
2 z 2 μ M 2 E ( 2 B σ + i ) B + X ( M 2 μ M E + X ) ( M 2 + μ M E + X ) ] H = 0 ,
Let us write the last system in symbolical form
1 a 1 F + b 1 F + c 1 G + d 1 G + l 1 H + n 1 H = 0 ,
2 a 2 F + b 2 F + c 2 G + d 2 G + l 2 H + n 2 H = 0 ,
3 a 3 F + b 3 F + c 3 G + d 3 G + l 3 H + n 3 H = 0 .
We will combine equations
( 1 ) · α + ( 2 ) · β + ( 3 ) · γ = 0 ;
in this way, we obtain the following equation
( α a 1 + β a 2 + γ a 3 ) F + ( α b 1 + β b 2 + γ b 3 ) F
( α c 1 + β c 2 + γ c 3 ) G + ( α d 1 + β d 2 + γ d 3 ) G
( α l 1 + β l 2 + γ l 3 ) H + ( α n 1 + β n 2 + γ n 3 ) H = 0 .
We will distinguish three different cases:
I α 1 a 1 + β 1 a 2 + γ 1 a 3 = 1 , α 1 c 1 + β 1 c 2 + γ 1 c 3 = 0 , α 1 l 1 + β 1 l 2 + γ 1 l 3 = 0 ;
I I α 2 a 1 + β 2 a 2 + γ 2 a 3 = 0 , α 2 c 1 + β 2 c 2 + γ 2 c 3 = 1 , α 2 l 1 + β 2 l 2 + γ 2 l 3 = 0 ; I I I α 3 a 1 + β 3 a 2 + γ 3 a 3 = 0 , α 3 c 1 + β 3 c 2 + γ 3 c 3 = 0 , α 3 l 1 + β 3 l 2 + γ 3 l 3 = 1 ;
the corresponding three solutions have the form
I α 1 = μ E ( 2 B σ i ) X B 2 2 M 2 + X 2 μ 2 M 2 E 2 2 2 i B 2 σ + M 2 + 2 μ M σ E 2 , β 1 = i μ E ( 1 2 i B σ ) B + X 2 2 M 2 + X 2 μ 2 M 2 E 2 2 2 i B 2 σ + M 2 + 2 μ M σ E 2 , γ 1 = M 2 M 2 μ 2 E 2 + X + 2 i B 2 σ M 2 + X 2 M 2 M 2 μ M E + X 2 M 2 + μ M E + X 2 2 i B 2 σ + M 2 + 2 μ M σ E 2 ;
I I α 2 = 2 i B 2 σ + B ( 1 + 2 i σ X ) + 2 M M + 2 μ σ E 2 + X 4 M 2 + X 2 μ 2 M 2 E 2 2 2 i B 2 σ + M 2 + 2 μ M σ E 2 , β 2 = i ( 2 B σ + i ) X B B + X 4 M 2 + X 2 μ 2 M 2 E 2 2 2 i B 2 σ + M 2 + 2 μ M σ E 2 , γ 2 = i E X B 2 σ M 2 + X + μ M 2 2 M M 2 + X 2 μ 2 M 2 E 2 2 2 i B 2 σ + M 2 + 2 μ M σ E 2 ;
I I I α 3 = i ( 2 B σ + i ) X B B + X 4 M 2 + X 2 μ 2 M 2 E 2 2 2 i B 2 σ + M 2 + 2 μ M σ E 2 , β 3 = 2 i B 2 σ 2 i B σ X + B + 2 M M + 2 μ σ E 2 + X 4 M 2 + X 2 μ 2 M 2 E 2 2 2 i B 2 σ + M 2 + 2 μ M σ E 2 , γ 3 = i E B + X 2 σ M 2 + X + μ M 2 2 M M 2 + X 2 μ 2 M 2 E 2 2 2 i B 2 σ + M 2 + 2 μ M σ E 2 .
So, the above equations can be written
( 1 ) F + ( α 1 b 1 + β 1 b 2 + γ 1 b 3 ) F
+ ( α 1 d 1 + β 1 d 2 + γ 1 d 3 ) G + ( α 1 n 1 + β 1 n 2 + γ 1 n 3 ) H = 0 ,
( 2 ) G + ( α 2 b 1 + β 2 b 2 + γ 2 b 3 ) F
+ ( α 2 d 1 + β 2 d 2 + γ 2 d 3 ) G + ( α 2 n 1 + β 2 n 2 + γ 2 n 3 ) H = 0 ,
( 3 ) H + ( α 3 b 1 + β 3 b 2 + γ 3 b 3 ) F
+ ( α 3 d 1 + β 3 d 2 + γ 3 d 3 ) G + ( α 3 n 1 + β 3 n 2 + γ 3 n 3 ) H = 0 .
Let us make the necessary change σ i σ , μ i μ . So, we obtain (also it is convenient to apply the designation ( E z + ϵ ) = Σ ):
( 1 ) F + Σ 2 F
+ M 2 ( 2 B 2 σ + W 2 ( μ 2 + 2 σ ) + X ) + μ M W 2 ( 2 σ ( 2 B 2 σ + X ) 1 ) + 2 B 2 σ ( 2 σ W 2 + X ) M 4 M 2 2 σ ( B 2 + μ M W 2 ) F
+ W ( 2 B σ 1 ) X B ( M ( B μ + μ M ( B μ + M ) + M ) 2 B 2 σ ( μ M + 1 ) ) 2 ( M 3 2 M σ ( B 2 + μ M W 2 ) ) G
+ W ( 2 B σ + 1 ) B + X ( M ( B μ + μ M ( M B μ ) + M ) 2 B 2 σ ( μ M + 1 ) ) 2 ( M 3 2 M σ ( B 2 + μ M W 2 ) ) H = 0 ,
( 2 ) G + Σ 2 G + 1 2 M 2 4 σ ( B 2 + μ M W 2 )
× [ 2 B 3 σ ( μ M 1 ) + B 2 ( 2 σ ( 2 M 2 + μ M X + X ) + μ M 4 σ 2 W 2 ( μ M + 1 ) 1 )
+ B ( ( μ M 1 ) ( 2 M 2 + X ) + 2 σ W 2 ( μ M ( 2 μ M 1 ) + 1 ) + 4 σ 2 W 2 X ( μ M + 1 ) )
+ 2 σ W 2 ( 2 μ M 3 + X ( μ M 1 ) ) 2 M 2 ( M 2 + X ) ] G
M W X B ( μ M + 1 ) ( 4 σ 2 W 2 + 1 ) 2 ( M 2 2 σ ( B 2 + μ M W 2 ) ) F
+ ( 2 B σ + 1 ) X B B + X ( B ( μ M 1 ) 2 σ W 2 ( μ M + 1 ) ) 4 σ ( B 2 + μ M W 2 ) 2 M 2 H = 0 ,
( 3 ) H + Σ 2 H
+ 1 2 M 2 4 σ ( B 2 + μ M W 2 ) [ 2 B 3 σ ( μ M 1 ) + B 2 ( 2 σ ( 2 M 2 + μ M X + X ) + μ M
4 σ 2 W 2 ( μ M + 1 ) 1 ) + B ( ( μ M 1 ) ( 2 M 2 + X ) + 2 σ W 2 ( μ M ( 1 2 μ M ) 1 )
4 σ 2 W 2 X ( μ M + 1 ) ) + 2 σ W 2 ( 2 μ M 3 + X ( μ M 1 ) ) 2 M 2 ( M 2 + X ) ] H
+ M W B + X ( μ M + 1 ) ( 4 σ 2 W 2 + 1 ) 2 ( M 2 2 σ ( B 2 + μ M W 2 ) ) F
+ ( 2 B σ 1 ) X B B + X ( B ( μ M 1 ) + 2 σ W 2 ( μ M + 1 ) ) 4 σ ( B 2 + μ M W 2 ) 2 M 2 G = 0 .
Let us present the system in matrix form
Δ = d 2 d z 2 + Σ 2 ( z ) , Δ F G H = A F G H , Δ Ψ ( z ) = A Ψ ( z ) , A = A 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 .
Now, we will find the transformation that diagonalizes the system
Ψ ¯ = S Ψ , Δ Ψ ¯ ( z ) = A ¯ Ψ ¯ ( z ) , A ¯ = S A S 1 = λ 1 0 0 0 λ 2 0 0 0 λ 3 , S = s 11 s 12 s 13 s 21 s 22 s 23 s 31 s 32 s 33 ,
we must find solutions for equation S A = A ¯ S ; explicitly, it reads
s 11 s 12 s 13 s 21 s 22 s 23 s 31 s 32 s 33 A 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 = λ 1 0 0 0 λ 2 0 0 0 λ 3 s 11 s 12 s 13 s 21 s 22 s 23 s 31 s 32 s 33 ;
with the following three similar subsystems
( A 1 λ 1 ) s 11 + A 2 s 12 + A 3 s 13 = 0 B 1 s 11 + ( B 2 λ 1 ) s 12 + B 3 s 13 = 0 C 1 s 11 + C 2 s 12 + ( C 3 λ 1 ) s 13 = 0 ,
( A 1 λ 2 ) s 21 + A 2 s 22 + A 3 s 23 = 0 B 1 s 21 + ( B 2 λ 2 ) s 22 + B 3 s 23 = 0 C 1 s 21 + C 2 s 22 + ( C 3 λ 2 ) s 23 = 0 ,
( A 1 λ 3 ) s 31 + A 2 s 32 + A 3 s 33 = 0 B 1 s 31 + ( B 2 λ 3 ) s 32 + B 3 s 33 = 0 C 1 s 31 + C 2 s 32 + ( C 3 λ 3 ) s 33 = 0 ,
or differently
( A 1 λ ) A 2 A 3 B 1 ( B 2 λ ) B 3 C 1 C 2 ( C 3 λ ) s i 1 s i 2 s i 3 = 0 , i = 1 , 2 , 3 .
From vanishing the determinant
det ( A 1 λ ) A 2 A 3 B 1 ( B 2 λ ) B 3 C 1 C 2 ( C 3 λ ) = 0
we derive the cubic equation
λ 3 λ 2 A 1 + B 2 + C 3
+ λ A 2 B 1 A 1 B 2 + A 3 C 1 A 1 C 3 + B 3 C 2 B 2 C 3
+ A 3 B 2 C 1 A 2 B 3 C 1 A 3 B 1 C 2 + A 1 B 3 C 2 + A 2 B 1 C 3 A 1 B 2 C 3 = 0 .
Let us write down equations with solutions that determine the elements of the matrix S:
( A 1 λ 1 ) s 11 + A 2 s 12 + A 3 = 0 B 1 s 11 + ( B 2 λ 1 ) s 12 + B 3 = 0 , assuming s 13 = 1 ;
( A 1 λ 2 ) s 21 + A 2 s 22 + A 3 = 0 B 1 s 21 + ( B 2 λ 2 ) s 22 + B 3 = 0 , assuming s 23 = 1 ;
( A 1 λ 3 ) s 31 + A 2 s 32 + A 3 = 0 B 1 s 31 + ( B 2 λ 3 ) s 32 + B 3 = 0 , assuming s 33 = 1 .
After performing this transformation, we obtain three separate equations
d 2 d z 2 + ( E z + ϵ ) 2 λ 1 F ¯ = 0 , d 2 d z 2 + ( E z + ϵ ) 2 λ 2 G ¯ = 0 ,
d 2 d z 2 + ( E z + ϵ ) 2 λ 3 H ¯ = 0 .
These equations have the same structure as a scalar particle in the uniform electric field
d 2 d z 2 + ( E z + ϵ ) 2 λ Φ ( z ) = 0 .
We can transform Equation (19) to the new variable (assuming that E > 0 )
Z = i ( E z + ϵ ) 2 E , Λ = λ 4 E ,
then, we obtain the confluent hypergeometric equation
d 2 d Z 2 + 1 / 2 Z d d Z 1 4 + i Λ Z Φ ( Z ) = 0 ;
its solutions were given in [32].

8. Conclusions

We studied a generalized Duffin–Kemmer–Petiau equation for spin-1 particles with two additional characteristics besides electric charge, namely anomalous magnetic moment and polarizability, in the presence of both external uniform magnetic and electric fields.
After separating the variables, we obtain a system of 10 first-order partial differential equations for 10 functions f i ( r , z ) .
To describe the r-dependence of the 10 functions f A ( r , z ) , A = 1 , , 10 , we applied the method of Fedorov–Gronskiy [31]. Thus, the complete 10-component wave function is decomposed into the sum of three projective constituents. The dependence of each component on the polar coordinate r is determined by only one corresponding function, F i ( r ) , i = 1 , 2 , 3 .
These three basic functions are constructed in terms of confluent hypergeometric functions, and in this process a quantization rule arises due to the presence of a magnetic field.
After that, we derived a system of 10 ordinary differential equations for 10 functions f A ( z ) . This system was solved using the elimination method and through special linear combinations of the involved functions.
As the result, we obtain three separate second-order differential equations, whose solutions can be constructed in the terms of confluent hypergeometric functions.
Due to the spin value of S = 1 , we should expect in advance the existence of three types of solutions, 2 S + 1 = 3 ; these are precisely the ones found as the main result. Further, the constructed solutions depend on a quantized parameter arising from the presence of a magnetic field, so the radiation spectra of such a particle depend on the magnitude of the external magnetic field. Moreover, the wave functions and spectra depend on two additional characteristics of the particle.
These solutions may be helpful for experimental testing of the intrinsic structure of vector bosons.

Author Contributions

Conceptualization, V.R.; Methodology, A.I., V.R. and E.O.; Software, A.I. and A.C.; Validation, A.I., V.R., E.O. and A.C.; Formal analysis, A.I., V.R., E.O. and A.C.; Investigation, V.R. and E.O.; Resources, E.O.; Writing—original draft, A.I., V.R., E.O. and A.C.; Writing—review & editing, A.I., V.R. and A.C.; Supervision, V.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Bhabha, H.J. Relativistic Wave Equations for the Elementary Particles. Rev. Mod. Phys. 1945, 17, 200–216. [Google Scholar] [CrossRef]
  2. Harish-Chandra. Relativistic equations for elementary particles. Proc. Roy. Soc. Lond. A. 1948, 192, 195–218. [Google Scholar] [CrossRef]
  3. Gel’fand, I.M.; Yaglom, A.M. General relativistically invariant equations and infinitedimensional representations of the Lorentz group. J. Exp. Theor. Phys. 1948, 18, 703–733. (In Russian) [Google Scholar]
  4. Bhabha, H.J. On the postulational basis of the theory of elementary particles. Rev. Mod. Phys. 1949, 21, 451–462. [Google Scholar] [CrossRef]
  5. Fradkin, E.S. To the theory of particles with higher spins. J. Exp. Theor. Phys. 1950, 20, 27–38. (In Russian) [Google Scholar]
  6. Fedorov, F.I. Generalized relativistic wave equations. Proc. Acad. Sci. USSR 1952, 82, 37–40. (In Russian) [Google Scholar]
  7. Feinberg, V.Y. On the theory of interaction of particles with higher spins with electromagnetic and meson fields. Proc. Lebedev Phys. Inst. Acad. Sci. USSR 1955, 6, 269–332. (In Russian) [Google Scholar]
  8. Kemmer, N. On the theory of particles of spin 1. Helv. Phys. Acta. 1960, 33, 829–838. [Google Scholar]
  9. Young, J.A.; Bludman, S.A. Electromagnetic properties of a charged vector meson. Phys. Rev. 1963, 131, 2326–2334. [Google Scholar] [CrossRef]
  10. Sankaranarayanan, A.; Good, R.H. Spin-one wave equation. Nuovo Cimento. 1965, 36, 1303–1315. [Google Scholar] [CrossRef]
  11. Gupta, S. Wave eguation of charged particle of spin 1, the Kemmer equation. Indian J. Phys. 1969, 43, 92–105. [Google Scholar]
  12. Aronson, A. Spin-1 electrodynamics with an electric quadrupole moment. Phys. Rev. 1969, 186, 1434–1441. [Google Scholar] [CrossRef]
  13. Fedorov, F.I.; Pletyukhov, V.A. Wave equatioons with repeated representations of the Lorentz group. Intejer Spin. Vesti NASB. Ser. Fiz.-Mat. Nauk 1969, 6, 81–88. (In Russian) [Google Scholar]
  14. Fedorov, F.I.; Pletyukhov, V.A. Wave Equation with Multiple Representations for a Spin-1 Particle. Vesti NASB. Ser. Fiz.-Mat. Nauk 1970, 3, 84–92. (In Russian) [Google Scholar]
  15. Amar, V.; Dozzio, U. Finit dimensional Gel’fand–Yaglom equations for arbitrary integral spin. Nuovo Cimento. B 1972, 9, 53–63. [Google Scholar] [CrossRef]
  16. Goldman, T.; Tsai, W.; Yildiz, A. Consistency of spin one theory. Phys. Rev. D 1972, 5, 1926–1930. [Google Scholar] [CrossRef]
  17. Lord, E.A. Six-dimensional formulation of meson equations. Int. J. Theor. Phys. 1972, 5, 339–348. [Google Scholar] [CrossRef]
  18. Shamaly, A.; Capri, A.Z. First-order wave equations for integral spin. Nuovo Cimento. B 1971, 2, 235–253. [Google Scholar] [CrossRef]
  19. Shamaly, A.; Capri, A.Z. Unified theories for massive spin 1 fields. Can. J. Phys. 1973, 51, 1467–1470. [Google Scholar] [CrossRef]
  20. Santhaman, T.S.; Tekumalla, A.R. Bhabha equations for unique mass and spin. Fortsch. Phys. 1974, 22, 431–452. [Google Scholar] [CrossRef]
  21. Wightman, A.S. Invariant wave equations: General theory and applications to the external field problem. Invariant wave equation. Lect. Notes Phys. 1978, 73, 1–101. [Google Scholar]
  22. Garding, L. Mathematics of invariant wave equations. Lect. Notes Phys. 1978, 73, 102–164. [Google Scholar]
  23. Vijayalakshmi, B.; Seetharaman, M.; Mathews, P.M. Consistency of spin 1 theories in external electromagnetic fields. J. Phys. A 1979, 12, 665–677. [Google Scholar] [CrossRef]
  24. Fedorov, F.I. The Lorentz Group; Nauka Publisher: Moscow, Russia, 1979. (In Russian) [Google Scholar]
  25. Karpenko, R. The moments of vector particles described by the Duffin–Kemmer equation. Izv. Vuzov. Fiz. 1980, 23, 122–124. [Google Scholar]
  26. Mathews, P.M.; Vijayalakshmi, B.; Sivakuma, M. On the admissible Lorentz group representations in unique-mass, unique-spin relativistic wave equations. J. Phys. A 1982, 15, 1579–1582. [Google Scholar] [CrossRef]
  27. Bogush, A.A.; Kisel, V.V.; Tokarevskaya, N.G.; Red’kov, V.M. Duffin – Kemmer–Petiau formalism reexamined: Non-relativistic approximation for spin 0 and spin 1 particles in a Riemannian space-time. Ann. Fond. Louis Broglie 2007, 32, 355–381. [Google Scholar]
  28. Maksimenko, N.V.; Vakulina, E.V.; Kuchin, S.M. Spin-1 particle polarizahility in the Duffin–Kemmer–Petiau formalism. Phys. Part. Nucl. Lett. 2015, 12, 807–812. [Google Scholar] [CrossRef]
  29. Kisel, V.V.; Bury, A.V.; Sachenok, P.O.; Ovsiyuk, E.M. Spin 1 particle with two additional characteristics, anomalous magnetic moment and polarizability. Nonlinear Dyn. Appl. 2024, 30, 275–293. [Google Scholar]
  30. Ivashkevich, A.; Red’kov, V.; Chichurin, A. Spin 1 particle with anomalous magnetic moment in external uniform electric field, solutions with cylindric symmetry. Math. Methods Appl. Sci. 2025, 48, 9640–9652. [Google Scholar] [CrossRef]
  31. Gronskiy, V.K.; Fedorov, F.I. Magnetic properties of a particle with spin 3/2. Dokl. Natl. Acad. Sci. Belarus 1960, 4, 278–283. (In Russian) [Google Scholar]
  32. Ivashkevich, A.V.; Kuzmich, A.M.; Sachenok, P.O.; Ovsiyuk, E.M. Spin 1 Particle with two additional electromagnetic characteristics in presence of the uniform electric field. NPCS 2025, 28, 41–63. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ivashkevich, A.; Red’kov, V.; Ovsiyuk, E.; Chichurin, A. The Role of Symmetry Aspects in Considering the Spin-1 Particle with Two Additional Electromagnetic Characteristics in the Presence of Both Magnetic and Electric Fields. Symmetry 2025, 17, 1465. https://doi.org/10.3390/sym17091465

AMA Style

Ivashkevich A, Red’kov V, Ovsiyuk E, Chichurin A. The Role of Symmetry Aspects in Considering the Spin-1 Particle with Two Additional Electromagnetic Characteristics in the Presence of Both Magnetic and Electric Fields. Symmetry. 2025; 17(9):1465. https://doi.org/10.3390/sym17091465

Chicago/Turabian Style

Ivashkevich, Alina, Viktor Red’kov, Elena Ovsiyuk, and Alexander Chichurin. 2025. "The Role of Symmetry Aspects in Considering the Spin-1 Particle with Two Additional Electromagnetic Characteristics in the Presence of Both Magnetic and Electric Fields" Symmetry 17, no. 9: 1465. https://doi.org/10.3390/sym17091465

APA Style

Ivashkevich, A., Red’kov, V., Ovsiyuk, E., & Chichurin, A. (2025). The Role of Symmetry Aspects in Considering the Spin-1 Particle with Two Additional Electromagnetic Characteristics in the Presence of Both Magnetic and Electric Fields. Symmetry, 17(9), 1465. https://doi.org/10.3390/sym17091465

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop